The proximal mapping

Size: px
Start display at page:

Download "The proximal mapping"

Transcription

1 The proximal mapping Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes

2 Outline 2/37 1 closed function 2 Conjugate function 3 Proximal Mapping

3 Closed set 3/37 a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve closedness the intersection of (finitely or infinitely many) closed sets is closed the union of a finite number of closed sets is closed inverse under linear mapping: {x Ax C} is closed if C is closed

4 4/37 Image under linear mapping the image of a closed set under a linear mapping is not necessarily closed example(c is closed, AC = {Ax x C} is open): C = {(x 1, x 2 ) R 2 + x 1 x 2 1}, A = [ 1 0 ], AC = R ++ sufficient condition: AC is closed if C is closed and convex and C does not have a recession direction in the nullspace of A. i.e., Ay = 0, ˆx C, ˆx + αy C α 0 = y = 0 in particular, this holds for any A if C is bounded

5 5/37 Closed function definition: a function is closed if its epigraph is a closed set examples f (x) = log(1 x 2 ) with dom f = {x x < 1} f (x) = x log x with dom f = R + and f (0) = 0 indicator function of a closed set C: f (x) = 0 if x C = dom f not closed f (x) = x log x with dom f = R ++ or dom f = R + and f (0) = 1 indicator function of a set C if C is not closed

6 Properties sublevel sets: f is closed if and only if all its sublevel sets are closed minimum: if f is closed with bounded sublevel sets then it has a minimizer Weierstrass Suppose that the set D E (a finite dimensional vector space over R n ) is nonempty and closed, and that all sublevel sets of the continuous function f : D R are bounded. Then f has a global minimizer. common operations on convex functions that preserve closedness sum: f + g is closed if f and g are closed (and dom f dom g ) composition with affine mapping: f (Ax + b) is closed if f is closed supremum: sup α f α (x) is closed if each function f α is closed 6/37

7 Outline 7/37 1 closed function 2 Conjugate function 3 Proximal Mapping

8 Conjugate function 8/37 the conjugate of a function f is f (y) = sup (y T x f (x)) x dom f f is closed and convex even if f is not Fenchel s s inequality f (x) + f (y) x T y x, y (extends inequality x T x/2 + y T y/2 x T y to non-quadratic convex f )

9 Quadratic function 9/37 f (x) = 1 2 xt Ax + b T x + c strictly convex case (A 0) f (y) = 1 2 (y b)t A 1 (y b) c general convex case (A 0) f (y) = 1 2 (y b)t A (y b) c, dom f = range(a) + b

10 Negative entropy and negative logarithm 10/37 negative entropy f (x) = negative logarithm n x i log x i f (y) = n i=1 i=1 e y i 1 n f (x) = log x i i=1 n f (y) = log( y i ) n i=1 matrix logarithm f (x) = log det X (dom f = S n ++) f (Y) = log det( Y) n

11 Indicator function and norm 11/37 indicator of convex set C: conjugate is support function of C { 0, x C f (x) = +, x C f (y) = sup y T x x C norm: conjugate is indicator of unit dual norm ball { f (x) = x f 0, y 1 (y) = +, y > 1 (see next page)

12 12/37 proof: recall the definition of dual norm: y = sup x T y x 1 to evaluate f (y) = sup x (y T x x ) we distinguish two cases if y 1, then (by definition of dual norm) y T x x x and equality holds if x = 0; therefore sup x (y T x x ) = 0 if y > 1, there exists an x with x 1, x T y > 1; then f (y) y T (tx) tx = t(y T x x ) and r.h.s. goes to infinity if t

13 The second conjugate 13/37 f (x) = sup (x T y f (y)) y dom f f (x) is closed and convex from Fenchel s inequality x T y f (y) f (x) for all y and x): f f (x) x equivalently, epi f epi f (for any f ) if f is closed and convex, then f (x) = f (x) x equivalently, epi f = epi f (if f is closed convex); proof on next page

14 proof (f = f if f is closed and convex): by contradiction suppose (x, f (x)) epi f ; then there is a strict separating hyperplane: [ a b ] T [ z x s f (x) ] c 0 (z, s) epi f for some a, b, c with b 0 (b > 0 gives a contradiction as s ) if b < 0, define y = a/( b) and maximize l.h.s. over (z, s) epi f : f (y) y T x + f (x) c/( b) < 0 this contradicts Fenchel s inequality if b = 0, choose ŷ dom f and add small multiple of (ŷ, 1) to (a, b): [ ] T [ ] a + ɛŷ z x ɛ s f c + ɛ(f (ŷ) x T ŷ + f (x)) < 0 (x) now apply the argument for b < 0 14/37

15 Conjugates and subgradients 15/37 if f is closed and convex, then y f (x) x f (y) x T y = f (x) + f (y) proof: if y f (x), then f (y) = sup u (y T u f (u)) = y T x f (x) f (v) = sup(v T u f (u) u v T x f (x) = x T (v y) f (x) + y T x = f (y) + x T (v y) (1) for all v; therefore, x is a subgradient of f at y (x f (y)) reverse implication x f (y) y f (x) follows from f = f

16 Some calculus rules 16/37 separable sum f (x 1, x 2 ) = g(x 1 ) + h(x 2 ) f (y 1, y 2 ) = g (y 1 ) + h (y 2 ) scalar multiplication: (for α > 0) f (x) = αg(x) f (y) = αg (y/α) addition to affine function f (x) = g(x) + a T x + b f (y) = g (y a) b infimal convolution f (x) = inf (g(u) + h(v)) f u+v=x (y) = g (y) + h (y)

17 Outline 17/37 1 closed function 2 Conjugate function 3 Proximal Mapping

18 Proximal mapping 18/37 ( prox f (x) = argmin f (u) + 1 ) u 2 u x 2 2 if f is closed and convex then prox f (x) exists and is unique for all x existence: f (u) + (1/2) u x 2 2 is closed with bounded sublevel sets uniqueness: f (u) + (1/2) u x 2 2 is strictly (in fact, strongly) convex subgradient characterization u = prox f (x) x u f (u) we are interested in functions f for which prox tf is inexpensive

19 Examples 19/37 quadratic function (A 0) f (x) = 1 2 xt Ax + b T x + c, prox t f (x) = (I + ta) 1 (x tb) Euclidean norm: f (x) = x 2 f (x) = { (1 t/ x 2 )x x 2 t 0 otherwise logarithmic barrier f (x) = n i=1 log x i, prox t f (x) i = x i + xi 2 + 4t, i = 1,..., n 2

20 Some simple calculus rules 20/37 separable sum f ([ ]) ([ ]) x x = g(x) + h(y), prox y f = y [ ] proxg (x) prox h (y) scaling and translation of argument : with λ 0 f (x) = g(λx + a), prox f (x) = 1 λ (prox λ 2 g (λx + a) a) scaling and translation of argument : with λ > 0 f (x) = λg(x/λ), prox f = λprox λ 1 g (x/λ)

21 Addition to linear or quadratic function 21/37 linear function f (x) = g(x) + a T x, prox f = prox g (x a) quadratic function: with u > 0 f (x) = g(x) + u 2 x a 2 2, prox f (x) = prox θg (θx + (1 θ)a), where θ = 1/(1 + u)

22 22/37 Moreau decomposition x = prox f (x) + prox f (x) x follows from properties of conjugates and subgradients: u = prox f (x) x u f (u) u f (x u) x u = prox f (x) generalizes decomposition by orthogonal projection on subspaces: x = P L (x) + P L (x) if L is a subspace, L its orthogonal complement (this is Moreau decomposition with f = I L, f = I L )

23 Extended Moreau decomposition 23/37 for λ > 0 x = prox λf (x) + λprox λ 1 f (x/λ) x proof: apply Moreau decomposition to λf x = prox λf (x) + prox (λf ) (x) = prox λf (x) + λprox λ 1 f (x/λ) second line uses (λf ) (y) = λf (y/λ)

24 Composition with affine mapping 24/37 for general A, the prox-operator of f (x) = g(ax + b) does not follow easily from the prox-operator of g however if AA T = (1/α)I, we have prox f (x) = (I αa T A)x + αa T (prox α 1 g (Ax + b) b) example: f (x 1,..., x m ) = g(x 1 + x x m ) prox f (x 1,..., x m ) i = x i 1 m m x j prox m mg ( x j ) j=1 j=1

25 25/37 proof: u = prox f (x) is the solution of the optimization problem with variables u, y min u,y g(y) u x 2 2 s.t. Au + b = y eliminate u using the expression optimal y is minimizer of u = x + A T (AA T ) 1 (y b Ax) = (I αa T A)x + αa T (y b) g(y) + α2 2 AT (y b Ax) 2 2 = g(y) + α 2 y b Ax 2 2 solution is y = prox α 1 g(ax + b)

26 Projection on affine sets 26/37 hyperplane: C = {x a T x = b} (with a 0) P C (x) = x + b at x a 2 a 2 affine set: C = {x Ax = b} (with A R p n and rank(a) = p) P C (x) = x + A T (AA T ) 1 (b Ax) inexpensive if p n, or AA T = I,...

27 Projection on simple polyhedral sets 27/37 halfspace: C = {x a T x b}(with a 0) P C (x) = { x + b a T xa a 2 2 x rectangle: C = [l, u] = {l x u} if a T x > b if a T x b P C (x) i = l i x i u i x i l i l i x i u i x i u i nonnegative orthant: C = R n + P C (x) = x + (x + is componentwise maximum of 0 and x )

28 28/37 probability simplex: C = {x 1 T x = 1, x 0} P C (x) = (x λ1) + where λ is the solution of the equation 1 T (x λ1) + = n max{0, x k λ} = 1 i=1 probability simplex: C = {x a T x = b, l x u} P c (x) = P [l,u] (x λa) where λ is the solution of a T P [l,u] (x λa) = b

29 Projection on norm balls 29/37 Euclidean ball: C = {x x 2 1} P C (x) = 1-norm ball: C = {x x 1 1} { 1 x 2 x if x 2 > 1 x if x 2 1 x k λ, x k > λ P c (x) k = 0, λ x k λ x k + λ, x k < λ λ = 0 if x 1 1; otherwise λ is the solution of the equation n max{ x k λ, 0} = 1 k=1

30 30/37 Projection on simple cones second order cone C = {(x, t) R n 1 x 2 t} P C (x, t) = (x, t) if x 2 t, P C (x, t) = (0, 0) if x 2 t and P C (x, t) = t + x [ 2 x ] 2 x 2 x 2 if t < x 2 < t, x 0 positive semidefinite cone C = S n + P C (X) = n max{0, λ i }q i q T i if X = n i=1 λ iq i q T i is the eigenvalue decomposition of X i=1

31 Support function 31/37 conjugate of support function of closed convex set is indicator function f (x) = S C (x) = sup y C x T y, f (y) = I C (y) prox-operator of support function: apply Moreau decomposition prox t f = x tprox t 1 f (x/t) = x tp C (x/t) example: f (x) is sum of largest r components of x f (x) = x [1] + + x [r] = S C (x), C = {y 0 y 1, 1 T y = r} prox-operator of f is easily evaluated via projection on C

32 32/37 Norms conjugate of norm is indicator function of dual norm ball: f (x) = c, f (x) = I B (y) (B = {y y 1}) prox-operator of norm: apply Moreau decomposition prox t f = x tprox t 1 f (x/t) = x tp B (x/t) = x P tb (x) useful formula for prox t when projection on tb = {x x t} is cheap examples: 1, 2

33 Distance to a point 33/37 distance (in general norm) f (x) = x a prox-operator: from page 20, with g(x) = x prox t f = a + prox t g (x a) = a + x a tp B ( x a ) t = x P tb (x a) B is the unit ball for the dual norm

34 34/37 Euclidean distance to a set Euclidean distance (to a closed convex set C) d(x) = inf y C x y 2 prox-operator of distance prox td (x) = θp C (x) + (1 θ)x, θ = { t/d(x) prox-operator of squared distance: f (x) = d(x) 2 /2 prox t f = t x + t 1 + t P C(x) d(x) t 1 otherwise

35 35/37 proof (expression for prox td (x)) if u = prox td (x) / C, then from the definition and subgradient for d x u = t d(u) (u P C(u)) implies P C (u) = P C (x), d(x) t, u is convex combination of x, P C (x) if u C minimizes d(u) + (1/(2t)) u x 2 2, then u = P C(x)

36 36/37 proof (expression for prox tf (x) when f (x) = d(x) 2 /2) ( 1 prox t f (x) = arg min u 2 d(u)2 + 1 ) 2t u x 2 2 ( 1 = arg min inf u 2 u v t 2) u x 2 v C optimal u as a function of v is optimal v minimizes 1 2 u = t t + 1 v + 1 t + 1 x t t + 1 v + 1 t + 1 x v t 2 2t t + 1 v + 1 t + 1 x x Over C, i.e., v = P C (x) 2 2 = 1 2(1 + t) v x 2 2

37 Refrences 37/37 P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation (2005). P. L. Combettes and J.-Ch. Pesquet, Proximal splitting methods in signal processsing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering (2011). N. Parikh and S. Boyd, Proximal algorithms (2013).

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Dual Decomposition.

Dual Decomposition. 1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Lecture: Smoothing.

Lecture: Smoothing. Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

Proximal methods. S. Villa. October 7, 2014

Proximal methods. S. Villa. October 7, 2014 Proximal methods S. Villa October 7, 2014 1 Review of the basics Often machine learning problems require the solution of minimization problems. For instance, the ERM algorithm requires to solve a problem

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE

Convex Analysis Notes. Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE Convex Analysis Notes Lecturer: Adrian Lewis, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE These are notes from ORIE 6328, Convex Analysis, as taught by Prof. Adrian Lewis at Cornell University in the

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

Chapter 2 Convex Analysis

Chapter 2 Convex Analysis Chapter 2 Convex Analysis The theory of nonsmooth analysis is based on convex analysis. Thus, we start this chapter by giving basic concepts and results of convexity (for further readings see also [202,

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Convex Optimization Conjugate, Subdifferential, Proximation

Convex Optimization Conjugate, Subdifferential, Proximation 1 Lecture Notes, HCI, 3.11.211 Chapter 6 Convex Optimization Conjugate, Subdifferential, Proximation Bastian Goldlücke Computer Vision Group Technical University of Munich 2 Bastian Goldlücke Overview

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

POLARS AND DUAL CONES

POLARS AND DUAL CONES POLARS AND DUAL CONES VERA ROSHCHINA Abstract. The goal of this note is to remind the basic definitions of convex sets and their polars. For more details see the classic references [1, 2] and [3] for polytopes.

More information

Convex Sets. Prof. Dan A. Simovici UMB

Convex Sets. Prof. Dan A. Simovici UMB Convex Sets Prof. Dan A. Simovici UMB 1 / 57 Outline 1 Closures, Interiors, Borders of Sets in R n 2 Segments and Convex Sets 3 Properties of the Class of Convex Sets 4 Closure and Interior Points of Convex

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 1: 16th January 2019 Outline 1 / 20 Which set is different from others? Figure: Four sets 2 / 20 Which set is different from others? Figure: Four sets 3 / 20 Interior, Closure, Boundary Definition.

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

3.1 Convexity notions for functions and basic properties

3.1 Convexity notions for functions and basic properties 3.1 Convexity notions for functions and basic properties We start the chapter with the basic definition of a convex function. Definition 3.1.1 (Convex function) A function f : E R is said to be convex

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 5: Convex II 6th February 2019 Convex Local Lipschitz Outline Local Lipschitz 1 / 23 Convex Local Lipschitz Convex Function: f : R n R is convex if dom(f ) is convex and for any λ [0, 1], x, y

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06

A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 CHRISTIAN LÉONARD Contents Preliminaries 1 1. Convexity without topology 1 2. Convexity

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

LECTURE SLIDES ON BASED ON CLASS LECTURES AT THE CAMBRIDGE, MASS FALL 2007 BY DIMITRI P. BERTSEKAS.

LECTURE SLIDES ON BASED ON CLASS LECTURES AT THE CAMBRIDGE, MASS FALL 2007 BY DIMITRI P. BERTSEKAS. LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON 6.253 CLASS LECTURES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS FALL 2007 BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html

More information

Dedicated to Michel Théra in honor of his 70th birthday

Dedicated to Michel Théra in honor of his 70th birthday VARIATIONAL GEOMETRIC APPROACH TO GENERALIZED DIFFERENTIAL AND CONJUGATE CALCULI IN CONVEX ANALYSIS B. S. MORDUKHOVICH 1, N. M. NAM 2, R. B. RECTOR 3 and T. TRAN 4. Dedicated to Michel Théra in honor of

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, Dedicated to Franco Giannessi and Diethard Pallaschke with great respect

GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, Dedicated to Franco Giannessi and Diethard Pallaschke with great respect GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, 2018 BORIS S. MORDUKHOVICH 1 and NGUYEN MAU NAM 2 Dedicated to Franco Giannessi and Diethard Pallaschke with great respect Abstract. In

More information

Helly's Theorem and its Equivalences via Convex Analysis

Helly's Theorem and its Equivalences via Convex Analysis Portland State University PDXScholar University Honors Theses University Honors College 2014 Helly's Theorem and its Equivalences via Convex Analysis Adam Robinson Portland State University Let us know

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

EE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term

EE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko JPL Third Term 2011-2012 Due on Thursday May 3 in class. Homework Set #4 1. (10 points) (Adapted

More information

1 Review of last lecture and introduction

1 Review of last lecture and introduction Semidefinite Programming Lecture 10 OR 637 Spring 2008 April 16, 2008 (Wednesday) Instructor: Michael Jeremy Todd Scribe: Yogeshwer (Yogi) Sharma 1 Review of last lecture and introduction Let us first

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008 Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plus-properties and F-uniqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FP-I book:

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu February

More information

Optimality Conditions for Nonsmooth Convex Optimization

Optimality Conditions for Nonsmooth Convex Optimization Optimality Conditions for Nonsmooth Convex Optimization Sangkyun Lee Oct 22, 2014 Let us consider a convex function f : R n R, where R is the extended real field, R := R {, + }, which is proper (f never

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Optimization Theory. A Concise Introduction. Jiongmin Yong

Optimization Theory. A Concise Introduction. Jiongmin Yong October 11, 017 16:5 ws-book9x6 Book Title Optimization Theory 017-08-Lecture Notes page 1 1 Optimization Theory A Concise Introduction Jiongmin Yong Optimization Theory 017-08-Lecture Notes page Optimization

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2009 Copyright 2009 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1 L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones definition spectral decomposition quadratic representation log-det barrier 18-1 Introduction This lecture: theoretical properties of the following

More information

BASICS OF CONVEX ANALYSIS

BASICS OF CONVEX ANALYSIS BASICS OF CONVEX ANALYSIS MARKUS GRASMAIR 1. Main Definitions We start with providing the central definitions of convex functions and convex sets. Definition 1. A function f : R n R + } is called convex,

More information

Linear Programming. Larry Blume Cornell University, IHS Vienna and SFI. Summer 2016

Linear Programming. Larry Blume Cornell University, IHS Vienna and SFI. Summer 2016 Linear Programming Larry Blume Cornell University, IHS Vienna and SFI Summer 2016 These notes derive basic results in finite-dimensional linear programming using tools of convex analysis. Most sources

More information

Lecture 1: Convex Sets January 23

Lecture 1: Convex Sets January 23 IE 521: Convex Optimization Instructor: Niao He Lecture 1: Convex Sets January 23 Spring 2017, UIUC Scribe: Niao He Courtesy warning: These notes do not necessarily cover everything discussed in the class.

More information

LECTURE 12 LECTURE OUTLINE. Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions

LECTURE 12 LECTURE OUTLINE. Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions LECTURE 12 LECTURE OUTLINE Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions Reading: Section 5.4 All figures are courtesy of Athena

More information

Convex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y)

Convex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y) Convex functions I basic properties and I operations that preserve convexity I quasiconvex functions I log-concave and log-convex functions IOE 611: Nonlinear Programming, Fall 2017 3. Convex functions

More information

Strongly convex functions, Moreau envelopes and the generic nature of convex functions with strong minimizers

Strongly convex functions, Moreau envelopes and the generic nature of convex functions with strong minimizers University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part B Faculty of Engineering and Information Sciences 206 Strongly convex functions, Moreau envelopes

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

LECTURE SLIDES ON CONVEX OPTIMIZATION AND DUALITY THEORY TATA INSTITUTE FOR FUNDAMENTAL RESEARCH MUMBAI, INDIA JANUARY 2009 PART I

LECTURE SLIDES ON CONVEX OPTIMIZATION AND DUALITY THEORY TATA INSTITUTE FOR FUNDAMENTAL RESEARCH MUMBAI, INDIA JANUARY 2009 PART I LECTURE SLIDES ON CONVEX OPTIMIZATION AND DUALITY THEORY TATA INSTITUTE FOR FUNDAMENTAL RESEARCH MUMBAI, INDIA JANUARY 2009 PART I BY DIMITRI P. BERTSEKAS M.I.T. http://web.mit.edu/dimitrib/www/home.html

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2010 Copyright 2010 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Convex Analysis and Optimization Chapter 2 Solutions

Convex Analysis and Optimization Chapter 2 Solutions Convex Analysis and Optimization Chapter 2 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Supplement A: Mathematical background A.1 Extended real numbers The extended real number

More information

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Here we consider systems of linear constraints, consisting of equations or inequalities or both. A feasible solution

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 4. Suvrit Sra. (Conjugates, subdifferentials) 31 Jan, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 4. Suvrit Sra. (Conjugates, subdifferentials) 31 Jan, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 4 (Conjugates, subdifferentials) 31 Jan, 2013 Suvrit Sra Organizational HW1 due: 14th Feb 2013 in class. Please L A TEX your solutions (contact TA if this

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Math 273a: Optimization Convex Conjugacy

Math 273a: Optimization Convex Conjugacy Math 273a: Optimization Convex Conjugacy Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Convex conjugate (the Legendre transform) Let f be a closed proper

More information

Convex Analysis Background

Convex Analysis Background Convex Analysis Background John C. Duchi Stanford University Park City Mathematics Institute 206 Abstract In this set of notes, we will outline several standard facts from convex analysis, the study of

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Introduction to Convex and Quasiconvex Analysis

Introduction to Convex and Quasiconvex Analysis Introduction to Convex and Quasiconvex Analysis J.B.G.Frenk Econometric Institute, Erasmus University, Rotterdam G.Kassay Faculty of Mathematics, Babes Bolyai University, Cluj August 27, 2001 Abstract

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON LECTURES GIVEN AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS

LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON LECTURES GIVEN AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON LECTURES GIVEN AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

A Dykstra-like algorithm for two monotone operators

A Dykstra-like algorithm for two monotone operators A Dykstra-like algorithm for two monotone operators Heinz H. Bauschke and Patrick L. Combettes Abstract Dykstra s algorithm employs the projectors onto two closed convex sets in a Hilbert space to construct

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information