THE WEIGHTED MAJORITY ALGORITHM

Size: px
Start display at page:

Download "THE WEIGHTED MAJORITY ALGORITHM"

Transcription

1 THE WEIGHTED MAJORITY ALGORITHM Csaba Szepesvári University of Alberta CMPUT UofA, October 3, 2006

2 OUTLINE 1 PREDICTION WITH EXPERT ADVICE 2 HALVING: FIND THE PERFECT EXPERT! (0/1 LOSS) 3 NO PERFECT EXPERT? (0/1 LOSS) 4 PREDICTING CONTINUOUS OUTCOMES 5 BIBLIOGRAPHY

3 FRAMEWORK Prediction with Expert Advice Outcomes: y 1, y 2,... Y Decisions: ˆp 1, ˆp 2,... D Loss function: l : D Y R Advice of expert i: f i1, f i2,... D, i J (Total) loss of expert i: L i,n = n t=1 l(f it, y t ) (Total) loss of algorithm: ˆL n = n t=1 l(ˆp t, y t ) (Total) regret (excess loss): R n = ˆL n L i,n Goal: Design algorithm that keeps the regret small

4 A PERFECT WORLD y t {0, 1}, ˆp t {0, 1} (Y = D = {0, 1}) Loss: l(p, y) = I {p y} (0/1, binary or classification loss) N experts (J = {1,..., N}) Expert predictions: f i1, f i2,... {0, 1} Assumption: There is an expert that never makes a mistake. How to keep the regret small?

5 HALVING ALGORITHM Keep regret small Find the perfect expert quickly: with few mistakes Idea: Eliminate immediately experts that make a mistake Take majority vote of remaining experts Halving Algorithm [Barzdin and Freivalds, 1972, Angluin, 1988] Claim: Whenever the alg. makes a mistake, at least half of the experts are eliminated! There is a perfect expert, hence cannot halve more than log 2 N times! Theorem: Regret never grows above log 2 N (finite!) Holds for any sequence y 1, y 2,...!

6 FORMAL ANALYSIS Weights w it {0, 1}: Is expert i alive at time t? (after y t is received) w i0 = 1. W t = N i=1 w it: Number of alive experts at time t ˆL t : number of mistakes up to time t (including time t) Claim: If mistake (l(ˆp t, y t ) = 1) then W t W t 1 /2. Also: W t never grows. W t W 0 /2ˆL t = N/2ˆL t. Lower bound: 1 W t. Putting together: 1 N/2ˆL t, hence ˆL t log 2 N.

7 NO PERFECT EXPERT: WEIGHTED MAJORITY Elimination: too strong if there is no perfect expert! Keep weights positive! Have weights of experts making a mistake decay: w it = βw i,t 1, if f it y t (0 < β < 1) Keep majority vote: ˆp t = I n P i w i,t 1I {fit =0} <P o i w i,t 1I {fit =1} = I P { i w i,t 1(1 f it )< P i w i,t 1f it} = I P { i w i,t 1<2 P i w i,t 1f it} = I P. i w i,t 1 f it Pi w > 1 i,t 1 2 Weighted Majority [Littlestone and Warmuth, 1994]

8 WEIGHTED MAJORITY: ANALYSIS/1 Notation: J t,bad = {i f it y t }, J t,good = {i f it = y t } W t,j = i J W it W t = W t 1,Jt,good + βw t 1,Jt,bad Claim: W t W t 1 and if ˆp t y t then W t (1 + β)/2w t 1 Proof: W t = W t 1,Jt,good + βw t 1,Jt,bad. Since β < 1, W t W t 1. Assume ˆp t y t. W t 1,Jt,good W t 1 /2 (majority vote). W t = W t 1,Jt,good + βw t 1,Jt,bad = W t 1,Jt,good + β(w t 1 W t 1,Jt,good ) = (1 β)w t 1,Jt,good + βw t 1 (1 β)w t 1 /2 + βw t 1

9 WEIGHTED MAJORITY: ANALYSIS/2 CLAIM W t W t 1 and if ˆp t y t then W t (1 + β)/2w t 1 Lower bound: For any i, β L it = w it W t. Putting together: β L it ( 1 + β )ˆLt W t W 0. 2 Take log, reorder: log2 ( ˆL 1 β t )L it + log 2 N log 2 ( 2 1+β ).

10 PREDICTING CONTINUOUS OUTCOMES What if Y = D = [0, 1] or R d? More generally: let Y = D be convex subsets of some vector space λ 1 y 1 + λ 2 y 2 Y whenever λ 1, λ 2 0, λ 1 + λ 2 = 1, y 1, y 2 Y). Loss: l : D Y [0, 1] (bounded) Example: D = Y = [0, 1], (p, y) = 1 2 p y. Can we generalize the previous idea? Combine the advice of the experts! ˆp t = N i=1 w i,t 1f it N i=1 w it How to set the weights? Let them decay exponentially as a function of the losses! w i,t = w i,t 1 e ηl(f it,y t ).

11 PREDICTING CONTINUOUS OUTCOMES/2 For numerical stability we might want to normalize the weights: w i,t 1 e ηl(f it,y t ) w i,t = N i=1 w i,t 1e. ηl(f it,y t ) Note: resembles Bayes updates! For the analysis we do not normalize Analysis?? Plan?? Lower bound the sum of weights using individual total losses of the experts Upper bound the sum of weights in terms of the total loss

12 ANALYSIS/1 Lower bound: W n = N i=1 w in = N i=1 e ηl in e ηl in. Upper bound: Bound W t /W t 1 in terms of l(ˆp t, y t )! (W t const W t 1, const =?) W t W t 1 = = i i e ηl it w i,t 1 W t 1 ŵ i,t 1 e ηl it (l it def = l(ˆp t, y t )) (ŵ i,t 1 def = w i,t 1 /W t 1 )

13 ANALYSIS/2 W t W t 1 = i ŵ i,t 1 e ηl it Looks like an expectation! Let Then Observe: P (I = i) = ŵ i,t 1, I J. W t W t 1 [ ] = E e ηl I,t. l(ˆp t, y t ) = l(e [ ] f I,t, yt ), E [ ] l I,t = E [ l(f I,t, y t ) ]

14 ANALYSIS/3 [ ] W t W t 1 = E e ηl I,t?? l(ˆp t, y t ) = l(e [ f I,t ], yt ), E [ l I,t ] = E [ l(f I,t, y t ) ] What if l(p, y) = 1 2 p y, p, y [0, 1]? l(, y) is convex for any y E [ l(f I,t, y t ) ] l(e [ f I,t ], yt ) = l(ˆp t, y t ) (Jensen s inequality)

15 ANALYSIS/4 [ ] W t W t 1 = E e ηl I,t?? E [ l(f I,t, y t ) ] l(e [ f I,t ], yt ) = l(ˆp t, y t ). LEMMA (HOEFFDING S INEQUALITY) Let 0 X 1. Then s R, E [ e sx ] e se[x]+s2 /8. [ ] W t W t 1 E e ηl I,t e ηe[l I,t]+η 2 /8 e ηl(ˆp t,y t )+η 2 /8 (line 2 above) (Hoeffding s inequality) (line 2 above)

16 ANALYSIS/3 W n e ηl in, i J W t W t 1 e ηl(ˆp t,y t )+ η 2 8. Hence, using W 0 = N (w 0i = 1), 1 N e ηl in W n W 0 = W n W n 1... W 1 e ηˆl n+ η 2 W 0 8 n THEOREM (LOSS BOUND FOR THE EWA FORECASTER) Assume that D is a convex subset of some vector-space. Let l : D Y [0, 1] be convex in its first argument. Then, for EWA forecaster it holds: With η = ˆL n min L in + ln N i J η + η 8 n. 8 ln N n, ˆL n min i J L in + n/2 ln N.

17 NOTES Small losses Loss bound for WM, 0/1-predictions: log2 ( ˆL 1 β n )L in + log 2 N log 2 ( 2 1+β ). If L in = 0 for some expert then regret is finite! Continuous prediction spaces (EWA): ˆL n min i J L in + n/2 ln N. The bound grows to infinite even if for some i, L in = 0! :-( Can this be improved? If there is a perfect expert, the regret should be finite! How to select η if horizon (n) is not given a priori? Would η t = 8(ln N)/t work? (yes) Cheap solution: doubling trick Related: Can use the doubling trick to improve bound in case of small losses? (yes)

18 REFERENCES Angluin, D. (1988). Queries and concept learning. Journal of Machine Learning, 2: Barzdin, Y. and Freivalds, R. (1972). On the prediction of general recursive functions. Soviet Mathematics (Doklady), 13: Littlestone, N. and Warmuth, M. (1994). The weighted majority algorithm. Information and Computation, 108:

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

Online learning CMPUT 654. October 20, 2011

Online learning CMPUT 654. October 20, 2011 Online learning CMPUT 654 Gábor Bartók Dávid Pál Csaba Szepesvári István Szita October 20, 2011 Contents 1 Shooting Game 4 1.1 Exercises...................................... 6 2 Weighted Majority Algorithm

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

DISCRETE PREDICTION PROBLEMS: RANDOMIZED PREDICTION

DISCRETE PREDICTION PROBLEMS: RANDOMIZED PREDICTION DISCRETE PREDICTION PROBLEMS: RANDOMIZED PREDICTION Csaba Szepesvári Uiversity of Alberta CMPUT 654 E-mail: szepesva@ualberta.ca UofA, October 10-12-14, 2006 OUTLINE 1 DISCRETE PREDICTION PROBLEMS 2 RANDOMIZED

More information

Online Learning. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 21. Slides adapted from Mohri

Online Learning. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 21. Slides adapted from Mohri Online Learning Jordan Boyd-Graber University of Colorado Boulder LECTURE 21 Slides adapted from Mohri Jordan Boyd-Graber Boulder Online Learning 1 of 31 Motivation PAC learning: distribution fixed over

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Computational Learning Theory. Definitions

Computational Learning Theory. Definitions Computational Learning Theory Computational learning theory is interested in theoretical analyses of the following issues. What is needed to learn effectively? Sample complexity. How many examples? Computational

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Online Prediction: Bayes versus Experts

Online Prediction: Bayes versus Experts Marcus Hutter - 1 - Online Prediction Bayes versus Experts Online Prediction: Bayes versus Experts Marcus Hutter Istituto Dalle Molle di Studi sull Intelligenza Artificiale IDSIA, Galleria 2, CH-6928 Manno-Lugano,

More information

Classification. Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY. Slides adapted from Mohri. Jordan Boyd-Graber UMD Classification 1 / 13

Classification. Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY. Slides adapted from Mohri. Jordan Boyd-Graber UMD Classification 1 / 13 Classification Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY Slides adapted from Mohri Jordan Boyd-Graber UMD Classification 1 / 13 Beyond Binary Classification Before we ve talked about

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das Online Learning 9.520 Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das About this class Goal To introduce the general setting of online learning. To describe an online version of the RLS algorithm

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Weighted Majority and the Online Learning Approach

Weighted Majority and the Online Learning Approach Statistical Techniques in Robotics (16-81, F12) Lecture#9 (Wednesday September 26) Weighted Majority and the Online Learning Approach Lecturer: Drew Bagnell Scribe:Narek Melik-Barkhudarov 1 Figure 1: Drew

More information

Littlestone s Dimension and Online Learnability

Littlestone s Dimension and Online Learnability Littlestone s Dimension and Online Learnability Shai Shalev-Shwartz Toyota Technological Institute at Chicago The Hebrew University Talk at UCSD workshop, February, 2009 Joint work with Shai Ben-David

More information

Applications of on-line prediction. in telecommunication problems

Applications of on-line prediction. in telecommunication problems Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1 Outline On-line prediction; Some

More information

Extended dynamic programming: technical details

Extended dynamic programming: technical details A Extended dynamic programming: technical details The extended dynamic programming algorithm is given by Algorithm 2. Algorithm 2 Extended dynamic programming for finding an optimistic policy transition

More information

On-line Variance Minimization

On-line Variance Minimization On-line Variance Minimization Manfred Warmuth Dima Kuzmin University of California - Santa Cruz 19th Annual Conference on Learning Theory M. Warmuth, D. Kuzmin (UCSC) On-line Variance Minimization COLT06

More information

A simple algorithmic explanation for the concentration of measure phenomenon

A simple algorithmic explanation for the concentration of measure phenomenon A simple algorithmic explanation for the concentration of measure phenomenon Igor C. Oliveira October 10, 014 Abstract We give an elementary algorithmic argument that sheds light on the concentration of

More information

Online prediction with expert advise

Online prediction with expert advise Online prediction with expert advise Jyrki Kivinen Australian National University http://axiom.anu.edu.au/~kivinen Contents 1. Online prediction: introductory example, basic setting 2. Classification with

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU10701 11. Learning Theory Barnabás Póczos Learning Theory We have explored many ways of learning from data But How good is our classifier, really? How much data do we

More information

Lecture 2: Weighted Majority Algorithm

Lecture 2: Weighted Majority Algorithm EECS 598-6: Prediction, Learning and Games Fall 3 Lecture : Weighted Majority Algorithm Lecturer: Jacob Abernethy Scribe: Petter Nilsson Disclaimer: These notes have not been subjected to the usual scrutiny

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

The Ellipsoid Algorithm

The Ellipsoid Algorithm The Ellipsoid Algorithm John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA 9 February 2018 Mitchell The Ellipsoid Algorithm 1 / 28 Introduction Outline 1 Introduction 2 Assumptions

More information

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm CS61: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm Tim Roughgarden February 9, 016 1 Online Algorithms This lecture begins the third module of the

More information

Multitask Learning With Expert Advice

Multitask Learning With Expert Advice University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1-28-2007 Multitask Learning With Expert Advice Jacob D. Abernethy University of California - Berkeley Peter Bartlett

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Online Prediction Peter Bartlett

Online Prediction Peter Bartlett Online Prediction Peter Bartlett Statistics and EECS UC Berkeley and Mathematical Sciences Queensland University of Technology Online Prediction Repeated game: Cumulative loss: ˆL n = Decision method plays

More information

On-line Prediction and Conversion Strategies

On-line Prediction and Conversion Strategies Machine Learning, 25, 71 110 (1996) c 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. On-line Prediction and Conversion Strategies NICOLÒ CESA-BIANCHI DSI, Università di Milano,

More information

Using Additive Expert Ensembles to Cope with Concept Drift

Using Additive Expert Ensembles to Cope with Concept Drift Jeremy Z. Kolter and Marcus A. Maloof {jzk, maloof}@cs.georgetown.edu Department of Computer Science, Georgetown University, Washington, DC 20057-1232, USA Abstract We consider online learning where the

More information

Computational Learning Theory

Computational Learning Theory 09s1: COMP9417 Machine Learning and Data Mining Computational Learning Theory May 20, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 25.1 Introduction Today we re going to talk about machine learning, but from an

More information

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Computational Learning Theory Le Song Lecture 11, September 20, 2012 Based on Slides from Eric Xing, CMU Reading: Chap. 7 T.M book 1 Complexity of Learning

More information

Online Convex Optimization

Online Convex Optimization Advanced Course in Machine Learning Spring 2010 Online Convex Optimization Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz A convex repeated game is a two players game that is performed

More information

The Weighted Majority Algorithm. Nick Littlestone. Manfred K. Warmuth y UCSC-CRL Revised. October 26, 1992.

The Weighted Majority Algorithm. Nick Littlestone. Manfred K. Warmuth y UCSC-CRL Revised. October 26, 1992. The Weighted Majority Algorithm Nick Littlestone Manfred K. Warmuth y UCSC-CRL-9-8 Revised October 6, 99 Baskin Center for Computer Engineering & Information Sciences University of California, Santa Cruz

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

Algorithms, Games, and Networks January 17, Lecture 2

Algorithms, Games, and Networks January 17, Lecture 2 Algorithms, Games, and Networks January 17, 2013 Lecturer: Avrim Blum Lecture 2 Scribe: Aleksandr Kazachkov 1 Readings for today s lecture Today s topic is online learning, regret minimization, and minimax

More information

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013 Learning Theory Ingo Steinwart University of Stuttgart September 4, 2013 Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 1 / 62 Basics Informal Introduction Informal Description

More information

CS261: Problem Set #3

CS261: Problem Set #3 CS261: Problem Set #3 Due by 11:59 PM on Tuesday, February 23, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

An Algorithms-based Intro to Machine Learning

An Algorithms-based Intro to Machine Learning CMU 15451 lecture 12/08/11 An Algorithmsbased Intro to Machine Learning Plan for today Machine Learning intro: models and basic issues An interesting algorithm for combining expert advice Avrim Blum [Based

More information

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Tom Bylander Division of Computer Science The University of Texas at San Antonio San Antonio, Texas 7849 bylander@cs.utsa.edu April

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Generalization bounds

Generalization bounds Advanced Course in Machine Learning pring 200 Generalization bounds Handouts are jointly prepared by hie Mannor and hai halev-hwartz he problem of characterizing learnability is the most basic question

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machine Learning Theory (CS 6783) Tu-Th 1:25 to 2:40 PM Kimball, B-11 Instructor : Karthik Sridharan ABOUT THE COURSE No exams! 5 assignments that count towards your grades (55%) One term project (40%)

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Computational Learning Theory

Computational Learning Theory 1 Computational Learning Theory 2 Computational learning theory Introduction Is it possible to identify classes of learning problems that are inherently easy or difficult? Can we characterize the number

More information

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Perceptrons Definition Perceptron learning rule Convergence Margin & max margin classifiers (Linear) support vector machines Formulation

More information

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin Learning Theory Machine Learning CSE546 Carlos Guestrin University of Washington November 25, 2013 Carlos Guestrin 2005-2013 1 What now n We have explored many ways of learning from data n But How good

More information

Online learning with feedback graphs and switching costs

Online learning with feedback graphs and switching costs Online learning with feedback graphs and switching costs A Proof of Theorem Proof. Without loss of generality let the independent sequence set I(G :T ) formed of actions (or arms ) from to. Given the sequence

More information

1 Review of the Perceptron Algorithm

1 Review of the Perceptron Algorithm COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #15 Scribe: (James) Zhen XIANG April, 008 1 Review of the Perceptron Algorithm In the last few lectures, we talked about various kinds

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Sinh Hoa Nguyen, Hung Son Nguyen Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University February 14, 2006 inh Hoa Nguyen, Hung Son

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

Approximation Theoretical Questions for SVMs

Approximation Theoretical Questions for SVMs Ingo Steinwart LA-UR 07-7056 October 20, 2007 Statistical Learning Theory: an Overview Support Vector Machines Informal Description of the Learning Goal X space of input samples Y space of labels, usually

More information

Machine Learning Theory Lecture 4

Machine Learning Theory Lecture 4 Machine Learning Theory Lecture 4 Nicholas Harvey October 9, 018 1 Basic Probability One of the first concentration bounds that you learn in probability theory is Markov s inequality. It bounds the right-tail

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 Online Convex Optimization Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 The General Setting The General Setting (Cover) Given only the above, learning isn't always possible Some Natural

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron

Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron Stat 928: Statistical Learning Theory Lecture: 18 Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron Instructor: Sham Kakade 1 Introduction This course will be divided into 2 parts.

More information

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning Journal of Machine Learning Research 1 8, 2017 Algorithmic Learning Theory 2017 New bounds on the price of bandit feedback for mistake-bounded online multiclass learning Philip M. Long Google, 1600 Amphitheatre

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Online Learning Repeated game: Aim: minimize ˆL n = Decision method plays a t World reveals l t L n l t (a

More information

U Logo Use Guidelines

U Logo Use Guidelines Information Theory Lecture 3: Applications to Machine Learning U Logo Use Guidelines Mark Reid logo is a contemporary n of our heritage. presents our name, d and our motto: arn the nature of things. authenticity

More information

Efficient Tracking of Large Classes of Experts

Efficient Tracking of Large Classes of Experts IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012 6709 Efficient Tracking of Large Classes of Experts András György, Member, IEEE, Tamás Linder, Senior Member, IEEE, and Gábor Lugosi

More information

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science

More information

Lecture 8. Instructor: Haipeng Luo

Lecture 8. Instructor: Haipeng Luo Lecture 8 Instructor: Haipeng Luo Boosting and AdaBoost In this lecture we discuss the connection between boosting and online learning. Boosting is not only one of the most fundamental theories in machine

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Vapnik Chervonenkis Theory Barnabás Póczos Empirical Risk and True Risk 2 Empirical Risk Shorthand: True risk of f (deterministic): Bayes risk: Let us use the empirical

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Support Vector Machines and Bayes Regression

Support Vector Machines and Bayes Regression Statistical Techniques in Robotics (16-831, F11) Lecture #14 (Monday ctober 31th) Support Vector Machines and Bayes Regression Lecturer: Drew Bagnell Scribe: Carl Doersch 1 1 Linear SVMs We begin by considering

More information

Minimax risk bounds for linear threshold functions

Minimax risk bounds for linear threshold functions CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 3 Minimax risk bounds for linear threshold functions Lecturer: Peter Bartlett Scribe: Hao Zhang 1 Review We assume that there is a probability

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds Lecture 25 of 42 PAC Learning, VC Dimension, and Mistake Bounds Thursday, 15 March 2007 William H. Hsu, KSU http://www.kddresearch.org/courses/spring2007/cis732 Readings: Sections 7.4.17.4.3, 7.5.17.5.3,

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory Definition Reminder: We are given m samples {(x i, y i )} m i=1 Dm and a hypothesis space H and we wish to return h H minimizing L D (h) = E[l(h(x), y)]. Problem

More information

Adaptive Sampling Under Low Noise Conditions 1

Adaptive Sampling Under Low Noise Conditions 1 Manuscrit auteur, publié dans "41èmes Journées de Statistique, SFdS, Bordeaux (2009)" Adaptive Sampling Under Low Noise Conditions 1 Nicolò Cesa-Bianchi Dipartimento di Scienze dell Informazione Università

More information

Calibrated Surrogate Losses

Calibrated Surrogate Losses EECS 598: Statistical Learning Theory, Winter 2014 Topic 14 Calibrated Surrogate Losses Lecturer: Clayton Scott Scribe: Efrén Cruz Cortés Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Defensive forecasting for optimal prediction with expert advice

Defensive forecasting for optimal prediction with expert advice Defensive forecasting for optimal prediction with expert advice Vladimir Vovk $25 Peter Paul $0 $50 Peter $0 Paul $100 The Game-Theoretic Probability and Finance Project Working Paper #20 August 11, 2007

More information

Computational Learning Theory (VC Dimension)

Computational Learning Theory (VC Dimension) Computational Learning Theory (VC Dimension) 1 Difficulty of machine learning problems 2 Capabilities of machine learning algorithms 1 Version Space with associated errors error is the true error, r is

More information

FORMULATION OF THE LEARNING PROBLEM

FORMULATION OF THE LEARNING PROBLEM FORMULTION OF THE LERNING PROBLEM MIM RGINSKY Now that we have seen an informal statement of the learning problem, as well as acquired some technical tools in the form of concentration inequalities, we

More information

Putting the Bayes update to sleep

Putting the Bayes update to sleep Putting the Bayes update to sleep Manfred Warmuth UCSC AMS seminar 4-13-15 Joint work with Wouter M. Koolen, Dmitry Adamskiy, Olivier Bousquet Menu How adding one line of code to the multiplicative update

More information

The Blessing and the Curse

The Blessing and the Curse The Blessing and the Curse of the Multiplicative Updates Manfred K. Warmuth University of California, Santa Cruz CMPS 272, Feb 31, 2012 Thanks to David Ilstrup and Anindya Sen for helping with the slides

More information

Online Learning versus Offline Learning*

Online Learning versus Offline Learning* Machine Learning, 29, 45 63 (1997) c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Online Learning versus Offline Learning* SHAI BEN-DAVID Computer Science Dept., Technion, Israel.

More information

Logistic regression and linear classifiers COMS 4771

Logistic regression and linear classifiers COMS 4771 Logistic regression and linear classifiers COMS 4771 1. Prediction functions (again) Learning prediction functions IID model for supervised learning: (X 1, Y 1),..., (X n, Y n), (X, Y ) are iid random

More information

Computational Learning Theory

Computational Learning Theory 0. Computational Learning Theory Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 7 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell 1. Main Questions

More information

Learning Binary Relations Using Weighted Majority Voting *

Learning Binary Relations Using Weighted Majority Voting * Machine Learning, 20, 245-271 (1995) 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Learning Binary Relations Using Weighted Majority Voting * SALLY A. GOLDMAN Dept. of Computer

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

The Perceptron Algorithm, Margins

The Perceptron Algorithm, Margins The Perceptron Algorithm, Margins MariaFlorina Balcan 08/29/2018 The Perceptron Algorithm Simple learning algorithm for supervised classification analyzed via geometric margins in the 50 s [Rosenblatt

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 3 Bagging & Boosting + SVMs Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline 1 Ensemble-methods

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

Online Learning with Costly Features and Labels

Online Learning with Costly Features and Labels Online Learning with Costly Features and Labels Navid Zolghadr Department of Computing Science University of Alberta zolghadr@ualberta.ca Gábor Bartók Department of Computer Science TH Zürich bartok@inf.ethz.ch

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information