Math 273a: Optimization Convex Conjugacy

Size: px
Start display at page:

Download "Math 273a: Optimization Convex Conjugacy"

Transcription

1 Math 273a: Optimization Convex Conjugacy Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com

2 Convex conjugate (the Legendre transform) Let f be a closed proper convex function. The convex conjugate of f is f is convex (in y). f (y) = sup {y T x f(x)} x domf Reason: for each fixed x, (y T x f(x)) is linear in y. Hence, f is point-wise maximum of linear functions, that is, point y and over x. As long as f is proper, f is proper closed convex.

3 Geometry For fixed y and z, consider linear function: g(x) = y T x z the corresponding hyperplane is H = {(x, g(x)) : x R n } R n+1 [y; 1] is the downward normal direction of H H crosses the (n + 1)th axis at g(0) = z y (tilt) and z (height) uniquely define the hyperplane H and function g Our task: for each y, determine z using the function f, thus determining g

4 If we set two rules 1. g(x) = f(x) at some point x, i.e., H intersects epi(f), 2. H is as low as possible, i.e., z is as small as possible, then H will be the supporting hyperplane of f By rule #1, point x domf, y T x z = f(x) or z = f(x) y T x By rule #2, z = inf domf {f(x) y T x} = z = sup x domf {y T x f(x)} Therefore, z = f (x) g(y) = y T x f (x) H is the supporting hyperplane

5 Geometry 1. H intersects epi(f) 2. H is as low as possible = f (y) = inf x domf {f(x) y T x} epi(f ) f (y) f(x) x f almost completely characterizes f. Almost is because covers only up to closure. This is a result of the Hahn-Banach Separation Theorem.

6 Relation to Lagrange duality Consider convex problem minimize f(x) subject to Ax = b. x Lagrangian: L(x; y) = f(x) y T (Ax b). Lagrange dual function: d(y) = inf x domf L(x; y) = sup {y T (Ax b) f(x)} x domf = f (A T y) b T y. Lagrange dual problem (given in terms of convex conjugate f ): minimize y f (A T y) b T y or maximize b T y f (A T y). y

7 Exercise Derive a Lagrange dual problem for minimize x R n f(x) + g(ax)

8 Primal and dual subdifferentials Suppose that [y; 1] is the downward normal of the hyperplane touching epi(f) at x; therefore, y = f(x ) In general, for proper closed convex f, y f(x ). Therefore, domf = { f(x) : x domf}. Theorem (biconjugation) Let x domf and y domf. Then, y f(x) x f (y). If the relation holds, then f(x) + f (y) = y T x. The result is very useful in deriving optimality conditions.

9 Fenchel s inequality Theorem (Fenchel s inequality) For arbitrary x domf and y domf, we have f(x) + f (y) y T x. Proof. Since x is not necessarily the maximizing point for f(y) = sup x { }, we have f (y) y T x f(x).

10 Theorem If f is proper, closed, convex, then (f ) = f, i.e., f(x) = sup y domf {y T x f (y)}. Proof. Consider linear function g y,z, defined as g y,z(x) = y T x z. Step 1. (cont.) g y,z f y T x z f(x), x y T x f(x) z, x sup{y T x f(x)} z x f (y) z (y, z) epi(f )

11 Proof. Step 2. From the Hahn-Banach Separation Theorem, Step 3. sup y,z f(x) = sup{g y,z(x) : g y,z f}, x domf. y,z {g y,z (x) : g y,z f} = sup{g y,z (x) : f (y) z} by Step 1 y,z = sup{y T x z : f (y) z} y,z = sup{y T x f (y)} y = (f ) (x) Combining Steps 2 and 3, we get f = (f ).

12 Examples f(x) = ι C(x), indicator function of nonempty closed convex set C; then is the support function of C σc := f (y) = sup y T x x C Applying the theorem, we get (ι C) = ι C and (σ C) = σ C.

13 Examples f(x) = ι { 1 x 1}, indicator function of the unit hypercube; then f (y) = sup y T x = y 1 1 x 1 f(x) = ι { x 2 1}, then f(x) = 1 p x p p, 1 < p <, then f (y) = y 2 f (y) = 1 q x q q 1 p + 1 q = 1 lots of smooth examples...

14 Alternative representation Previously, we can represent f by f via f(x) = sup y domf {x T y f (y)} We can introduce a more general representation: f(x) = sup {(Ax b) T y h (y)} = h(ax b) y domh so that h might be simpler than f (or h is simpler than f) in form.

15 Example f(x) = x 1 Let C = {y = [y 1; y 2] : y 1 + y 2 = 1, y 1, y 2 0} and [ ] 1 A =. 1 We have x 1 = sup y {(y 1 y 2) T x ι C(y)} = sup{y T Ax ι C(y)}. Since ι C([x 1; x 2]) = 1 T (max{x 1, x 2}), where max is taken entry-wise, and we have sup {(Ax b) T y h (y)} = h(ax b) y domh x 1 = ι C(Ax) = 1 T (max{x, x}). y

16 Application: dual smoothing Idea: strongly convexify h = f becomes Lipschitz-differentiable Suppose that f is represented in terms of h as f(x) = sup {y T (Ax b) h (y)} y domh Let us strongly convexify h by adding strongly convex function d: (a simple choice is d(y) = 1 2 y 2 ) ĥ (y) = h (y) + μd(y) Obtain a Lipschitz-differentiable approximation: f μ(x) = sup {y T (Ax b) ĥ (y)} y domh f μ(x) is differentiable since h (y) + μd(y) is strongly convex.

17 Example: augmented l 1 primal problem: min{ x 1 : Ax = b} dual problem: max{b T y + ι [ 1,1] n(a T y)} f(y) = ι [ 1,1] n(y) is non-differentiable plan: strongly convexify the primal so that dual becomes smooth and can be quickly solved let f (x) = x 1 and f(y) = ι [ 1,1] n(y) = sup x {y T x f (x)}, add μ 2 x 2 to f (x) and obtain f μ(y) = sup{y T x ( x 1 + μ x 2 x 2 2)} = 1 2μ y Proj [ 1,1] n(y) 2 2 f μ(y) is differentiable; f μ(y) = 1 μ shrink(y). On the other hand, we can also directly smooth f (x) = x 1 and obtain differentiable f μ(x) by adding d(y) to f(y). (see the next slide...)

18 Example: smoothed absolute value Let x R. Recall f(x) = x = sup{yx ι [ 1,1] (y)} y add d(y) = y 2 /2 to ι [ 1,1] (y) and obtain: f μ = sup{yx (ι [ 1,1] (y) + μy 2 /2)} = y which is the Huber function. { x 2 /(2μ), x μ, x μ/2, x > μ, If x μ, the maximizing y stays within [ 1, 1] even if ι [ 1,1] (y) vanishes, so it leaves with μy 2 /2 only. If x > μ, the maximizing y occurs at ±1, so μy 2 /2 = μ/2. The Huber function is used in robust least squares.

19 add d(y) = 1 1 y 2, which is well defined and strongly convex in [ 1, 1]: fμ = sup{yx (ι [ 1,1] (y) μ 1 y 2 )} μ = x 2 + μ 2 μ, y which is used in reweighted least-squares methods Recall for C = {y : y 1 + y 2 = 1, y 1, y 2 0}. x = sup{(y 1 y 2 )x ι C (y)} y Add negative entropy d(y) = y 1 log y 1 + y 2 log y 2 + log 2: f μ(x) = sup y {(y 1 y 2)x (ι C(y) + μd(y))} = μ log ex/μ + e x/μ. 2

20 x log(x) 1.5 x log(x) x x log(x) is strongly convex between [0, C] for any finite C > 0

21 Compare three smoothed functions Courtesy of L. Vandenberghe

22 Example: smoothed maximum eigenvalue Let X S n. Consider f(x) = λ max(x), which is the l norm on the matrix spectrum. Recall the dual of l is l 1, and we have x = sup{x T y ι {1 T y=1,y 0}(y)} y Let C = {Y S n : try = 1, Y 0}. We have Next, strongly convexify ι C(Y): f(x) = λ max(x) = sup{y X ι C(Y)} Y

23 Negative entropy of {λ i(y)}: n d(y) = λ i(y) log λ i(y) + log n i=1 (Courtesy of L. Vandenberghe) Smoothed function ( 1 f μ(x) = sup{y X (ι C(Y) + μd(y))} = μ log Y n n i=1 e λ i(x)/μ )

24 Application: smoothed minimization 1 Instead of solving solve min f(x), x min x f μ(x) = sup y domh { y T (Ax + b) [h (y) + μd(y)] } by gradient descent, with acceleration, line search, etc... 1?

25 Since h (y) + μd(y) is strongly convex, f μ(x) is given by: f μ(x) = A T ȳ, where ȳ = arg max y domh {y T (Ax + b) [h (y) + μd(y)]}. Theorem If d(y) is strongly convex with modulus ν > 0, then h (y) + μd(y) is strongly convex with modulus at least μν f μ(x) is Lipschitz continuous with constant no more than A 2 /μν.

26 Nonsmooth optimization Examples: min Ax b 1 min TV(x) s.t. Ax b 2 σ Worst-case complexity for ɛ-approximation: If f is convex and f is L-Lipschitz, accelerated gradient method takes O( L/ɛ) iterations. If f is convex and nonsmooth, f is G-Lipschitz, subgradient method takes O(G 2 /ɛ 2 ) iterations. Smooth optimization has much better complexities.

27 Nesterov s complexity analysis 1. Construct smooth approximate satisfying f μ f f μ + μd and consequently f(x) f f μ (x) fμ + μd 2. Choose μ such that μd ɛ/2 = 1 μ 2D ɛ 3. Minimize f μ such that f μ (x) f μ ɛ/2 Step 3 has complexity 1 D O( μɛ ) = O( ɛ ), which can be much better than the subgradient method s O(G 2 /ɛ 2 ).

28 Theorem Consider h(x) = h μ(x) = sup y T x h (y), y domh sup y T x (h (y) + μd(y)), y domh where d(y) 0 is strongly convex with modulus ν > 0. Then, 1. h μ is (μν) 1 -Lipschitz; 2. if d(y) D for y domh, then h μ(x) h(x) h μ(x) + μd, x domh.

29 Example: Huber function Recall h μ(x) = sup{yx (ι [ 1,1] (y) + μy 2 /2)} = y { x 2 /(2μ), x μ, x μ/2, x > μ, We have and h μ(x) x h μ(x) + μ/2 h μ(x) = { x/μ, x μ, sign(x), x > μ, which is Lipschitz with constant μ 1. Apply to l 1-norm: h μ(x i) x 1 h μ(x i) + nμ/2. i i

30 Robust least squares Consider min x f(x) = Ax b 1 Representation where C = {y : y 1}. x 1 = sup{y T (Ax b) ι C(y)} y Add μd(y) = μ 2 y 2 2 to ι C(y) and obtain min x f μ(x) = m h μ(ai T x b i). i=1

31 Other examples and questions Total variation / analysis l 1 minimization examples Nuclear norm examples More other one nonsmooth terms... Stopping criteria

Sparse Optimization Lecture: Dual Methods, Part I

Sparse Optimization Lecture: Dual Methods, Part I Sparse Optimization Lecture: Dual Methods, Part I Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know dual (sub)gradient iteration augmented l 1 iteration

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

Lecture: Smoothing.

Lecture: Smoothing. Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 20 Subgradients Assumptions

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

Math 273a: Optimization Lagrange Duality

Math 273a: Optimization Lagrange Duality Math 273a: Optimization Lagrange Duality Instructor: Wotao Yin Department of Mathematics, UCLA Winter 2015 online discussions on piazza.com Gradient descent / forward Euler assume function f is proper

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

Convergence of Fixed-Point Iterations

Convergence of Fixed-Point Iterations Convergence of Fixed-Point Iterations Instructor: Wotao Yin (UCLA Math) July 2016 1 / 30 Why study fixed-point iterations? Abstract many existing algorithms in optimization, numerical linear algebra, and

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

BASICS OF CONVEX ANALYSIS

BASICS OF CONVEX ANALYSIS BASICS OF CONVEX ANALYSIS MARKUS GRASMAIR 1. Main Definitions We start with providing the central definitions of convex functions and convex sets. Definition 1. A function f : R n R + } is called convex,

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

LECTURE 12 LECTURE OUTLINE. Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions

LECTURE 12 LECTURE OUTLINE. Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions LECTURE 12 LECTURE OUTLINE Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions Reading: Section 5.4 All figures are courtesy of Athena

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

5. Subgradient method

5. Subgradient method L. Vandenberghe EE236C (Spring 2016) 5. Subgradient method subgradient method convergence analysis optimal step size when f is known alternating projections optimality 5-1 Subgradient method to minimize

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Coordinate Update Algorithm Short Course Operator Splitting

Coordinate Update Algorithm Short Course Operator Splitting Coordinate Update Algorithm Short Course Operator Splitting Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 25 Operator splitting pipeline 1. Formulate a problem as 0 A(x) + B(x) with monotone operators

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Smoothing Proximal Gradient Method. General Structured Sparse Regression

Smoothing Proximal Gradient Method. General Structured Sparse Regression for General Structured Sparse Regression Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, Eric P. Xing (Annals of Applied Statistics, 2012) Gatsby Unit, Tea Talk October 25, 2013 Outline Motivation:

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Extended Monotropic Programming and Duality 1

Extended Monotropic Programming and Duality 1 March 2006 (Revised February 2010) Report LIDS - 2692 Extended Monotropic Programming and Duality 1 by Dimitri P. Bertsekas 2 Abstract We consider the problem minimize f i (x i ) subject to x S, where

More information

Convex Optimization Conjugate, Subdifferential, Proximation

Convex Optimization Conjugate, Subdifferential, Proximation 1 Lecture Notes, HCI, 3.11.211 Chapter 6 Convex Optimization Conjugate, Subdifferential, Proximation Bastian Goldlücke Computer Vision Group Technical University of Munich 2 Bastian Goldlücke Overview

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Dual Decomposition.

Dual Decomposition. 1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE Convex Analysis Notes Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE These are notes from ORIE 6328, Convex Analysis, as taught by Prof. Adrian Lewis at Cornell University in the

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

ALGORITHMS FOR MINIMIZING DIFFERENCES OF CONVEX FUNCTIONS AND APPLICATIONS

ALGORITHMS FOR MINIMIZING DIFFERENCES OF CONVEX FUNCTIONS AND APPLICATIONS ALGORITHMS FOR MINIMIZING DIFFERENCES OF CONVEX FUNCTIONS AND APPLICATIONS Mau Nam Nguyen (joint work with D. Giles and R. B. Rector) Fariborz Maseeh Department of Mathematics and Statistics Portland State

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

Convex Analysis Background

Convex Analysis Background Convex Analysis Background John C. Duchi Stanford University Park City Mathematics Institute 206 Abstract In this set of notes, we will outline several standard facts from convex analysis, the study of

More information

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples Agenda Fast proximal gradient methods 1 Accelerated first-order methods 2 Auxiliary sequences 3 Convergence analysis 4 Numerical examples 5 Optimality of Nesterov s scheme Last time Proximal gradient method

More information

Convex functions, subdifferentials, and the L.a.s.s.o.

Convex functions, subdifferentials, and the L.a.s.s.o. Convex functions, subdifferentials, and the L.a.s.s.o. MATH 697 AM:ST September 26, 2017 Warmup Let us consider the absolute value function in R p u(x) = (x, x) = x 2 1 +... + x2 p Evidently, u is differentiable

More information

Epiconvergence and ε-subgradients of Convex Functions

Epiconvergence and ε-subgradients of Convex Functions Journal of Convex Analysis Volume 1 (1994), No.1, 87 100 Epiconvergence and ε-subgradients of Convex Functions Andrei Verona Department of Mathematics, California State University Los Angeles, CA 90032,

More information

Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by

Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by Duality (Continued) Recall, the general primal problem is min f ( x), xx g( x) 0 n m where X R, f : X R, g : XR ( X). he Lagrangian is a function L: XR R m defined by L( xλ, ) f ( x) λ g( x) Duality (Continued)

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE LECTURE 10 LECTURE OUTLINE Min Common/Max Crossing Th. III Nonlinear Farkas Lemma/Linear Constraints Linear Programming Duality Convex Programming Duality Optimality Conditions Reading: Sections 4.5, 5.1,5.2,

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem 1 Conve Analsis Main references: Vandenberghe UCLA): EECS236C - Optimiation methods for large scale sstems, http://www.seas.ucla.edu/ vandenbe/ee236c.html Parikh and Bod, Proimal algorithms, slides and

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

Convex Analysis and Optimization Chapter 4 Solutions

Convex Analysis and Optimization Chapter 4 Solutions Convex Analysis and Optimization Chapter 4 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Accelerated Proximal Gradient Methods for Convex Optimization

Accelerated Proximal Gradient Methods for Convex Optimization Accelerated Proximal Gradient Methods for Convex Optimization Paul Tseng Mathematics, University of Washington Seattle MOPTA, University of Guelph August 18, 2008 ACCELERATED PROXIMAL GRADIENT METHODS

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Subgradient Descent. David S. Rosenberg. New York University. February 7, 2018

Subgradient Descent. David S. Rosenberg. New York University. February 7, 2018 Subgradient Descent David S. Rosenberg New York University February 7, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 7, 2018 1 / 43 Contents 1 Motivation and Review:

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Additional Homework Problems

Additional Homework Problems Additional Homework Problems Robert M. Freund April, 2004 2004 Massachusetts Institute of Technology. 1 2 1 Exercises 1. Let IR n + denote the nonnegative orthant, namely IR + n = {x IR n x j ( ) 0,j =1,...,n}.

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Math 273a: Optimization Overview of First-Order Optimization Algorithms

Math 273a: Optimization Overview of First-Order Optimization Algorithms Math 273a: Optimization Overview of First-Order Optimization Algorithms Wotao Yin Department of Mathematics, UCLA online discussions on piazza.com 1 / 9 Typical flow of numerical optimization Optimization

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints By I. Necoara, Y. Nesterov, and F. Glineur Lijun Xu Optimization Group Meeting November 27, 2012 Outline

More information

GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, Dedicated to Franco Giannessi and Diethard Pallaschke with great respect

GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, Dedicated to Franco Giannessi and Diethard Pallaschke with great respect GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, 2018 BORIS S. MORDUKHOVICH 1 and NGUYEN MAU NAM 2 Dedicated to Franco Giannessi and Diethard Pallaschke with great respect Abstract. In

More information

QUADRATIC MAJORIZATION 1. INTRODUCTION

QUADRATIC MAJORIZATION 1. INTRODUCTION QUADRATIC MAJORIZATION JAN DE LEEUW 1. INTRODUCTION Majorization methods are used extensively to solve complicated multivariate optimizaton problems. We refer to de Leeuw [1994]; Heiser [1995]; Lange et

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs)

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs) ORF 523 Lecture 8 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. 1 Outline Convexity-preserving operations Convex envelopes, cardinality

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

A Tutorial on Primal-Dual Algorithm

A Tutorial on Primal-Dual Algorithm A Tutorial on Primal-Dual Algorithm Shenlong Wang University of Toronto March 31, 2016 1 / 34 Energy minimization MAP Inference for MRFs Typical energies consist of a regularization term and a data term.

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

Convex Optimization Theory. Athena Scientific, Supplementary Chapter 6 on Convex Optimization Algorithms

Convex Optimization Theory. Athena Scientific, Supplementary Chapter 6 on Convex Optimization Algorithms Convex Optimization Theory Athena Scientific, 2009 by Dimitri P. Bertsekas Massachusetts Institute of Technology Supplementary Chapter 6 on Convex Optimization Algorithms This chapter aims to supplement

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

MATH 680 Fall November 27, Homework 3

MATH 680 Fall November 27, Homework 3 MATH 680 Fall 208 November 27, 208 Homework 3 This homework is due on December 9 at :59pm. Provide both pdf, R files. Make an individual R file with proper comments for each sub-problem. Subgradients and

More information

On the acceleration of the double smoothing technique for unconstrained convex optimization problems

On the acceleration of the double smoothing technique for unconstrained convex optimization problems On the acceleration of the double smoothing technique for unconstrained convex optimization problems Radu Ioan Boţ Christopher Hendrich October 10, 01 Abstract. In this article we investigate the possibilities

More information

Convex Duality and Financial Mathematics

Convex Duality and Financial Mathematics Peter Carr and Qiji Jim Zhu Convex Duality and Financial Mathematics September 14, 2016 Contents 1 Convex Duality............................................ 3 1.1 Convex Functions and Sets...............................

More information