Exponentiated Gradient Descent

Size: px
Start display at page:

Download "Exponentiated Gradient Descent"

Transcription

1 CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity, the Lagrange multiplier and FTRL. We look at a the Lazy Projection Gradient Descent algorithm and then develop the Exponentiated Gradient Descent algorithm. Review Topics.1 Norms Definition 1. The norm is a function R n R that gives a measure of the size of vectors in a vector space W, such that u, v W and scalar a, a v = a v or positive homogeneity u + v u + v or additivity (Triangle Inequality) v 0 and v = 0 v = 0 or positivity The norm we are primarily concerned with is the p-norm, defined as Remark: The norm when p = is called the Euclidean norm.. Dual Norms ( n ) 1/p v p = v i p, p 1 (1) Definition. The dual norm is the norm in the dual space W, or the set of continuous linear functionals on W, so that v = sup ( u v) () u 1 Remark: For a given p-norm where p 1, the dual norm is equivalent to the q-norm satsifying 1/p+1/q = 1. Each norm has an associated dual-norm. The Euclidean norm is a special case equal to its dual norm (or p = q = ). Lemma 3. For a function f that is G-Lipschitz with respect to, w, g f( w), then g G Proof. Given that f is G-Lipschitz with respect to f( w ) f( w) G w w (3) 1

2 Choose g f t ( w t ), where g G, then by (strong) convexity g ( w w) f( w ) f( w) G w w (4) Convexity Use Hölder s Inequality were u v u v g ( w w) g w w (5) By the definition of the dual norm presented in (), u 1 and given that g G, then g ( w w) g w w g w w G w w (6) Remark: That this is roughly the same proof as stated in Lecture 4, only substituting Hölder s inequality for Cauchy-Schwarz. Note that Cauchy-Schwarz is a special case of Hölder s inequality where p = q =..3 Strong Convexity (Polyak, 1966 []) We expand on last lecture s definition of strong convexity and offer alternative forms. Definition 4. A convex function, f, is σ-strongly convex with respect to some norm,, over a set W if for all u, w W for every g such that g f(w) it holds that f(u) f(w) + g (u w) + σ u w. (7) this quadratic growth in separation means that halfway between u and w ( ) u + w f 1 f(u) + 1 f(w) σ 8 u w. (8) f w f(u) + f(w) } σ u w σ 8 u w { g u+w u Figure 1: Depiction of strong convexity

3 (if f is twice differentiable) u, where f is the Hessian of f u T f(u)u σ u (9) this means that the greater the step-size (u w), the greater the angle separation between gradients (in D the slope keeps growing), or ( f(u) f(w)) (u w) σ u w (10) Remark: Norms tend to matter more in higher dimensions, where the idea of size becomes harder to conceptualize. The above definition means that 1 w is 1-strongly convex with respect to w, and generalized for p [1, ], 1 w p is (p 1)-strongly convex with respect to w p..4 Lagrange Multipliers Lagrange Multipliers are used when we want to minimize a function subject to equality constraints via the use of a barrier function B. 1. min f(x) such that g(x) = 0 Define a barrier B(x) =. min f(x) + B(x) such that g(x) = 0 Then this process becomes { if g(x) 0 0 if g(x) = 0 = min λg(x), where λ is the Lagrange muliplier λ R 3. min max(f(x) + λg(x) ) = max x λ min (f(x) + λg(x)) λ x Lagrangian Remark: The above is under strong duality, and the Lagrange multiplier is also known as the dual variable. The Lagrange multiplier becomes a dialing knob for sampling along the dominant solutions..5 Follow-the-Regularized-Leader (FTRL) [3] Previously we looked at FTRL, where at time t the player s next step with hindsight is given by w t = argmin(f 1:(t 1) ( w) + r( w)) (11) where W is the feasible set, f 1:(t 1) ( w) is the sum of all losses up to time t 1 and r( w) is a strong convex regularizer (just one, not per round). We make the following assumptions: 1. each f t is G-Lipschitz with respect to (convex). r( w) is σ-strongly convex with respect to 3. W is a convex set Then we ve shown in Lecture 3 that the regret for FTRL for linear f t is bounded by Regret(T ) T G σ + r( w ) (1) 3

4 f t g t f t ( w t ) Adversary Transform OLA w t+1 Figure : FTRL Recall that linear problems are hard (worst of convex), but with a choice of σ = G T /R we can bound the regret at O( T ). The player can still play w t = argmin( w g 1:(t 1) + r( w)) to get the bound expressed earlier in (1). Remark: The advantage here is that the player need not keep a backlog of all previous vector g, but only a running total. Each round played updates the total g 1:T g 1:(T 1) + g t. Now the question is what values of r( w) should we choose? Example: Lazy Projection Gradient Descent Algorithm Choose r( w) = 1 η w, where r is (1/η)-strongly convex with respect to, and let η = R/(G π) Bound: We see that our FTRL theorem still applies: Regret(T ) ηt G + 1 η w ηt G + R GR Choose η = to get regret(t ) T + GR T = GR T. R G T η. Update Rule: To find the player s next step, find argmin by η to get (no consequence for η independent of w) w g 1:(T 1) + 1 η w. Multiply both sides argmin Add a constant 1 ηg 1:(t 1) to complete the square w g 1:(T 1) + 1 η w = argmin w η g 1:(T 1) + 1 w (13) = argmin = argmin w η g 1:(T 1) + 1 w 1 η g 1:(T 1) + w = proj( η g 1:(T 1) ) W (14) Remark: Abstractly, this means we see what direction our gradient points, and step in the opposite (or downhill ) direction. If our new vector is outside the feasible set, project back into it. 4

5 3 Exponentiated Gradient Descent Algorithm (EG) 3.1 What is EG Consider a special case of FTRL where we choose r( w) = 1 η where w is a probability simplex such that w R n : w i log w i (negative) entropy w i = 1, i, w i 0 Lemma 5. For EG, r is 1/η-strongly convex over W with respect to 1, so w 1 = n w i. Proof. We want to show strong-convexity, which by definition (7), u, w W (15) Show: r( u)? r( w) + ( u w) r( w) + 1 η u w 1 By multiplying both sides by η and calculating r( w), this is equivalent to showing? n u i log u i w i log w i + (u i w i )(1 + log w i ) + 1 u w 1 = u i log w i + 1 u w 1 (16) n ui log wi Subtracting n u i log w i from both sides forms the inequality u i log u i? 1 w i u w 1 (17) Note n u i log ui w i is the Kullback-Leibler divergence. By Pinsker s Inequality, D( u w) sup u w 1 u i log u i w i = D( u w) u w 1 1 u w 1 (18) with equality when u = w. This satisfies definition (7) for strong convexity. 3. Update Rule Now we look at the update rules for the given choice of r( w). To find the player s next step under EG, find argmin w g 1:(t 1) + 1 w i log w i (19) η Use the Lagrange multiplier and the simplex defintion for some fixed λ ( ) = argmin w g 1:(t 1) + 1 w i log w i + λ 1 w i η ( ( )) = max min w g 1:(t 1) + 1 w i log w i + λ 1 w i w λ η Lagrangian L = max w min (L) λ 5 (0)

6 Set the derivatives to zero and evaluate L w i = g 1:(t 1),i + 1 η (1 + log w i) λ = 0 (1) This is equivalent to evaluating log w i = ηg 1:(t 1),i (1 ηλ) w i = exp ( ηg 1:(t 1),i (1 ηλ) ) () fixed λ Remark: Exponentiated Gradient Descent is also known as Weighted Majority, to winnow or to hedge. 3.3 EG vs. GD What are the differences between EG and GD? Consider the situation of predicting with expert advice by choosing to follow the advice of one indexed expert I t (a random variable) on round t, out of n-experts. Let g t,i = { 1 if wrong advice by i 0 if good advice by i f t = E[ g t, I t ] = g t w t (3) For GD, in the all-wrong-experts scenario, G = n and R( 1 w ) = 1, leading to regret bound regret T n (4) For EG, G = g = g 1 = 1 and R H(w ) = log n, (where H is the entropy) regret T log n (5) Remark: In general, EG outperforms GD, as demonstrated by their regret bounds. Regret GD EG 1 n Figure 3: Relative regret bound for EG and GD with n-experts References [1] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games, Cambridge University Press, 006. [] E.S. Levitin and B.T. Polyak, Constrained Minimization Methods, USSR Comp. Math and Math Phys. 6, pp.1-50, [3] H. B. McMahan, Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L 1 Regularization, Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS),

The FTRL Algorithm with Strongly Convex Regularizers

The FTRL Algorithm with Strongly Convex Regularizers CSE599s, Spring 202, Online Learning Lecture 8-04/9/202 The FTRL Algorithm with Strongly Convex Regularizers Lecturer: Brandan McMahan Scribe: Tamara Bonaci Introduction In the last lecture, we talked

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

1 Review and Overview

1 Review and Overview DRAFT a final version will be posted shortly CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture # 16 Scribe: Chris Cundy, Ananya Kumar November 14, 2018 1 Review and Overview Last

More information

Online Convex Optimization

Online Convex Optimization Advanced Course in Machine Learning Spring 2010 Online Convex Optimization Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz A convex repeated game is a two players game that is performed

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Lecture 19: Follow The Regulerized Leader

Lecture 19: Follow The Regulerized Leader COS-511: Learning heory Spring 2017 Lecturer: Roi Livni Lecture 19: Follow he Regulerized Leader Disclaimer: hese notes have not been subjected to the usual scrutiny reserved for formal publications. hey

More information

Logarithmic Regret Algorithms for Strongly Convex Repeated Games

Logarithmic Regret Algorithms for Strongly Convex Repeated Games Logarithmic Regret Algorithms for Strongly Convex Repeated Games Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci & Eng, The Hebrew University, Jerusalem 91904, Israel 2 Google Inc 1600

More information

A survey: The convex optimization approach to regret minimization

A survey: The convex optimization approach to regret minimization A survey: The convex optimization approach to regret minimization Elad Hazan September 10, 2009 WORKING DRAFT Abstract A well studied and general setting for prediction and decision making is regret minimization

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #16: Gradient Descent February 18, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #16: Gradient Descent February 18, 2015 5-859E: Advanced Algorithms CMU, Spring 205 Lecture #6: Gradient Descent February 8, 205 Lecturer: Anupam Gupta Scribe: Guru Guruganesh In this lecture, we will study the gradient descent algorithm and

More information

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Jacob Steinhardt Percy Liang Stanford University {jsteinhardt,pliang}@cs.stanford.edu Jun 11, 2013 J. Steinhardt & P. Liang (Stanford)

More information

No-Regret Algorithms for Unconstrained Online Convex Optimization

No-Regret Algorithms for Unconstrained Online Convex Optimization No-Regret Algorithms for Unconstrained Online Convex Optimization Matthew Streeter Duolingo, Inc. Pittsburgh, PA 153 matt@duolingo.com H. Brendan McMahan Google, Inc. Seattle, WA 98103 mcmahan@google.com

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Online Convex Optimization MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Online projected sub-gradient descent. Exponentiated Gradient (EG). Mirror descent.

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machine Learning Lecturer: Philippe Rigollet Lecture 3 Scribe: Mina Karzand Oct., 05 Previously, we analyzed the convergence of the projected gradient descent algorithm. We proved

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms Pooria Joulani 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science, University of Alberta,

More information

A Mini-Course on Convex Optimization with a view toward designing fast algorithms. Nisheeth K. Vishnoi

A Mini-Course on Convex Optimization with a view toward designing fast algorithms. Nisheeth K. Vishnoi A Mini-Course on Convex Optimization with a view toward designing fast algorithms Nisheeth K. Vishnoi i Preface These notes are largely based on lectures delivered by the author in the Fall of 2014. The

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations JMLR: Workshop and Conference Proceedings vol 35:1 20, 2014 Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations H. Brendan McMahan MCMAHAN@GOOGLE.COM Google,

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 Online Convex Optimization Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 The General Setting The General Setting (Cover) Given only the above, learning isn't always possible Some Natural

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

Bregman Divergence and Mirror Descent

Bregman Divergence and Mirror Descent Bregman Divergence and Mirror Descent Bregman Divergence Motivation Generalize squared Euclidean distance to a class of distances that all share similar properties Lots of applications in machine learning,

More information

Optimization, Learning, and Games with Predictable Sequences

Optimization, Learning, and Games with Predictable Sequences Optimization, Learning, and Games with Predictable Sequences Alexander Rakhlin University of Pennsylvania Karthik Sridharan University of Pennsylvania Abstract We provide several applications of Optimistic

More information

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Elad Hazan IBM Almaden Research Center 650 Harry Rd San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Yahoo! Research 4301

More information

Optimistic Bandit Convex Optimization

Optimistic Bandit Convex Optimization Optimistic Bandit Convex Optimization Mehryar Mohri Courant Institute and Google 25 Mercer Street New York, NY 002 mohri@cims.nyu.edu Scott Yang Courant Institute 25 Mercer Street New York, NY 002 yangs@cims.nyu.edu

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Deep Learning. Authors: I. Goodfellow, Y. Bengio, A. Courville. Chapter 4: Numerical Computation. Lecture slides edited by C. Yim. C.

Deep Learning. Authors: I. Goodfellow, Y. Bengio, A. Courville. Chapter 4: Numerical Computation. Lecture slides edited by C. Yim. C. Chapter 4: Numerical Computation Deep Learning Authors: I. Goodfellow, Y. Bengio, A. Courville Lecture slides edited by 1 Chapter 4: Numerical Computation 4.1 Overflow and Underflow 4.2 Poor Conditioning

More information

Minimax Policies for Combinatorial Prediction Games

Minimax Policies for Combinatorial Prediction Games Minimax Policies for Combinatorial Prediction Games Jean-Yves Audibert Imagine, Univ. Paris Est, and Sierra, CNRS/ENS/INRIA, Paris, France audibert@imagine.enpc.fr Sébastien Bubeck Centre de Recerca Matemàtica

More information

Bandit Convex Optimization

Bandit Convex Optimization March 7, 2017 Table of Contents 1 (BCO) 2 Projection Methods 3 Barrier Methods 4 Variance reduction 5 Other methods 6 Conclusion Learning scenario Compact convex action set K R d. For t = 1 to T : Predict

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning Editors: Suvrit Sra suvrit@gmail.com Max Planck Insitute for Biological Cybernetics 72076 Tübingen, Germany Sebastian Nowozin Microsoft Research Cambridge, CB3 0FB, United

More information

Bandit Online Convex Optimization

Bandit Online Convex Optimization March 31, 2015 Outline 1 OCO vs Bandit OCO 2 Gradient Estimates 3 Oblivious Adversary 4 Reshaping for Improved Rates 5 Adaptive Adversary 6 Concluding Remarks Review of (Online) Convex Optimization Set-up

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

The convex optimization approach to regret minimization

The convex optimization approach to regret minimization The convex optimization approach to regret minimization Elad Hazan Technion - Israel Institute of Technology ehazan@ie.technion.ac.il Abstract A well studied and general setting for prediction and decision

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Bandit Convex Optimization: T Regret in One Dimension

Bandit Convex Optimization: T Regret in One Dimension Bandit Convex Optimization: T Regret in One Dimension arxiv:1502.06398v1 [cs.lg 23 Feb 2015 Sébastien Bubeck Microsoft Research sebubeck@microsoft.com Tomer Koren Technion tomerk@technion.ac.il February

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Lecture 24 November 27

Lecture 24 November 27 EE 381V: Large Scale Optimization Fall 01 Lecture 4 November 7 Lecturer: Caramanis & Sanghavi Scribe: Jahshan Bhatti and Ken Pesyna 4.1 Mirror Descent Earlier, we motivated mirror descent as a way to improve

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

4.1 Online Convex Optimization

4.1 Online Convex Optimization CS/CNS/EE 53: Advanced Topics in Machine Learning Topic: Online Convex Optimization and Online SVM Lecturer: Daniel Golovin Scribe: Xiaodi Hou Date: Jan 3, 4. Online Convex Optimization Definition 4..

More information

Accelerating Online Convex Optimization via Adaptive Prediction

Accelerating Online Convex Optimization via Adaptive Prediction Mehryar Mohri Courant Institute and Google Research New York, NY 10012 mohri@cims.nyu.edu Scott Yang Courant Institute New York, NY 10012 yangs@cims.nyu.edu Abstract We present a powerful general framework

More information

Online Learning with Predictable Sequences

Online Learning with Predictable Sequences JMLR: Workshop and Conference Proceedings vol (2013) 1 27 Online Learning with Predictable Sequences Alexander Rakhlin Karthik Sridharan rakhlin@wharton.upenn.edu skarthik@wharton.upenn.edu Abstract We

More information

The Interplay Between Stability and Regret in Online Learning

The Interplay Between Stability and Regret in Online Learning The Interplay Between Stability and Regret in Online Learning Ankan Saha Department of Computer Science University of Chicago ankans@cs.uchicago.edu Prateek Jain Microsoft Research India prajain@microsoft.com

More information

Online Optimization with Gradual Variations

Online Optimization with Gradual Variations JMLR: Workshop and Conference Proceedings vol (0) 0 Online Optimization with Gradual Variations Chao-Kai Chiang, Tianbao Yang 3 Chia-Jung Lee Mehrdad Mahdavi 3 Chi-Jen Lu Rong Jin 3 Shenghuo Zhu 4 Institute

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Online Optimization : Competing with Dynamic Comparators

Online Optimization : Competing with Dynamic Comparators Ali Jadbabaie Alexander Rakhlin Shahin Shahrampour Karthik Sridharan University of Pennsylvania University of Pennsylvania University of Pennsylvania Cornell University Abstract Recent literature on online

More information

No-regret algorithms for structured prediction problems

No-regret algorithms for structured prediction problems No-regret algorithms for structured prediction problems Geoffrey J. Gordon December 21, 2005 CMU-CALD-05-112 School of Computer Science Carnegie-Mellon University Pittsburgh, PA 15213 Abstract No-regret

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

2.1 Optimization formulation of k-means

2.1 Optimization formulation of k-means MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 2: k-means Clustering Lecturer: Jiaming Xu Scribe: Jiaming Xu, September 2, 2016 Outline Optimization formulation of k-means Convergence

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Lecture 10: Duality in Linear Programs

Lecture 10: Duality in Linear Programs 10-725/36-725: Convex Optimization Spring 2015 Lecture 10: Duality in Linear Programs Lecturer: Ryan Tibshirani Scribes: Jingkun Gao and Ying Zhang Disclaimer: These notes have not been subjected to the

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution:

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 October 31, 2016 Due: A. November 11, 2016; B. November 22, 2016 A. Boosting 1. Implement

More information

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds Proceedings of Machine Learning Research 76: 40, 207 Algorithmic Learning Theory 207 A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds Pooria

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning Lecture 3: More on regularization. Bayesian vs maximum likelihood learning L2 and L1 regularization for linear estimators A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints

A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints Hao Yu and Michael J. Neely Department of Electrical Engineering

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

An Online Convex Optimization Approach to Blackwell s Approachability

An Online Convex Optimization Approach to Blackwell s Approachability Journal of Machine Learning Research 17 (2016) 1-23 Submitted 7/15; Revised 6/16; Published 8/16 An Online Convex Optimization Approach to Blackwell s Approachability Nahum Shimkin Faculty of Electrical

More information

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Tom Bylander Division of Computer Science The University of Texas at San Antonio San Antonio, Texas 7849 bylander@cs.utsa.edu April

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information