Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples

Size: px
Start display at page:

Download "Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples"

Transcription

1 Agenda Fast proximal gradient methods 1 Accelerated first-order methods 2 Auxiliary sequences 3 Convergence analysis 4 Numerical examples 5 Optimality of Nesterov s scheme

2 Last time Proximal gradient method convergence rate 1 k Subgradient methods convergence rate 1 k Can we do better for non-smooth problems min f(x) = g(x) + h(x) with the same computational effort as proximal gradient method but with faster convergence? Answer: Yes we can - with equally simple scheme x k+1 = arg min Q 1/t (x, y k ) Note that we use y k instead of x k where new point is cleverly chosen Original idea: Nesterov 1983 for minimization of smooth objective Here: nonsmooth problem

3 Accelerated first-order methods Choose x 0 and set y 0 = x 0. Repeat for k = 1, 2,... { xk = prox tk h(y k 1 t k g(y k 1 )) y k = x k + k 1 k+2 (x k x k 1 ) same computational complexity as proximal gradient with h = 0, this is the accelerated gradient descent of Nesterov ( 83) can be used with various stepsize rules fixed BLS... interpretation x k + k 1 k+2 (x k x k 1 ) momentum term/prevents zigzagging

4 Other formulations: Beck and Teboulle 2009 Fix step size t = 1 L(g) Choose x 0, set y 0 = x 0, θ 0 = 1 Loop: for k = 1, 2,... (a) x k = prox tk h(y k 1 t k g(y k 1 )) (b) 1 θ k = /θ 2 k 1 2 (c) y k = x k + θ k [ 1 θ k 1 1](x k x k 1 )

5 With BLS (knowledge of Lipschitz constant not necessary) Choose x 0, set y 0 = x 0, θ 0 = 1 Loop: for k = 1, 2,..., backtrack until (this gives t k ) f(y k 1 t k G tk (y k 1 )) Q 1/tk ((y k 1 t k G tk (y k 1 ), y k 1 ) Then prox tk h(y k 1 t k g(y k 1 )) y k 1 t k G tk (y k 1 ) (a) (b) (c)

6 Convergence analysis Theorem f(x k ) f 2 x 0 x 2 (k + 1) 2 t t = 1/L for fixed step size t = β/l for BLS Other 1/k 2 first-order methods Nesterov 2007 Two auxiliary sequences {y k }, {z k } Two prox operations at each iteration convergence analysis Lu, Lan and Monteiro Tseng Auslander and Teboulle Unified analysis framework: Tseng (2008)

7 Proof (Beck and Teboulle s version) and (i) v k+1 = v k + 1 θ k [x k+1 y k ] = 1 θ 2 k 1 (ii) 1 θ k θk 2 Proof of (ii) (u = 4/θk ) { vk 1 1 θ k 1 x k [ θ k 1 1]x k 1 y k = θ k v k + (1 θ k )x k 1 θ k θ 2 k = [1 + u] 2 4 u 1 u + 1 = u 1 4 = 4/θ k = 1 θ 2 k 1

8 Increment in one iteration: Beck and Teboulle, Vandenberghe x = x i 1 x + = x i y = y i 1 v = v i 1 v + = v i θ = θ i 1 Pillars of analysis: (1) f(x + ) f(x) + G t (y) T (y x) t 2 G t(y) 2 (2) f(x + ) f + G t (y) T (y x ) t 2 G t(y) 2 Take cvx combination f(x + ) (1 θ)f(x) + θf + G t (y), y (1 θ)x θx t 2 G t(y) 2 = (1 θ)f(x) + θf + θ G t (y), v x t 2 G t(y) 2

9 Because y = θv + (1 θ)x f(x + ) f (1 θ) [f(x) f ] + [ v θ2 x 2 v x tθ ] 2t G t(y) 2 Therefore Conclusion 1 θ 2 i 1 v t θ G t(y) = v + 1 θ [y G t(y) y] = v + f(x + ) f (1 θ)[f(x) f ] + θ2 [ v x 2 v + x 2] 2t [f(x i ) f ] + 1 2t v i x 2 1 θ i 1 θ 2 i 1 [f(x i 1 ) f ] + 1 2t v i 1 x 2

10 We have 1 θi 1 = 1 θi 1 2 θi θ 2 k 1 and [f(x k ) f ] + 1 2t v k x 2 1 θ 0 θ0 2 [f(x 0 ) f ] + 1 2t v 0 x 2 Since θ 0 = 1 and v 0 = x 0 1 θk 1 2 (f(x k ) f ) 1 2t x 0 x 2 1 Since 1 θk (k + 1)2, f(x k ) f 2 (k + 1) 2 t x 0 x 2 Similar with BLS, see Beck and Teboulle (2009)

11 Case study: LASSO min f(x) = 1 2 Ax b λ x 1 Chose x 0, set y 0 = x 0 and θ 0 = 1 and repeat x k = S tk λ(y k 1 t k A (Ay k 1 b)) [ ] 1 θ k = /θk 1 2 y k = x k + θ k (θ 1 k 1 1)(x k x k 1 ) until convergence (S t is soft-thresholding at level t) Dominant computational cost per iteration one application of A one application of A

12 [1] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Example from Beck and Teboulle (FISTA) AFASTITERATIVESHRINKAGE-THRESHOLDINGALGORITHM ISTA MTWIST FISTA Figure 5. Comparison of function value errors F (xk) F (x ) of ISTA, MTWIST, and FISTA. REFERENCES

13 Example from Vandenberghe (EE 236C, UCLA) 1-norm regularized least-squares minimize 1 2 Ax b x 1 (f(x (k) ) f )/f randomly generated A R ; step t k =1/L with L = λ max (A T A) k Gradient methods for nonsmooth problems 4 18

14 Nuclear norm regularization General gradient update min g(x) + λ X { 1 } X = arg min 2t X (X 0 t g(x 0 ) 2 F + λ X = S tλ (X 0 t g(x 0 )) S λ is the singular value soft-thresholding operator X = r σ j u j vj S t (X) := j=1 r max(σ j t, 0) u j vj j=1

15 Example min 1 2 A(X) b 2 + λ X Choose X 0, set Y 0 = X 0, θ 0 = 1 and repeat X k = S tk λ[y k 1 t k A (A(Y k 1 ) b)] θ k =... Y k =... Important remark: only need to compute the (top) part of the SVD of with singular values exceeding t k λ Y k 1 t k A (A(Y k 1 ) b)

16 Example from Vandenberghe (EE 236C, UCLA) minimize (i,j) obs. X is convergence (fixed step size t =1/L) 5,000 observed entries Fix step size t = 1/L (X ij M ij ) 2 + λ X (f(x (k) ) f )/f k

17 Optimality of Nesterov s Method min f(x) f convex f Lipschitz No method which updates x k in span {x 0, f(x 0 ),..., f(x k 1 )} can converge faster than 1/k 2 1/k 2 is the optimal rate of first-order method

18 Why? f(x) = x Ax e 1x, A = , e 1 = A 0, A 4 and solution obeys Ax = e 1 x = 1 i n + 1 f n = 2(n + 1) Note that since 0 k n x 2 = 1 (n + 1) 2 (n ) n (k + 1) 3 k 3 0 k n 3k 2 n k=1 k 2 n + 1 3

19 Start first-order algorithm at x 0 = 0 span ( f(x 1 )) span(e 1, e 2 ) span ( f(x 2 )) span(e 1, e 2, e 3 )... For k n/2 or n = 2k + 1 span( f(x 0 )) = e 1 = x 1 span(e 1 ) f(x k ) f inf f(x) = k x k+1 =...=x n=0 2(k + 1) f(x k ) f n 2(n + 1) k 2(k + 1) = 1 4(k + 1) So f(x k ) f 1 x 2 4(k + 1) x 2 3 x 2 4(k + 1)(n + 1) 3 x 2 8(k + 1) 2

20 References 1 Y. Nesterov. Gradient methods for minimizing composite objective function Technical Report CORE Université Catholique de Louvain, (2007) 2 A. Beck and M. Teboulle. Fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sciences, (2008) 3 M. Teboulle, First Order Algorithms for Convex Minimization, Optimization Tutorials (2010), IPAM, UCLA 4 L. Vandenberghe, EE236C (Spring 2011), UCLA

Fast proximal gradient methods

Fast proximal gradient methods L. Vandenberghe EE236C (Spring 2013-14) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Lecture 1: September 25

Lecture 1: September 25 0-725: Optimization Fall 202 Lecture : September 25 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Subhodeep Moitra Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Lecture 8: February 9

Lecture 8: February 9 0-725/36-725: Convex Optimiation Spring 205 Lecturer: Ryan Tibshirani Lecture 8: February 9 Scribes: Kartikeya Bhardwaj, Sangwon Hyun, Irina Caan 8 Proximal Gradient Descent In the previous lecture, we

More information

Accelerated Proximal Gradient Methods for Convex Optimization

Accelerated Proximal Gradient Methods for Convex Optimization Accelerated Proximal Gradient Methods for Convex Optimization Paul Tseng Mathematics, University of Washington Seattle MOPTA, University of Guelph August 18, 2008 ACCELERATED PROXIMAL GRADIENT METHODS

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Lasso: Algorithms and Extensions

Lasso: Algorithms and Extensions ELE 538B: Sparsity, Structure and Inference Lasso: Algorithms and Extensions Yuxin Chen Princeton University, Spring 2017 Outline Proximal operators Proximal gradient methods for lasso and its extensions

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Accelerated gradient methods

Accelerated gradient methods ELE 538B: Large-Scale Optimization for Data Science Accelerated gradient methods Yuxin Chen Princeton University, Spring 018 Outline Heavy-ball methods Nesterov s accelerated gradient methods Accelerated

More information

SIAM Conference on Imaging Science, Bologna, Italy, Adaptive FISTA. Peter Ochs Saarland University

SIAM Conference on Imaging Science, Bologna, Italy, Adaptive FISTA. Peter Ochs Saarland University SIAM Conference on Imaging Science, Bologna, Italy, 2018 Adaptive FISTA Peter Ochs Saarland University 07.06.2018 joint work with Thomas Pock, TU Graz, Austria c 2018 Peter Ochs Adaptive FISTA 1 / 16 Some

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization Panos Parpas Department of Computing Imperial College London www.doc.ic.ac.uk/ pp500 p.parpas@imperial.ac.uk jointly with D.V.

More information

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization x = prox_f(x)+prox_{f^*}(x) use to get prox of norms! PROXIMAL METHODS WHY PROXIMAL METHODS Smooth

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 15 (Gradient methods III) 12 March, 2013 Suvrit Sra Optimal gradient methods 2 / 27 Optimal gradient methods We saw following efficiency estimates for

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

Adaptive Restarting for First Order Optimization Methods

Adaptive Restarting for First Order Optimization Methods Adaptive Restarting for First Order Optimization Methods Nesterov method for smooth convex optimization adpative restarting schemes step-size insensitivity extension to non-smooth optimization continuation

More information

Stochastic Optimization: First order method

Stochastic Optimization: First order method Stochastic Optimization: First order method Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical and Computing Sciences JST, PRESTO

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

Optimization for Learning and Big Data

Optimization for Learning and Big Data Optimization for Learning and Big Data Donald Goldfarb Department of IEOR Columbia University Department of Mathematics Distinguished Lecture Series May 17-19, 2016. Lecture 1. First-Order Methods for

More information

5. Subgradient method

5. Subgradient method L. Vandenberghe EE236C (Spring 2016) 5. Subgradient method subgradient method convergence analysis optimal step size when f is known alternating projections optimality 5-1 Subgradient method to minimize

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties

One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties Fedor S. Stonyakin 1 and Alexander A. Titov 1 V. I. Vernadsky Crimean Federal University, Simferopol,

More information

Lecture: Smoothing.

Lecture: Smoothing. Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Gradient descent Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Gradient descent First consider unconstrained minimization of f : R n R, convex and differentiable. We want to solve

More information

A Unified Approach to Proximal Algorithms using Bregman Distance

A Unified Approach to Proximal Algorithms using Bregman Distance A Unified Approach to Proximal Algorithms using Bregman Distance Yi Zhou a,, Yingbin Liang a, Lixin Shen b a Department of Electrical Engineering and Computer Science, Syracuse University b Department

More information

Lecture 23: November 21

Lecture 23: November 21 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Ryan Tibshirani Lecture 23: November 21 Scribes: Yifan Sun, Ananya Kumar, Xin Lu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

A Tutorial on Primal-Dual Algorithm

A Tutorial on Primal-Dual Algorithm A Tutorial on Primal-Dual Algorithm Shenlong Wang University of Toronto March 31, 2016 1 / 34 Energy minimization MAP Inference for MRFs Typical energies consist of a regularization term and a data term.

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Descent methods. min x. f(x)

Descent methods. min x. f(x) Gradient Descent Descent methods min x f(x) 5 / 34 Descent methods min x f(x) x k x k+1... x f(x ) = 0 5 / 34 Gradient methods Unconstrained optimization min f(x) x R n. 6 / 34 Gradient methods Unconstrained

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

FAST FIRST-ORDER METHODS FOR COMPOSITE CONVEX OPTIMIZATION WITH BACKTRACKING

FAST FIRST-ORDER METHODS FOR COMPOSITE CONVEX OPTIMIZATION WITH BACKTRACKING FAST FIRST-ORDER METHODS FOR COMPOSITE CONVEX OPTIMIZATION WITH BACKTRACKING KATYA SCHEINBERG, DONALD GOLDFARB, AND XI BAI Abstract. We propose new versions of accelerated first order methods for convex

More information

MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution

MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution 1/16 MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution Dominique Guillot Departments of Mathematical Sciences University of Delaware February 26, 2016 Computing the lasso

More information

Smoothing Proximal Gradient Method. General Structured Sparse Regression

Smoothing Proximal Gradient Method. General Structured Sparse Regression for General Structured Sparse Regression Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, Eric P. Xing (Annals of Applied Statistics, 2012) Gatsby Unit, Tea Talk October 25, 2013 Outline Motivation:

More information

Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms

Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms Agenda Interior Point Methods 1 Barrier functions 2 Analytic center 3 Central path 4 Barrier method 5 Primal-dual path following algorithms 6 Nesterov Todd scaling 7 Complexity analysis Interior point

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems Kim-Chuan Toh Sangwoon Yun March 27, 2009; Revised, Nov 11, 2009 Abstract The affine rank minimization

More information

Accelerated primal-dual methods for linearly constrained convex problems

Accelerated primal-dual methods for linearly constrained convex problems Accelerated primal-dual methods for linearly constrained convex problems Yangyang Xu SIAM Conference on Optimization May 24, 2017 1 / 23 Accelerated proximal gradient For convex composite problem: minimize

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley A. d Aspremont, INFORMS, Denver,

More information

Lecture 17: October 27

Lecture 17: October 27 0-725/36-725: Convex Optimiation Fall 205 Lecturer: Ryan Tibshirani Lecture 7: October 27 Scribes: Brandon Amos, Gines Hidalgo Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

An adaptive accelerated first-order method for convex optimization

An adaptive accelerated first-order method for convex optimization An adaptive accelerated first-order method for convex optimization Renato D.C Monteiro Camilo Ortiz Benar F. Svaiter July 3, 22 (Revised: May 4, 24) Abstract This paper presents a new accelerated variant

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

ACCELERATED LINEARIZED BREGMAN METHOD. June 21, Introduction. In this paper, we are interested in the following optimization problem.

ACCELERATED LINEARIZED BREGMAN METHOD. June 21, Introduction. In this paper, we are interested in the following optimization problem. ACCELERATED LINEARIZED BREGMAN METHOD BO HUANG, SHIQIAN MA, AND DONALD GOLDFARB June 21, 2011 Abstract. In this paper, we propose and analyze an accelerated linearized Bregman (A) method for solving the

More information

Math 273a: Optimization Convex Conjugacy

Math 273a: Optimization Convex Conjugacy Math 273a: Optimization Convex Conjugacy Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Convex conjugate (the Legendre transform) Let f be a closed proper

More information

Nesterov s Acceleration

Nesterov s Acceleration Nesterov s Acceleration Nesterov Accelerated Gradient min X f(x)+ (X) f -smooth. Set s 1 = 1 and = 1. Set y 0. Iterate by increasing t: g t 2 @f(y t ) s t+1 = 1+p 1+4s 2 t 2 y t = x t + s t 1 s t+1 (x

More information

Journal Club. A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui) March 8th, CMAP, Ecole Polytechnique 1/19

Journal Club. A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui) March 8th, CMAP, Ecole Polytechnique 1/19 Journal Club A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui) CMAP, Ecole Polytechnique March 8th, 2018 1/19 Plan 1 Motivations 2 Existing Acceleration Methods 3 Universal

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

Lecture: Algorithms for Compressed Sensing

Lecture: Algorithms for Compressed Sensing 1/56 Lecture: Algorithms for Compressed Sensing Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE Convex Analysis Notes Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE These are notes from ORIE 6328, Convex Analysis, as taught by Prof. Adrian Lewis at Cornell University in the

More information

The Proximal Gradient Method

The Proximal Gradient Method Chapter 10 The Proximal Gradient Method Underlying Space: In this chapter, with the exception of Section 10.9, E is a Euclidean space, meaning a finite dimensional space endowed with an inner product,

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION Peter Ochs University of Freiburg Germany 17.01.2017 joint work with: Thomas Brox and Thomas Pock c 2017 Peter Ochs ipiano c 1

More information

Mathematics of Data: From Theory to Computation

Mathematics of Data: From Theory to Computation Mathematics of Data: From Theory to Computation Prof. Volkan Cevher volkan.cevher@epfl.ch Lecture 8: Composite convex minimization I Laboratory for Information and Inference Systems (LIONS) École Polytechnique

More information

On the acceleration of the double smoothing technique for unconstrained convex optimization problems

On the acceleration of the double smoothing technique for unconstrained convex optimization problems On the acceleration of the double smoothing technique for unconstrained convex optimization problems Radu Ioan Boţ Christopher Hendrich October 10, 01 Abstract. In this article we investigate the possibilities

More information

Sequential convex programming,: value function and convergence

Sequential convex programming,: value function and convergence Sequential convex programming,: value function and convergence Edouard Pauwels joint work with Jérôme Bolte Journées MODE Toulouse March 23 2016 1 / 16 Introduction Local search methods for finite dimensional

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Expanding the reach of optimal methods

Expanding the reach of optimal methods Expanding the reach of optimal methods Dmitriy Drusvyatskiy Mathematics, University of Washington Joint work with C. Kempton (UW), M. Fazel (UW), A.S. Lewis (Cornell), and S. Roy (UW) BURKAPALOOZA! WCOM

More information

Block Coordinate Descent for Regularized Multi-convex Optimization

Block Coordinate Descent for Regularized Multi-convex Optimization Block Coordinate Descent for Regularized Multi-convex Optimization Yangyang Xu and Wotao Yin CAAM Department, Rice University February 15, 2013 Multi-convex optimization Model definition Applications Outline

More information

Proximal gradient methods

Proximal gradient methods ELE 538B: Large-Scale Optimization for Data Science Proximal gradient methods Yuxin Chen Princeton University, Spring 08 Outline Proximal gradient descent for composite functions Proximal mapping / operator

More information

NOTES ON FIRST-ORDER METHODS FOR MINIMIZING SMOOTH FUNCTIONS. 1. Introduction. We consider first-order methods for smooth, unconstrained

NOTES ON FIRST-ORDER METHODS FOR MINIMIZING SMOOTH FUNCTIONS. 1. Introduction. We consider first-order methods for smooth, unconstrained NOTES ON FIRST-ORDER METHODS FOR MINIMIZING SMOOTH FUNCTIONS 1. Introduction. We consider first-order methods for smooth, unconstrained optimization: (1.1) minimize f(x), x R n where f : R n R. We assume

More information

Proximal methods. S. Villa. October 7, 2014

Proximal methods. S. Villa. October 7, 2014 Proximal methods S. Villa October 7, 2014 1 Review of the basics Often machine learning problems require the solution of minimization problems. For instance, the ERM algorithm requires to solve a problem

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Lecture 3-A - Convex) SUVRIT SRA Massachusetts Institute of Technology Special thanks: Francis Bach (INRIA, ENS) (for sharing this material, and permitting its use) MPI-IS

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Selected Methods for Modern Optimization in Data Analysis Department of Statistics and Operations Research UNC-Chapel Hill Fall 2018

Selected Methods for Modern Optimization in Data Analysis Department of Statistics and Operations Research UNC-Chapel Hill Fall 2018 Selected Methods for Modern Optimization in Data Analysis Department of Statistics and Operations Research UNC-Chapel Hill Fall 08 Instructor: Quoc Tran-Dinh Scriber: Quoc Tran-Dinh Lecture 4: Selected

More information

Relative-Continuity for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent

Relative-Continuity for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent Relative-Continuity for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent Haihao Lu August 3, 08 Abstract The usual approach to developing and analyzing first-order

More information

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation Zhouchen Lin Peking University April 22, 2018 Too Many Opt. Problems! Too Many Opt. Algorithms! Zero-th order algorithms:

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method ORIE 4741: Learning with Big Messy Data Proximal Gradient Method Professor Udell Operations Research and Information Engineering Cornell November 13, 2017 1 / 31 Announcements Be a TA for CS/ORIE 1380:

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Composite nonlinear models at scale

Composite nonlinear models at scale Composite nonlinear models at scale Dmitriy Drusvyatskiy Mathematics, University of Washington Joint work with D. Davis (Cornell), M. Fazel (UW), A.S. Lewis (Cornell) C. Paquette (Lehigh), and S. Roy (UW)

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Stochastic Semi-Proximal Mirror-Prox

Stochastic Semi-Proximal Mirror-Prox Stochastic Semi-Proximal Mirror-Prox Niao He Georgia Institute of echnology nhe6@gatech.edu Zaid Harchaoui NYU, Inria firstname.lastname@nyu.edu Abstract We present a direct extension of the Semi-Proximal

More information

Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/ɛ)

Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/ɛ) 1 28 Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/) Yi Xu yi-xu@uiowa.edu Yan Yan yan.yan-3@student.uts.edu.au Qihang Lin qihang-lin@uiowa.edu Tianbao Yang tianbao-yang@uiowa.edu

More information

A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems

A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems Amir Beck and Shoham Sabach July 6, 2011 Abstract We consider a general class of convex optimization problems

More information

A Conservation Law Method in Optimization

A Conservation Law Method in Optimization A Conservation Law Method in Optimization Bin Shi Florida International University Tao Li Florida International University Sundaraja S. Iyengar Florida International University Abstract bshi1@cs.fiu.edu

More information

GRADIENT = STEEPEST DESCENT

GRADIENT = STEEPEST DESCENT GRADIENT METHODS GRADIENT = STEEPEST DESCENT Convex Function Iso-contours gradient 0.5 0.4 4 2 0 8 0.3 0.2 0. 0 0. negative gradient 6 0.2 4 0.3 2.5 0.5 0 0.5 0.5 0 0.5 0.4 0.5.5 0.5 0 0.5 GRADIENT DESCENT

More information

DISCUSSION PAPER 2011/70. Stochastic first order methods in smooth convex optimization. Olivier Devolder

DISCUSSION PAPER 2011/70. Stochastic first order methods in smooth convex optimization. Olivier Devolder 011/70 Stochastic first order methods in smooth convex optimization Olivier Devolder DISCUSSION PAPER Center for Operations Research and Econometrics Voie du Roman Pays, 34 B-1348 Louvain-la-Neuve Belgium

More information