15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

Size: px
Start display at page:

Download "15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018"

Transcription

1 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following multicommodity flow problem: given a digraph G = (V, E) with unit arc capacities, send F i flow from node s i to node t i in the graph, for all i [k]. You should imagine that the flow from s i to t i is of commodity i (e.g., oil, water, sand...) which are all distinct. (a) Suppose P i is the set of all paths from s i to t i : show that the following LP captures the problem we are trying to solve. The variables are f P, one for each path in i P i. i P P i f P = F i P P i :e P f P 1 f 0 i [k] e E (b) Given weights q m, how would you solve the average LP for this problem? Show you can find a flow that satisfies the demands, but uses at most (1 + ε) capacity on each edge, in time ( i F i) = O(k(m+n log n)) poly(ε) O(km(m+n log n)) poly(ε). 2. Zero-Sum Games using LP Duality. Recall the zero-sum game setup: we re given a matrix M R m n ; if the row player plays a strategy x m and the column player plays strategy y n, the payoff to the row player is x My. If we define C(x) = min y n x My, and R(y) = max x m x My, the von Neumann minimax theorem proves that (a) for all x, y, C(x) R(y), and moreover (b) there exist x, y such that C(x ) = R(y ). (a) Show an LP to compute max x C(x), the optimal strategy for the row player. (Hint: be careful, the definition of C() has a min sitting in there, so you re looking to find max x min y x My, which certainly does not look like a linear program.) (b) Show an LP to compute min y R(y), the optimal strategy for the column player. (c) Show that you can, in fact, find LPs for both the above parts, such that the dual of the first LP is a solution to the second part. (d) Use weak duality to infer the first part of the minimax theorem, and strong duality to infer the second part. 3. Strength in Convexity. A function f : R n R is called α-strongly-convex with respect to norm if f(y) f(x) + f(x), y x + α 2 y x 2. I.e., if the function is not just convex, but locally it grows at least as fast as a quadratic. 1

2 For the rest of this proof, focus on just the Euclidean norm 2, and assume that f(x) G. Modify the basic gradient descent analysis to show that the update rule x t+1 x t η t f(x t ) with suitably chosen η t can be used to find x R n with ( G f( x) f(x 2 ) log T ) O. α T Observe: the assumption of strong convexity gives better convergence guarantees (i.e., the dependence on T is better, and there is no dependence on D = x 0 x. Show that this analysis also works in the online case to give a regret bound, if each function is strongly convex. (A slightly harder problem is to remove the log T term in the numerator in the offline case. Why does this improvement not extend to the online case?) 4. These are Small Numbers. For an integer k, define k = 1 + log 2 ( k + 1) ; for a rational p/q (with p, q coprime, q > 0), define p/q = p + q ; for a matrix R = (r ij ) of rationals, define M = i,j r ij. Let det(r) denote the determinant of R. (a) If R is an n n matrix, show that det(r) poly(n, R ). Now consider the LP min{c T x Ax b}, where x R n, and A R m n with m n. (b) If each of the numbers in A and b are rationals having size at most S, and if x is a basic feasible solution, give an upper bound on the size of each entry of x. In particular, show that each entry x i is a rational number with size at most K = poly(n S). (c) If the LP also has a finite optimum, and the numbers in c have size at most S, infer that the optimal value of the LP has size O((K + S)n). Hint: Google for Cramer s rule and Hadamard Inequality. 5. That s the Norm. In lecture, we defined a differentiable convex function f : K R to be G-Lipschitz with respect to norm if f(x) f(y) x y G. Show that this is equivalent to f(x) G for all x K. Similarly, show that f being α-strongly-convex with respect to is equivalent to f(x) f(y) α x y. And that f being β-smooth with respect to is equivalent to f(x) f(y) β x y. 6. The Oracle Separates. Given a graph with edge costs c e, the following LP is called the Held-Karp/subtour elimination LP, and is a relaxation for the traveling salesman problem. Give a separation oracle for it. min e c ex e e S x e 2 0 x e 1. S V 2

3 Here s another LP with variables {x i } n i=1, non-negative costs {c i} n i=1, and sizes {s ij} n i,j=1 : again give a separation oracle. min i c ix i i S x is i, S S 0 x i 1. S [n] Problems Solve problem #2, and any two of the other three. 1. Capacitated Max-Flow and Width Reduction. Consider the directed s-t max-flow problem for general capacities (as opposed to unit capacities in lec #16-17). The LP is: P f P = F P :e P f P /c e 1 f P 0. e E For brevity, define f e := P :e P f P, so the constraints are f e /c e 1 for all e. Now given the weights p m from Hedge, the average constraint looks like e p e (f e /c e ) = e f e(p e /c e ) 1. Define K = {f P f P = F, f P 0 P } as the easy constraints, so MW tries to solve the average constraint w.r.t. solutions in K. (a) (Do not submit.) Suppose the oracle sends the entire F units of flow along a shortest path w.r.t. p e /c e. Show that there are capacitated networks, and possible p m, where all F flow is routed along a path using the least-capacity edge. Hence the width of this oracle is Ω(F/c min ). Recall that the width is the maximum violation of any constraint. Note that F may be as large as Ω(mc max ), so with general capacities, this ratio could be m. It turns out that adding a little bit to the edge weights (e.g., setting w e := p e + ε/m) reduces the width at the expense of giving slightly approximate solutions! For the rest, assume ε 1/10, say. Assume the instance is feasible; i.e., there exists a solution f to the LP. (b) Set the edge weights to be w e := p e +ε/m, compute the shortest path w.r.t. edge lengths w e c e, and send all F flow along it. If this shortest path is P, show (c) Show that pe f F e P c e min e f K e E c e w e 1 + ε. max F/c e P e O( m ε ). Hence the width of the average problem is O(m/ε). (d) (Do not submit.) Using this oracle and the MW algorithm guarantee, give an Õ(m2 /ε 3 )- time (1 + ε)-approximate max-flow algorithm for the capacitated case. 3

4 (e) (Do not submit.) use these ideas to get an algorithm for the multi-commodity case from exercise #1 that works for capacitated graphs, but whose runtime does not depend on the magnitude of the capacities. Note: This idea was used in the Christiano et al. paper, combined with the electrical flows, to bring the width down to O( m/ε). 2. Solving a Linear System. Given a positive-definite matrix A R n n with eigenvalues 0 < λ 1 λ 2... λ n, the condition number for A is κ := λn λ 1. Given a vector b R n, the goal is to find a near -solution to the linear system Ax = b. Consider the function f(x) = 1 2 x Ax bx. (a) (Do not submit) Show that f is a convex function, with f(x) = Ax b. Hence infer that the minimizer x of f(x) satisfies Ax = b. Moreover, show that f is λ 1 -strongly-convex and λ n -smooth. (b) Show that gradient descent on f( ) starting at some point x 0 R n guarantees that x t x 2 max{ µ 1, µ n } t x 0 x 2 where µ 1 µ n are the eigenvalues of (I ηa). (c) Show that a suitable choice of η ensures that x t x 2 δ x 0 x 2 after O(κ log δ 1 ) iterations. Use this to show that the error is after O(κ log λmax x 0 x 2 ε ) iterations. Ax t b 2 ε 3. Gradient Descent, meet Linear Optimization. In constrained gradient descent (over convex body K R n ), we took a step along the negative gradient, and then projected back to K. Another approach is to use linear optimization: given x t K, the next iterate is: y t arg min{( f(x t )) y y K} x t+1 (1 η t )x t + η t y t. The minimizer in the first step can be found using linear optimization over K, which may be much simpler than general convex optimization. Let s analyze this for the case where f is β-smooth with respect to norm i.e., f(y) f(x) + f(x), y x + β 2 y x 2. Your arguments for parts (a)-(c) should work for any norm. (a) Let D := max p,q K p q be the diameter of K. Use smoothness to show that for t 0: f(x t+1 ) f(x t ) η t f(x t ), x x t + β 2 η2 t D 2. (b) Define Φ t := t(f(x t ) f(x )). Use convexity and part (a) to show that Φ t+1 Φ t β 2 η2 t D 2 β 2 η td 2 if we set η t = 1 t+1. Hence, infer that after T O( βd2 2ε log 1 ε ). f(x T ) f(x ) + ε 4

5 (c) (Do not submit.) Show that if K is a polytope with m n non-trivial constraints (and n non-negativity constraints), then any vertex of this polytope has at most m non-zero coordinates. So if we start with x 0 = 0, the final solution x t is very sparse it has at most mt non-zero coordinates. E.g., for K = n := {x R n i x i = 1, x i 0}, x t has at most t non-zeroes. Now let us use this in an application. Given a topic matrix A R m n where each column is a topic and each row is a word, and given a document y R m, we want to find a small set of topics may generate this document. Formally, we want to find x R n s.t. y is close to Ax and x is sparse. Since x 0 minimization is hard, we use x 1 -minimization instead: i.e., we solve min x R y Ax 2 n 2 s.t. x 1 = 1. In this setting n m (there may be n = billions of topics, but only m 10 5 words), and we don t want to take poly(n) time! Suppose we have an oracle that given w R m can output arg max j [n] w, A j in Z m time here A j denotes the j th column of A. (d) If we use the above linear optimization-based algorithm, show that each iterate x t can be computed in O(Zt + t 2 ), by keeping track of just the non-zero entries in x t. (e) Show that if each column length A j 2 L then f(x) = y Ax 2 2 is 2L2 -smooth w.r.t. the l 1 -norm. (You may use Exercise 5 without proof.) Observe that the l 1 -diameter D of the polytope K = {x x 1 = 1} is 1. Hence we can get an ε-approximate solution in time O((ZL 2 /ε + L 4 /ε 2 ) log 2 1 ε ). 4. Hmm, That s Odd... To solve the max-weight perfect matching problem on general graphs, we need to optimize over the perfect matching polytope. In turn, this requires that we find a separation oracle for the odd-set constraints. I.e., given x R E, we wish to find a set S V such that S is odd, and x( S) is minimized, where x( S) := i S,j S x ij. Then, comparing this min-odd-cut value to 1, we can find a violated constraint (if one exists). Assume that V is even, else the LP has no feasible solution anyways. (a) A function f : 2 V R is called submodular if for all A, B V, we have f(a) + f(b) f(a B) + f(a B). Show f(a) := x( A) is submodular. Observe f is symmetric, i.e., f(a) = f(v \ A). (b) If (C, C) is the min-cut, i.e, if x( C) is the least among all non-empty cuts, and C is even, then show that there exists a min-odd cut contained within C, or within C. (c) Give an algorithm to find a min-odd-cut in polynomial time. 5

LINEAR PROGRAMMING III

LINEAR PROGRAMMING III LINEAR PROGRAMMING III ellipsoid algorithm combinatorial optimization matrix games open problems Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM LINEAR PROGRAMMING III ellipsoid algorithm

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Game Theory. Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin

Game Theory. Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin Game Theory Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin Bimatrix Games We are given two real m n matrices A = (a ij ), B = (b ij

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 17: Duality and MinMax Theorem Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 17: Duality and MinMax Theorem Lecturer: Sanjeev Arora princeton univ F 13 cos 521: Advanced Algorithm Design Lecture 17: Duality and MinMax Theorem Lecturer: Sanjeev Arora Scribe: Today we first see LP duality, which will then be explored a bit more in the

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 Linear Function f: R n R is linear if it can be written as f x = a T x for some a R n Example: f x 1, x 2 =

More information

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs CS26: A Second Course in Algorithms Lecture #2: Applications of Multiplicative Weights to Games and Linear Programs Tim Roughgarden February, 206 Extensions of the Multiplicative Weights Guarantee Last

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

Lecture 5 January 16, 2013

Lecture 5 January 16, 2013 UBC CPSC 536N: Sparse Approximations Winter 2013 Prof. Nick Harvey Lecture 5 January 16, 2013 Scribe: Samira Samadi 1 Combinatorial IPs 1.1 Mathematical programs { min c Linear Program (LP): T x s.t. a

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6 Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra Problem Set 6 Due: Wednesday, April 6, 2016 7 pm Dropbox Outside Stata G5 Collaboration policy:

More information

Cutting Plane Methods II

Cutting Plane Methods II 6.859/5.083 Integer Programming and Combinatorial Optimization Fall 2009 Cutting Plane Methods II Gomory-Chvátal cuts Reminder P = {x R n : Ax b} with A Z m n, b Z m. For λ [0, ) m such that λ A Z n, (λ

More information

Week 8. 1 LP is easy: the Ellipsoid Method

Week 8. 1 LP is easy: the Ellipsoid Method Week 8 1 LP is easy: the Ellipsoid Method In 1979 Khachyan proved that LP is solvable in polynomial time by a method of shrinking ellipsoids. The running time is polynomial in the number of variables n,

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

x 1 + x 2 2 x 1 x 2 1 x 2 2 min 3x 1 + 2x 2

x 1 + x 2 2 x 1 x 2 1 x 2 2 min 3x 1 + 2x 2 Lecture 1 LPs: Algebraic View 1.1 Introduction to Linear Programming Linear programs began to get a lot of attention in 1940 s, when people were interested in minimizing costs of various systems while

More information

Algorithmic Game Theory and Applications. Lecture 7: The LP Duality Theorem

Algorithmic Game Theory and Applications. Lecture 7: The LP Duality Theorem Algorithmic Game Theory and Applications Lecture 7: The LP Duality Theorem Kousha Etessami recall LP s in Primal Form 1 Maximize c 1 x 1 + c 2 x 2 +... + c n x n a 1,1 x 1 + a 1,2 x 2 +... + a 1,n x n

More information

1 Seidel s LP algorithm

1 Seidel s LP algorithm 15-451/651: Design & Analysis of Algorithms October 21, 2015 Lecture #14 last changed: November 7, 2015 In this lecture we describe a very nice algorithm due to Seidel for Linear Programming in lowdimensional

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007

Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007 CS880: Approximations Algorithms Scribe: Tom Watson Lecturer: Shuchi Chawla Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007 In the last lecture, we described an O(log k log D)-approximation

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding Motivation Make a social choice that (approximately) maximizes the social welfare subject to the economic constraints

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

Lecture 10: Duality in Linear Programs

Lecture 10: Duality in Linear Programs 10-725/36-725: Convex Optimization Spring 2015 Lecture 10: Duality in Linear Programs Lecturer: Ryan Tibshirani Scribes: Jingkun Gao and Ying Zhang Disclaimer: These notes have not been subjected to the

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Linear Programming. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Linear Programming 1 / 47

Linear Programming. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Linear Programming 1 / 47 Linear Programming Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) Linear Programming 1 / 47 Linear function: f (x 1, x 2,..., x n ) = n a i x i, i=1 where

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints By I. Necoara, Y. Nesterov, and F. Glineur Lijun Xu Optimization Group Meeting November 27, 2012 Outline

More information

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM EXERCISES Prepared by Natashia Boland 1 and Irina Dumitrescu 2 1 Applications and Modelling 1.1

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 Updated: March 23, 2010 Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 ICML 2009 Tutorial Survey of Boosting from an Optimization Perspective Part I: Entropy Regularized LPBoost Part II: Boosting from

More information

CS261: Problem Set #3

CS261: Problem Set #3 CS261: Problem Set #3 Due by 11:59 PM on Tuesday, February 23, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall Nov 2 Dec 2016

Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall Nov 2 Dec 2016 Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall 206 2 Nov 2 Dec 206 Let D be a convex subset of R n. A function f : D R is convex if it satisfies f(tx + ( t)y) tf(x)

More information

5. Some theorems on continuous functions

5. Some theorems on continuous functions 5. Some theorems on continuous functions The results of section 3 were largely concerned with continuity of functions at a single point (usually called x 0 ). In this section, we present some consequences

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Zero-Sum Games Public Strategies Minimax Theorem and Nash Equilibria Appendix. Zero-Sum Games. Algorithmic Game Theory.

Zero-Sum Games Public Strategies Minimax Theorem and Nash Equilibria Appendix. Zero-Sum Games. Algorithmic Game Theory. Public Strategies Minimax Theorem and Nash Equilibria Appendix 2013 Public Strategies Minimax Theorem and Nash Equilibria Appendix Definition Definition A zero-sum game is a strategic game, in which for

More information

Lecture 19: Follow The Regulerized Leader

Lecture 19: Follow The Regulerized Leader COS-511: Learning heory Spring 2017 Lecturer: Roi Livni Lecture 19: Follow he Regulerized Leader Disclaimer: hese notes have not been subjected to the usual scrutiny reserved for formal publications. hey

More information

Week 4. (1) 0 f ij u ij.

Week 4. (1) 0 f ij u ij. Week 4 1 Network Flow Chapter 7 of the book is about optimisation problems on networks. Section 7.1 gives a quick introduction to the definitions of graph theory. In fact I hope these are already known

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

Coordinate Descent Methods on Huge-Scale Optimization Problems

Coordinate Descent Methods on Huge-Scale Optimization Problems Coordinate Descent Methods on Huge-Scale Optimization Problems Zhimin Peng Optimization Group Meeting Warm up exercise? Warm up exercise? Q: Why do mathematicians, after a dinner at a Chinese restaurant,

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

7. Lecture notes on the ellipsoid algorithm

7. Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Michel X. Goemans 18.433: Combinatorial Optimization 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm proposed for linear

More information

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

6.854 Advanced Algorithms

6.854 Advanced Algorithms 6.854 Advanced Algorithms Homework 5 Solutions 1 10 pts Define the following sets: P = positions on the results page C = clicked old results U = unclicked old results N = new results and let π : (C U)

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

5 Flows and cuts in digraphs

5 Flows and cuts in digraphs 5 Flows and cuts in digraphs Recall that a digraph or network is a pair G = (V, E) where V is a set and E is a multiset of ordered pairs of elements of V, which we refer to as arcs. Note that two vertices

More information

1 Integer Decomposition Property

1 Integer Decomposition Property CS 598CSC: Combinatorial Optimization Lecture date: Feb 2, 2010 Instructor: Chandra Chekuri Scribe: Siva Theja Maguluri Material taken mostly from [1] (Chapter 19). 1 Integer Decomposition Property A polyhedron

More information

1 Perfect Matching and Matching Polytopes

1 Perfect Matching and Matching Polytopes CS 598CSC: Combinatorial Optimization Lecture date: /16/009 Instructor: Chandra Chekuri Scribe: Vivek Srikumar 1 Perfect Matching and Matching Polytopes Let G = (V, E be a graph. For a set E E, let χ E

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Lecture notes on the ellipsoid algorithm

Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Handout 1 18.433: Combinatorial Optimization May 14th, 007 Michel X. Goemans Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Maximum Flow Problem (Ford and Fulkerson, 1956)

Maximum Flow Problem (Ford and Fulkerson, 1956) Maximum Flow Problem (Ford and Fulkerson, 196) In this problem we find the maximum flow possible in a directed connected network with arc capacities. There is unlimited quantity available in the given

More information

Numerical Methods. V. Leclère May 15, x R n

Numerical Methods. V. Leclère May 15, x R n Numerical Methods V. Leclère May 15, 2018 1 Some optimization algorithms Consider the unconstrained optimization problem min f(x). (1) x R n A descent direction algorithm is an algorithm that construct

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

Mathematical Programs Linear Program (LP)

Mathematical Programs Linear Program (LP) Mathematical Programs Linear Program (LP) Integer Program (IP) Can be efficiently solved e.g., by Ellipsoid Method Cannot be efficiently solved Cannot be efficiently solved assuming P NP Combinatorial

More information

III. Linear Programming

III. Linear Programming III. Linear Programming Thomas Sauerwald Easter 2017 Outline Introduction Standard and Slack Forms Formulating Problems as Linear Programs Simplex Algorithm Finding an Initial Solution III. Linear Programming

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

15-850: Advanced Algorithms CMU, Spring 2017 Lecture #17: The Ellipsoid Algorithm March 3, 2017

15-850: Advanced Algorithms CMU, Spring 2017 Lecture #17: The Ellipsoid Algorithm March 3, 2017 15-850: Advanced Algorithms CMU, Spring 2017 Lecture #17: The Ellipsoid Algorithm March 3, 2017 Lecturer: Anupam Gupta Scribe: Benjamin Berg, David K. Isenberg In this lecture, we discuss some polynomial-time

More information

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function Linear programming Input: System of inequalities or equalities over the reals R A linear cost function Output: Value for variables that minimizes cost function Example: Minimize 6x+4y Subject to 3x + 2y

More information

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017 Fall 2017 Qualifier Exam: OPTIMIZATION September 18, 2017 GENERAL INSTRUCTIONS: 1 Answer each question in a separate book 2 Indicate on the cover of each book the area of the exam, your code number, and

More information

6. Linear Programming

6. Linear Programming Linear Programming 6-1 6. Linear Programming Linear Programming LP reduction Duality Max-flow min-cut, Zero-sum game Integer Programming and LP relaxation Maximum Bipartite Matching, Minimum weight vertex

More information

Polynomiality of Linear Programming

Polynomiality of Linear Programming Chapter 10 Polynomiality of Linear Programming In the previous section, we presented the Simplex Method. This method turns out to be very efficient for solving linear programmes in practice. While it is

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2)

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Stat260/CS294: Spectral Graph Methods Lecture 10-02/24/2015 Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still

More information

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term;

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term; Chapter 2 Gradient Methods The gradient method forms the foundation of all of the schemes studied in this book. We will provide several complementary perspectives on this algorithm that highlight the many

More information

Flows. Chapter Circulations

Flows. Chapter Circulations Chapter 4 Flows For a directed graph D = (V,A), we define δ + (U) := {(u,v) A : u U,v / U} as the arcs leaving U and δ (U) := {(u,v) A u / U,v U} as the arcs entering U. 4. Circulations In a directed graph

More information

The Steiner Network Problem

The Steiner Network Problem The Steiner Network Problem Pekka Orponen T-79.7001 Postgraduate Course on Theoretical Computer Science 7.4.2008 Outline 1. The Steiner Network Problem Linear programming formulation LP relaxation 2. The

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Topics in Approximation Algorithms Solution for Homework 3

Topics in Approximation Algorithms Solution for Homework 3 Topics in Approximation Algorithms Solution for Homework 3 Problem 1 We show that any solution {U t } can be modified to satisfy U τ L τ as follows. Suppose U τ L τ, so there is a vertex v U τ but v L

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm CS61: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm Tim Roughgarden February 9, 016 1 Online Algorithms This lecture begins the third module of the

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

Barrier Method. Javier Peña Convex Optimization /36-725

Barrier Method. Javier Peña Convex Optimization /36-725 Barrier Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: Newton s method For root-finding F (x) = 0 x + = x F (x) 1 F (x) For optimization x f(x) x + = x 2 f(x) 1 f(x) Assume f strongly

More information