6. Proximal gradient method

Size: px
Start display at page:

Download "6. Proximal gradient method"

Transcription

1 L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1

2 Proximal mapping the proximal mapping (or prox-operator) of a convex function h is defined as prox h (x) = argmin u ( h(u) + 1 ) 2 u x 2 2 Examples h(x) = 0: prox h (x) = x h(x) is indicator function of closed convex set C: prox h is projection on C prox h (x) = argmin u C u x 2 2 = P C (x) h(x) = x 1 : prox h is the soft-threshold (shrinkage) operation prox h (x) i = x i 1 x i 1 0 x i 1 x i + 1 x i 1 Proximal gradient method 6-2

3 Proximal gradient method unconstrained optimization with objective split in two components minimize f(x) = g(x) + h(x) g convex, differentiable, dom g = R n h convex with inexpensive prox-operator (many examples in lecture 8) Proximal gradient algorithm x (k) = prox tk h ( ) x (k 1) t k g(x (k 1) ) t k > 0 is step size, constant or determined by line search can start at infeasible x (0) (however x (k) dom f = dom h for k 1) Proximal gradient method 6-3

4 Interpretation x + = prox th (x t g(x)) from definition of proximal mapping: x + = argmin u = argmin u ( h(u) + 1 ) 2t u x + t g(x) 2 2 ( h(u) + g(x) + g(x) T (u x) + 1 ) 2t u x 2 2 x + minimizes h(u) plus a simple quadratic local model of g(u) around x Proximal gradient method 6-4

5 Examples minimize g(x) + h(x) Gradient method: special case with h(x) = 0 x + = x t g(x) Gradient projection method: special case with h(x) = δ C (x) (indicator of C) x x + = P C (x t g(x)) C x + x t g(x) Proximal gradient method 6-5

6 Examples Soft-thresholding: special case with h(x) = x 1 x + = prox th (x t g(x)) where (prox th (u)) i (prox th (u)) i = u i t u i t 0 t u i t u i + t u i t t t u i Proximal gradient method 6-6

7 Outline introduction proximal mapping proximal gradient method with fixed step size proximal gradient method with line search

8 Proximal mapping if h is convex and closed (has a closed epigraph), then exists and is unique for all x prox h (x) = argmin u ( h(u) + 1 ) 2 u x 2 2 will be studied in more detail in lecture 8 from optimality conditions of minimization in the definition: u = prox h (x) x u h(u) h(z) h(u) + (x u) T (z u) z Proximal gradient method 6-7

9 Projection on closed convex set proximal mapping of indicator function δ C is Euclidean projection on C prox δc (x) = argmin u C u x 2 2 = P C (x) x u = P C (x) (x u) T (z u) 0 z C C u we will see that proximal mappings have many properties of projections Proximal gradient method 6-8

10 Firm nonexpansiveness proximal mappings are firmly nonexpansive (co-coercive with constant 1): (prox h (x) prox h (y)) T (x y) prox h (x) prox h (y) 2 2 follows from page 6-7: if u = prox h (x), v = prox h (y), then x u h(u), y v h(v) combining this with monotonicity of subdifferential (page 4-9) gives (x u y + v) T (u v) 0 a weaker property is nonexpansiveness (Lipschitz continuity with constant 1): prox h (x) prox h (y) 2 x y 2 follows from firm nonexpansiveness and Cauchy-Schwarz inequality Proximal gradient method 6-9

11 Outline introduction proximal mapping proximal gradient method with fixed step size proximal gradient method with line search

12 Assumptions minimize f(x) = g(x) + h(x) h is closed and convex (so that prox th is well defined) g is differentiable with dom g = R n there exist constants m 0 and L > 0 such that the functions g(x) m 2 xt x, L 2 xt x g(x) are convex the optimal value f is finite and attained at x (not necessarily unique) Proximal gradient method 6-10

13 Implications of assumptions on g Lower bound convexity of the the function g(x) (m/2)x T x implies (page 1-18): g(y) g(x) + g(x) T (y x) + m 2 y x 2 2 x, y (1) if m = 0, this means g is convex; if m > 0, strongly convex (lecture 1) Upper bound convexity of the function (L/2)x T x g(x) implies (page 1-12): g(y) g(x) + g(x) T (y x) + L 2 y x 2 2 x, y (2) this is equivalent to Lipschitz continuity and co-coercivity of gradient (lecture 1) Proximal gradient method 6-11

14 Gradient map G t (x) = 1 t (x prox th(x t g(x))) G t (x) is the negative step in the proximal gradient update x + = prox th (x t g(x)) = x tg t (x) G t (x) is not a gradient or subgradient of f = g + h from subgradient definition of prox-operator (page 6-7), G t (x) g(x) + h (x tg t (x)) G t (x) = 0 if and only if x minimizes f(x) = g(x) + h(x) Proximal gradient method 6-12

15 Consequences of quadratic bounds on g substitute y = x tg t (x) in the bounds (1) and (2): for all t, mt 2 2 G t(x) 2 2 g (x tg t (x)) g(x) + t g(x) T G t (x) Lt2 2 G t(x) 2 2 if 0 < t 1/L, then the upper bound implies g(x tg t (x)) g(x) t g(x) T G t (x) + t 2 G t(x) 2 2 (3) if the inequality (3) is satisfied and tg t (x) 0, then mt 1 if the inequality (3) is satisfied, then for all z, f(x tg t (x)) f(z) + G t (x) T (x z) t 2 G t(x) 2 2 m 2 x z 2 2 (4) (proof on next page) Proximal gradient method 6-13

16 Proof of (4): f(x tg t (x)) g(x) t g(x) T G t (x) + t 2 G t(x) h(x tg t (x)) g(z) g(x) T (z x) m 2 z x 2 2 t g(x) T G t (x) + t 2 G t(x) h(z) (G t (x) g(x)) T (z x + tg t (x)) = g(z) + h(z) + G t (x) T (x z) t 2 G t(x) 2 2 m 2 x z 2 2 in the first step we add h(x tg t (x)) to both sides of the inequality (3) in the next step we use the lower bound on g(z) from (2) and G t (x) g(x) h(x tg t (x)) (see page 6-12) Proximal gradient method 6-14

17 Progress in one iteration for a step size t that satisfies the inequality (3), define x + = x tg t (x) inequality (4) with z = x shows the algorithm is a descent method: f(x + ) f(x) t 2 G t(x) 2 2 inequality (4) with z = x shows that f(x + ) f G t (x) T (x x ) t 2 G t(x) 2 2 m 2 x x 2 2 = 1 ( ) x x 2 2 2t x x tg t (x) 2 2 m 2 x x 2 2 = 1 ( (1 mt) x x 2 2 x + x 2 ) 2 2t 1 ( x x 2 2 x + x 2 ) 2 2t (5) (6) Proximal gradient method 6-15

18 Analysis for fixed step size add inequalities (6) for x = x (i 1), x + = x (i), t = t i = 1/L k (f(x (i) ) f ) 1 2t i=1 = 1 2t k i=1 ( ) x (i 1) x 2 2 x (i) x 2 2 ( ) x (0) x 2 2 x (k) x t x(0) x 2 2 since f(x (i) ) is nonincreasing, f(x (k) ) f 1 k k i=1 (f(x (i) ) f ) 1 2kt x(0) x 2 2 Proximal gradient method 6-16

19 Distance to optimal set from (5) and f(x + ) f, the distance to the optimal set does not increase: x + x 2 2 (1 mt) x x 2 2 x x 2 2 for fixed step size t k = 1/L x (k) x 2 2 c k x (0) x 2 2, c = 1 m L i.e., linear convergence if g is strongly convex (m > 0) Proximal gradient method 6-17

20 Example: quadratic program with box constraints minimize (1/2)x T Ax + b T x subject to 0 x (f(x (k) ) f )/f n = 3000; fixed step size t = 1/λ max (A) k Proximal gradient method 6-18

21 Example: 1-norm regularized least-squares minimize 1 2 Ax b x (f(x (k) ) f )/f k randomly generated A R ; step t k = 1/L with L = λ max (A T A) Proximal gradient method 6-19

22 Outline introduction proximal mapping proximal gradient method with fixed step size proximal gradient method with line search

23 Line search the analysis for fixed step size (page 6-13) starts with the inequality g(x tg t (x)) g(x) t g(x) T G t (x) + t 2 G t(x) 2 2 (3) this inequality is known to hold for 0 < t 1/L if L is not known, we can satisfy (3) by a backtracking line search: start at some t := ˆt > 0 and backtrack (t := βt) until (3) holds step size t selected by the line search satisfies t t min = min{ˆt, β/l} requires one evaluation of g and prox th per line search iteration several other types of line search work Proximal gradient method 6-20

24 Example line search for gradient projection method x + = P C (x t g(x)) = x tg t (x) C x x βˆt g(x) P C (x βˆt g(x)) x ˆt g(x) P C (x ˆt g(x)) backtrack until P C (x t g(x)) satisfies sufficient decrease inequality (3) Proximal gradient method 6-21

25 Analysis with line search from page 6-15, if (3) holds in iteration i, then f(x (i) ) < f(x (i 1) ) and f(x (i) ) f 1 ( ) x (i 1) x 2 2 x (i) x 2 2 2t i 1 ( ) x (i 1) x 2 2 x (i) x 2 2 2t min adding inequalities for i = 1 to i = k gives k i=1 (f(x (i) ) f ) 1 2t min x (0) x 2 2 since f(x (i) ) is nonincreasing, we obtain similar 1/k bound as for fixed t i : f(x (k) ) f 1 2kt min x (0) x 2 2 Proximal gradient method 6-22

26 Distance to optimal set from page 6-15, if (3) holds in iteration i, then x (i) x 2 2 (1 mt i ) x (i 1) x 2 2 (1 mt min ) x (i 1) x 2 2 = c x (i 1) x 2 2 x (k) x 2 2 c k x (0) x 2 2 with c = 1 mt min = max{1 βm L, 1 mˆt} hence linear convergence if m > 0 Proximal gradient method 6-23

27 Summary Proximal gradient method minimizes sums of differentiable and non-differentiable convex functions f(x) = g(x) + h(x) useful when nondifferentiable term h is simple (has inexpensive prox-operator) convergence properties are similar to standard gradient method (h(x) = 0) less general but faster than subgradient method Proximal gradient method 6-24

28 References Convergence analysis A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences (2009). A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal recovery, in: Y. Eldar and D. Palomar (Eds.), Convex Optimization in Signal Processing and Communications (2009). Y. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004), B. T. Polyak, Introduction to Optimization (1987), Proximal gradient method 6-25

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Fast proximal gradient methods

Fast proximal gradient methods L. Vandenberghe EE236C (Spring 2013-14) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples Agenda Fast proximal gradient methods 1 Accelerated first-order methods 2 Auxiliary sequences 3 Convergence analysis 4 Numerical examples 5 Optimality of Nesterov s scheme Last time Proximal gradient method

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

5. Subgradient method

5. Subgradient method L. Vandenberghe EE236C (Spring 2016) 5. Subgradient method subgradient method convergence analysis optimal step size when f is known alternating projections optimality 5-1 Subgradient method to minimize

More information

Descent methods. min x. f(x)

Descent methods. min x. f(x) Gradient Descent Descent methods min x f(x) 5 / 34 Descent methods min x f(x) x k x k+1... x f(x ) = 0 5 / 34 Gradient methods Unconstrained optimization min f(x) x R n. 6 / 34 Gradient methods Unconstrained

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Lasso: Algorithms and Extensions

Lasso: Algorithms and Extensions ELE 538B: Sparsity, Structure and Inference Lasso: Algorithms and Extensions Yuxin Chen Princeton University, Spring 2017 Outline Proximal operators Proximal gradient methods for lasso and its extensions

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 15 (Gradient methods III) 12 March, 2013 Suvrit Sra Optimal gradient methods 2 / 27 Optimal gradient methods We saw following efficiency estimates for

More information

Lecture 8: February 9

Lecture 8: February 9 0-725/36-725: Convex Optimiation Spring 205 Lecturer: Ryan Tibshirani Lecture 8: February 9 Scribes: Kartikeya Bhardwaj, Sangwon Hyun, Irina Caan 8 Proximal Gradient Descent In the previous lecture, we

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Gradient descent Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Gradient descent First consider unconstrained minimization of f : R n R, convex and differentiable. We want to solve

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

The Proximal Gradient Method

The Proximal Gradient Method Chapter 10 The Proximal Gradient Method Underlying Space: In this chapter, with the exception of Section 10.9, E is a Euclidean space, meaning a finite dimensional space endowed with an inner product,

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Dual Decomposition.

Dual Decomposition. 1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:

More information

Unconstrained minimization

Unconstrained minimization CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions 1 Unconstrained

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

Stochastic Optimization: First order method

Stochastic Optimization: First order method Stochastic Optimization: First order method Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical and Computing Sciences JST, PRESTO

More information

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization Panos Parpas Department of Computing Imperial College London www.doc.ic.ac.uk/ pp500 p.parpas@imperial.ac.uk jointly with D.V.

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems

A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems Amir Beck and Shoham Sabach July 6, 2011 Abstract We consider a general class of convex optimization problems

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Proximal gradient methods

Proximal gradient methods ELE 538B: Large-Scale Optimization for Data Science Proximal gradient methods Yuxin Chen Princeton University, Spring 08 Outline Proximal gradient descent for composite functions Proximal mapping / operator

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Lecture: Algorithms for Compressed Sensing

Lecture: Algorithms for Compressed Sensing 1/56 Lecture: Algorithms for Compressed Sensing Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

SIAM Conference on Imaging Science, Bologna, Italy, Adaptive FISTA. Peter Ochs Saarland University

SIAM Conference on Imaging Science, Bologna, Italy, Adaptive FISTA. Peter Ochs Saarland University SIAM Conference on Imaging Science, Bologna, Italy, 2018 Adaptive FISTA Peter Ochs Saarland University 07.06.2018 joint work with Thomas Pock, TU Graz, Austria c 2018 Peter Ochs Adaptive FISTA 1 / 16 Some

More information

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION Peter Ochs University of Freiburg Germany 17.01.2017 joint work with: Thomas Brox and Thomas Pock c 2017 Peter Ochs ipiano c 1

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

Lecture Notes on Iterative Optimization Algorithms

Lecture Notes on Iterative Optimization Algorithms Charles L. Byrne Department of Mathematical Sciences University of Massachusetts Lowell December 8, 2014 Lecture Notes on Iterative Optimization Algorithms Contents Preface vii 1 Overview and Examples

More information

Lecture: Smoothing.

Lecture: Smoothing. Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

A Unified Approach to Proximal Algorithms using Bregman Distance

A Unified Approach to Proximal Algorithms using Bregman Distance A Unified Approach to Proximal Algorithms using Bregman Distance Yi Zhou a,, Yingbin Liang a, Lixin Shen b a Department of Electrical Engineering and Computer Science, Syracuse University b Department

More information

One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties

One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties Fedor S. Stonyakin 1 and Alexander A. Titov 1 V. I. Vernadsky Crimean Federal University, Simferopol,

More information

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE Convex Analysis Notes Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE These are notes from ORIE 6328, Convex Analysis, as taught by Prof. Adrian Lewis at Cornell University in the

More information

Homework 2. Convex Optimization /36-725

Homework 2. Convex Optimization /36-725 Homework 2 Convex Optimization 0-725/36-725 Due Monday October 3 at 5:30pm submitted to Christoph Dann in Gates 803 Remember to a submit separate writeup for each problem, with your name at the top) Total:

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

Tight Rates and Equivalence Results of Operator Splitting Schemes

Tight Rates and Equivalence Results of Operator Splitting Schemes Tight Rates and Equivalence Results of Operator Splitting Schemes Wotao Yin (UCLA Math) Workshop on Optimization for Modern Computing Joint w Damek Davis and Ming Yan UCLA CAM 14-51, 14-58, and 14-59 1

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

Lecture 1: September 25

Lecture 1: September 25 0-725: Optimization Fall 202 Lecture : September 25 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Subhodeep Moitra Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

NOTES ON FIRST-ORDER METHODS FOR MINIMIZING SMOOTH FUNCTIONS. 1. Introduction. We consider first-order methods for smooth, unconstrained

NOTES ON FIRST-ORDER METHODS FOR MINIMIZING SMOOTH FUNCTIONS. 1. Introduction. We consider first-order methods for smooth, unconstrained NOTES ON FIRST-ORDER METHODS FOR MINIMIZING SMOOTH FUNCTIONS 1. Introduction. We consider first-order methods for smooth, unconstrained optimization: (1.1) minimize f(x), x R n where f : R n R. We assume

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

Optimization for Learning and Big Data

Optimization for Learning and Big Data Optimization for Learning and Big Data Donald Goldfarb Department of IEOR Columbia University Department of Mathematics Distinguished Lecture Series May 17-19, 2016. Lecture 1. First-Order Methods for

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

Lecture 6: September 17

Lecture 6: September 17 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 6: September 17 Scribes: Scribes: Wenjun Wang, Satwik Kottur, Zhiding Yu Note: LaTeX template courtesy of UC Berkeley EECS

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

A SIMPLE PARALLEL ALGORITHM WITH AN O(1/T ) CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS

A SIMPLE PARALLEL ALGORITHM WITH AN O(1/T ) CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS A SIMPLE PARALLEL ALGORITHM WITH AN O(/T ) CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS HAO YU AND MICHAEL J. NEELY Abstract. This paper considers convex programs with a general (possibly non-differentiable)

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Unconstrained minimization: assumptions

Unconstrained minimization: assumptions Unconstrained minimization I terminology and assumptions I gradient descent method I steepest descent method I Newton s method I self-concordant functions I implementation IOE 611: Nonlinear Programming,

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

An accelerated algorithm for minimizing convex compositions

An accelerated algorithm for minimizing convex compositions An accelerated algorithm for minimizing convex compositions D. Drusvyatskiy C. Kempton April 30, 016 Abstract We describe a new proximal algorithm for minimizing compositions of finite-valued convex functions

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Lecture 6: September 12

Lecture 6: September 12 10-725: Optimization Fall 2013 Lecture 6: September 12 Lecturer: Ryan Tibshirani Scribes: Micol Marchetti-Bowick Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization x = prox_f(x)+prox_{f^*}(x) use to get prox of norms! PROXIMAL METHODS WHY PROXIMAL METHODS Smooth

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

Proximal methods. S. Villa. October 7, 2014

Proximal methods. S. Villa. October 7, 2014 Proximal methods S. Villa October 7, 2014 1 Review of the basics Often machine learning problems require the solution of minimization problems. For instance, the ERM algorithm requires to solve a problem

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Proximal splitting methods on convex problems with a quadratic term: Relax!

Proximal splitting methods on convex problems with a quadratic term: Relax! Proximal splitting methods on convex problems with a quadratic term: Relax! The slides I presented with added comments Laurent Condat GIPSA-lab, Univ. Grenoble Alpes, France Workshop BASP Frontiers, Jan.

More information

Lecture 7: September 17

Lecture 7: September 17 10-725: Optimization Fall 2013 Lecture 7: September 17 Lecturer: Ryan Tibshirani Scribes: Serim Park,Yiming Gu 7.1 Recap. The drawbacks of Gradient Methods are: (1) requires f is differentiable; (2) relatively

More information

Splitting methods for decomposing separable convex programs

Splitting methods for decomposing separable convex programs Splitting methods for decomposing separable convex programs Philippe Mahey LIMOS - ISIMA - Université Blaise Pascal PGMO, ENSTA 2013 October 4, 2013 1 / 30 Plan 1 Max Monotone Operators Proximal techniques

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Proximal-Gradient Mark Schmidt University of British Columbia Winter 2018 Admin Auditting/registration forms: Pick up after class today. Assignment 1: 2 late days to hand in

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Lecture 23: November 21

Lecture 23: November 21 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Ryan Tibshirani Lecture 23: November 21 Scribes: Yifan Sun, Ananya Kumar, Xin Lu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Active-set complexity of proximal gradient

Active-set complexity of proximal gradient Noname manuscript No. will be inserted by the editor) Active-set complexity of proximal gradient How long does it take to find the sparsity pattern? Julie Nutini Mark Schmidt Warren Hare Received: date

More information

Accelerated gradient methods

Accelerated gradient methods ELE 538B: Large-Scale Optimization for Data Science Accelerated gradient methods Yuxin Chen Princeton University, Spring 018 Outline Heavy-ball methods Nesterov s accelerated gradient methods Accelerated

More information

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences

More information

Lecture 2 February 25th

Lecture 2 February 25th Statistical machine learning and convex optimization 06 Lecture February 5th Lecturer: Francis Bach Scribe: Guillaume Maillard, Nicolas Brosse This lecture deals with classical methods for convex optimization.

More information

Stochastic Subgradient Method

Stochastic Subgradient Method Stochastic Subgradient Method Lingjie Weng, Yutian Chen Bren School of Information and Computer Science UC Irvine Subgradient Recall basic inequality for convex differentiable f : f y f x + f x T (y x)

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

Gradient Descent. Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh. Convex Optimization /36-725

Gradient Descent. Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh. Convex Optimization /36-725 Gradient Descent Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh Convex Optimization 10-725/36-725 Based on slides from Vandenberghe, Tibshirani Gradient Descent Consider unconstrained, smooth convex

More information

Geometric Descent Method for Convex Composite Minimization

Geometric Descent Method for Convex Composite Minimization Geometric Descent Method for Convex Composite Minimization Shixiang Chen 1, Shiqian Ma 1, and Wei Liu 2 1 Department of SEEM, The Chinese University of Hong Kong, Hong Kong 2 Tencent AI Lab, Shenzhen,

More information

Accelerated Proximal Gradient Methods for Convex Optimization

Accelerated Proximal Gradient Methods for Convex Optimization Accelerated Proximal Gradient Methods for Convex Optimization Paul Tseng Mathematics, University of Washington Seattle MOPTA, University of Guelph August 18, 2008 ACCELERATED PROXIMAL GRADIENT METHODS

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

A Tutorial on Primal-Dual Algorithm

A Tutorial on Primal-Dual Algorithm A Tutorial on Primal-Dual Algorithm Shenlong Wang University of Toronto March 31, 2016 1 / 34 Energy minimization MAP Inference for MRFs Typical energies consist of a regularization term and a data term.

More information

Douglas-Rachford splitting for nonconvex feasibility problems

Douglas-Rachford splitting for nonconvex feasibility problems Douglas-Rachford splitting for nonconvex feasibility problems Guoyin Li Ting Kei Pong Jan 3, 015 Abstract We adapt the Douglas-Rachford DR) splitting method to solve nonconvex feasibility problems by studying

More information