Lecture: Duality of LP, SOCP and SDP

Size: px
Start display at page:

Download "Lecture: Duality of LP, SOCP and SDP"

Transcription

1 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes

2 2/33 Lagrangian standard form problem (not necessarily convex) min f 0 (x) s.t. f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p variable x R n, domain D, optimal value p. Lagrangian: L : R n R m R p R, with doml = D R m R p L(x, λ, ν) = f 0 (x) + m λ i f i (x) + p ν i h i (x) weighted sum of objective and constraint functions λ i is the Lagrange multiplier associated with f i (x) 0 ν i is the Lagrange multiplier associated with h i (x) = 0

3 Lagrange dual function 3/33 Lagrange dual function: g : R m R p R g(λ, ν) = inf x D = inf x D L(x, λ, ν) ( m f 0 (x) + λ i f i (x) + g is concave, can be for some λ, ν ) p ν i h i (x) lower bound property: if λ 0, then g(λ, ν) p Proof: If x is feasible and λ 0, then f 0 ( x) L( x, λ, ν) inf L(x, λ, ν) = g(λ, ν). x D minimizing over all feasible x gives p g(λ, ν).

4 4/33 The dual problem Lagrange dual problem max g(λ, ν) s.t. λ 0 finds best lower bound on p, obtained from Lagrange dual function a convex optimization problem; optimal value denoted d λ, ν are dual feasible if λ 0, (λ, ν) domg often simplified by making implicit constraint (λ, ν) domg explicit

5 5/33 Standard form LP (P) min c x s.t. Ax = b x 0 (D) max b y s.t. A y + s = c s 0 Lagrangian is L(x, λ, ν) = c x + ν (Ax b) λ x = b ν + (c + A v λ) x L is affine in x, hence g(λ, ν) = inf L(x, λ, ν) = x { b ν, A ν λ + c = 0 otherwise lower bound property: p b v if A v + c 0 Check the dual of (D)

6 6/33 Inequality form LP min s.t. c x Ax b Lagrangian is L(x, λ, ν) = c x + ν (Ax b) = b ν + (c + A v) x L is affine in x, hence g(λ, ν) = inf L(x, λ, ν) = x { b ν, A ν + c = 0 otherwise Dual problem max b v s.t. A v = c, v 0

7 Equality constrained norm minimization min s.t. x Ax = b max b v s.t. A v 1 Dual function g(ν) = inf x ( x ν Ax + b ν) = { b ν A ν 1 otherwise, where v = sup u 1 u v is the dual norm of Proof: follows from inf x ( x y x) = 0 if y 1, otherwise if y 1, then x y x 0 for all x, with equality if x = 0 if y > 1, then choose x = tu, where u 1, u y = y > 1: x y x = t( u y ) as t for all x, with equality if x = 0 7/33

8 LP with box constraints min s.t. c x Ax = b 1 x 1 max b v 1 λ 1 1 λ 2 s.t. c + A v + λ 1 λ 2 = 0 λ 1 0, λ 2 0 reformulation with box constraints made implicit { c x 1 x 1 min f 0 (x) = otherwise Dual function g(ν) = s.t. Ax = b inf 1 x 1 (c x + ν (Ax b)) = b ν A v + c 1 Dual problem: max ν b ν A v + c 1 8/33

9 9/33 Lagrange dual and conjugate function min s.t. f 0 (x) Ax b Cx = d dual function g(λ, ν) = inf x domf 0 (f 0 (x) + (A λ + C v) x b λ d ν) = f ( A λ C v) b λ d ν recall definition of conjugate f (y) = sup x domf (y x f (x)) simplifies derivation of dual if conjugate of f 0 is known

10 Conjugate function 10/33 the conjugate of a function f is f (y) = f is closed and sup (y T x f (x)) x dom f convex even if f is not Fenchel s inequality f (x) + f (y) x T y x, y (extends inequality x T x/2 + y T y/2 x T y to non-quadratic convex f )

11 Quadratic function 11/33 f (x) = 1 2 xt Ax + b T x + c strictly convex case (A 0) f (y) = 1 2 (y b)t A 1 (y b) c general convex case (A 0) f (y) = 1 2 (y b)t A (y b) c, dom f = range(a) + b

12 Negative entropy and negative logarithm 12/33 negative entropy f (x) = negative logarithm n x i log x i f (y) = n e y i 1 n f (x) = log x i n f (y) = log( y i ) n matrix logarithm f (x) = log det X (dom f = S n ++) f (Y) = log det( Y) n

13 Indicator function and norm 13/33 indicator of convex set C: conjugate is support function of C { 0, x C f (x) = +, x C f (y) = sup y T x x C norm: conjugate is indicator of unit dual norm ball { f (x) = x f 0, y 1 (y) = +, y > 1 (see next page)

14 14/33 proof: recall the definition of dual norm: y = sup x T y x 1 to evaluate f (y) = sup x (y T x x ) we distinguish two cases if y 1, then (by definition of dual norm) y T x x x and equality holds if x = 0; therefore sup x (y T x x ) = 0 if y > 1, there exists an x with x 1, x T y > 1; then f (y) y T (tx) tx = t(y T x x ) and r.h.s. goes to infinity if t

15 The second conjugate 15/33 f (x) = sup (x T y f (y)) y dom f f (x) is closed and convex from Fenchel s inequality x T y f (y) f (x) for all y and x): f f (x) x equivalently, epi f epi f (for any f ) if f is closed and convex, then f (x) = f (x) x equivalently, epi f = epi f (if f is closed convex); proof on next page

16 Conjugates and subgradients 16/33 if f is closed and convex, then y f (x) x f (x) x T y = f (x) + f (y) proof: if y f (x), then f (y) = sup u (y T u f (u)) = y T x f (x) f (v) = sup(v T u f (u) u v T x f (x) = x T (v y) f (x) + y T x = f (y) + x T (v y) (1) for all v; therefore, x is a subgradient of f at y (x f (y)) reverse implication x f (y) y f (x) follows from f = f

17 Some calculus rules 17/33 separable sum f (x 1, x 2 ) = g(x 1 ) + h(x 2 ) f (y 1, y 2 ) = g (y 1 ) + h (y 2 ) scalar multiplication: (for α > 0) f (x) = αg(x) f (y) = αg (y/α) addition to affine function f (x) = g(x) + a T x + b f (y) = g (y a) b infimal convolution f (x) = inf (g(u) + h(v)) f u+v=x (y) = g (y) + h (y)

18 18/33 Duality and problem reformulations equivalent formulations of a problem can lead to very different duals reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting Common reformulations introduce new variables and equality constraints make explicit constraints implicit or vice-versa transform objective or constraint functions e.g., replace f 0 (x) by φ(f 0 (x)) with φ convex, increasing

19 Introducing new variables and equality constraints 19/33 min f 0 (Ax + b) dual function is constant: g = inf x L(x) = inf x f 0 (Ax + b) = p we have strong duality, but dual is quite useless reformulated problem and its dual (P) min f 0 (y) s.t. Ax + b = y (D) max b y f 0 (ν) s.t. A ν = 0 dual functions follows from g(ν) = inf f 0 (y) ν y + ν Ax + b ν x,y { f0 = (ν) + b ν, A ν = 0 otherwise

20 Norm approximation problem 20/33 min y min Ax b s.t. Ax b = y can look up conjugate of, or derive dual directly g(ν) = inf y + ν y ν Ax + b ν x,y { b ν + inf y y + ν y, A ν = 0 =, otherwise { b ν, A ν = 0, v 1 =, otherwise Dual problem is max b ν s.t. A ν = 0, v 1

21 21/33 Weak and strong duality weak duality: d p always holds (for convex and nonconvex problems) can be used to find nontrivial lower bounds for difficult problems for example, solving the maxcut SDP strong duality: d = p does not hold in general (usually) holds for convex problems conditions that guarantee strong duality in convex problems are called constraint qualifications

22 22/33 Slater s constraint qualification strong duality holds for a convex problem min f 0 (x) s.t. f i (x) 0, i = 1,..., m Ax = b If it is strictly feasible, i.e., x intd : f i (x) < 0, i = 1,..., m, Ax = b also guarantees that the dual optimum is attained (if p > ) can be sharpened: e.g., can replace intd with relintd (interior relative to affine hull); linear inequalities do not need to hold with strict inequality,... there exist many other types of constraint qualifications

23 Complementary slackness 23/33 assume strong duality holds, x is primal optimal, (λ, ν ) is dual feasible ( ) m p f 0 (x ) = g(λ, ν ) = inf f 0 (x) + λ i f i (x) + νi h i (x) x D f 0 (x ) + f 0 (x ) m λ i f i (x ) + p νi h i (x ) hence, the two inequalities hold with equality x minimizes L(x, λ, ν ) λ i f i(x ) = 0 for i = 1,..., m (known as complementary slackness): λ i > 0 = f i (x ) = 0, f i (x ) < 0 = λ i = 0

24 24/33 Karush-Kuhn-Tucker (KKT) conditions the following four conditions are called KKT conditions (for a problem with differentiable f i, h i ): 1 primal constraints: f i (x) 0, i = 1,..., m, h i (x) = 0, i = 1,..., p 2 dual constraints: λ 0 3 complementary slackness: λ i f i (x) = 0, i = 1,..., m 4 gradient of Lagrangian with respect to x vanishes: f 0 (x) + m λ i f i (x) + p ν i h i (x) = 0 If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

25 25/33 KKT conditions for convex problem If x, λ, ν satisfy KKT for a convex problem, then they are optimal from complementary slackness: f 0 ( x) = L( x, λ, ν) from 4th condition (and convexity): g( λ, ν) = L( x, λ, ν) Hence, f 0 ( x) = g( λ, ν) if Slater s condition is satisfied: x is optimal if and only if there exist λ, ν that satisfy KKT conditions recall that Slater implies strong duality, and dual optimum is attained generalizes optimality condition f 0 (x) = 0 for unconstrained problem

26 LP Duality 26/33 Strong duality: If a LP has an optimal solution, so does its dual, and their objective fun. are equal. primal finite unbounded infeasible dual finite unbounded infeasible If p =, then d p =, hence dual is infeasible If d = +, then + = d p, hence primal is infeasible min x 1 + 2x 2 s.t. x 1 + x 2 = 1 2x 1 + 2x 2 = 3 max p 1 + 3p 2 s.t. p 1 + 2p 2 = 1 p 1 + 2p 2 = 2

27 27/33 Problems with generalized inequalities min f 0 (x) s.t. f i (x) Ki 0, i = 1,..., m h i (x) = 0, f i (x) K i means f i (x) K i. Lagrangian:, Ki inner product in K i L(x, λ 1,..., λ m, ν) = f 0 (x) + dual function i = 1,..., p m λ i, f i (x) Ki + p ν i h i (x) g(λ 1,..., λ m, ν) = inf x D L(x, λ 1,..., λ m, ν)

28 28/33 lower bound property: if λ i K i, then g(λ 1,..., λ m, ν) p proof: If x is feasible and λ K i 0, then f 0 ( x) f 0 ( x) + m λ i, f i ( x) Ki + inf L(x, λ 1,..., λ m, ν) x D = g(λ 1,..., λ m, ν) p ν i h i ( x) minimizing over all feasible x gives g(λ 1,..., λ m, ν) p. Dual problem max g(λ 1,..., λ m, ν) weak duality: p d s.t. λ i K i 0, i = 1,..., m strong duality: p = d for convex problem with constraint qualification (for example, Slater s: primal problem is strictly feasible)

29 Semidefinite program min s.t. c x x 1 F x n F n G F i, G S k, multiplier is matrix Z S k Lagrangian L(x, Z) = c x + Z, x 1 F x n F n G dual function g(z) = inf x L(x, Z) = { G, Z, F i, Z + c i = 0 otherwise Dual SDP min G, Z s.t. F i, Z + c i = 0, Z 0 p = d if primal SDP is strictly feasible. 29/33

30 SDP Relaxtion of Maxcut min x Wx s.t. x 2 i = 1 = max 1 ν s.t. W + diag(ν) 0 min Tr(WX) s.t. X ii = 1 X 0 a nonconvex problem; feasible set contains 2n discrete points interpretation: partition {1,..., n} in two sets; W ij is cost of assigning i, j to the same set;; W ij is cost of assigning to different sets dual function ( g(ν) = inf x x Wx + i ν i (x 2 i 1) ) = inf x (W + diag(ν))x 1 ν x { 1 ν W + diag(ν) 0 = otherwise 30/33

31 SOCP/SDP Duality (P) min c x s.t. Ax = b, x Q 0 (D) max b y s.t. A y + s = c, s Q 0 (P) min C, X s.t. A 1, X = b 1... A m, X = b m X 0 (D) max b y s.t. y i A i + S = C i S 0 Strong duality If p >, (P) is strictly feasible, then (D) is feasible and p = d If d < +, (D) is strictly feasible, then (P) is feasible and p = d If (P) and (D) has strictly feasible solutions, then both have optimal solutions. 31/33

32 Failure of SOCP Duality 32/33 inf (1, 1, 0)x s.t. (0, 0, 1)x = 1 x Q 0 sup s.t. y (0, 0, 1) y + z = (1, 1, 0) z Q 0 primal: min x 0 x 1, s.t. x 0 x ; It holds x 0 x 1 > 0 and x 0 x 1 0 if x 0 = x Hence, p = 0, no finite solution dual: sup y s.t y 2. Hence, y = 0 p = d but primal is not attainable.

33 Failure of SDP Duality 33/33 Consider min , X s.t , X = , X = X 0 max 2y 2 s.t y y primal: X = , p = 1 dual: y = (0, 0). Hence, d = 0 Both problems have finite optimal values, but p d

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Tutorial on Convex Optimization for Engineers Part II

Tutorial on Convex Optimization for Engineers Part II Tutorial on Convex Optimization for Engineers Part II M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

On the Method of Lagrange Multipliers

On the Method of Lagrange Multipliers On the Method of Lagrange Multipliers Reza Nasiri Mahalati November 6, 2016 Most of what is in this note is taken from the Convex Optimization book by Stephen Boyd and Lieven Vandenberghe. This should

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Optimisation convexe: performance, complexité et applications.

Optimisation convexe: performance, complexité et applications. Optimisation convexe: performance, complexité et applications. Introduction, convexité, dualité. A. d Aspremont. M2 OJME: Optimisation convexe. 1/128 Today Convex optimization: introduction Course organization

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Lecture: Introduction to LP, SDP and SOCP

Lecture: Introduction to LP, SDP and SOCP Lecture: Introduction to LP, SDP and SOCP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html wenzw@pku.edu.cn Acknowledgement:

More information

COM S 578X: Optimization for Machine Learning

COM S 578X: Optimization for Machine Learning COM S 578X: Optimization for Machine Learning Lecture Note 4: Duality Jia (Kevin) Liu Assistant Professor Department of Computer Science Iowa State University, Ames, Iowa, USA Fall 2018 JKL (CS@ISU) COM

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

Convex Optimization and SVM

Convex Optimization and SVM Convex Optimization and SVM Problem 0. Cf lecture notes pages 12 to 18. Problem 1. (i) A slab is an intersection of two half spaces, hence convex. (ii) A wedge is an intersection of two half spaces, hence

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Lecture Notes on Support Vector Machine

Lecture Notes on Support Vector Machine Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ω T x + b = 0 (1) where ω R n is

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

Duality Uses and Correspondences. Ryan Tibshirani Convex Optimization

Duality Uses and Correspondences. Ryan Tibshirani Convex Optimization Duality Uses and Correspondences Ryan Tibshirani Conve Optimization 10-725 Recall that for the problem Last time: KKT conditions subject to f() h i () 0, i = 1,... m l j () = 0, j = 1,... r the KKT conditions

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Machine Learning. Lecture 6: Support Vector Machine. Feng Li.

Machine Learning. Lecture 6: Support Vector Machine. Feng Li. Machine Learning Lecture 6: Support Vector Machine Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Warm Up 2 / 80 Warm Up (Contd.)

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

Support vector machines

Support vector machines Support vector machines Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 SVM, kernel methods and multiclass 1/23 Outline 1 Constrained optimization, Lagrangian duality and KKT 2 Support

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Dual Decomposition.

Dual Decomposition. 1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 6 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 6 Fall 2009 UC Berkele Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 6 Fall 2009 Solution 6.1 (a) p = 1 (b) The Lagrangian is L(x,, λ) = e x + λx 2

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

A Tutorial on Convex Optimization II: Duality and Interior Point Methods

A Tutorial on Convex Optimization II: Duality and Interior Point Methods A Tutorial on Convex Optimization II: Duality and Interior Point Methods Haitham Hindi Palo Alto Research Center (PARC), Palo Alto, California 94304 email: hhindi@parc.com Abstract In recent years, convex

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module - 5 Lecture - 22 SVM: The Dual Formulation Good morning.

More information

Gauge optimization and duality

Gauge optimization and duality 1 / 54 Gauge optimization and duality Junfeng Yang Department of Mathematics Nanjing University Joint with Shiqian Ma, CUHK September, 2015 2 / 54 Outline Introduction Duality Lagrange duality Fenchel

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Optimisation in Higher Dimensions

Optimisation in Higher Dimensions CHAPTER 6 Optimisation in Higher Dimensions Beyond optimisation in 1D, we will study two directions. First, the equivalent in nth dimension, x R n such that f(x ) f(x) for all x R n. Second, constrained

More information

Duality revisited. Javier Peña Convex Optimization /36-725

Duality revisited. Javier Peña Convex Optimization /36-725 Duality revisited Javier Peña Conve Optimization 10-725/36-725 1 Last time: barrier method Main idea: approimate the problem f() + I C () with the barrier problem f() + 1 t φ() tf() + φ() where t > 0 and

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information