Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)


 Terence Tate
 1 years ago
 Views:
Transcription
1 Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC Convex Optimization Fall , HKUST, Hong Kong
2 Outline of Lecture Definition convex function Examples on R, R n, and R n n Restriction of a convex function to a line First and secondorder conditions Operations that preserve convexity Quasiconvexity, logconvexity, and convexity w.r.t. inequalities generalized (Acknowledgement to Stephen Boyd for material for this lecture.) Daniel P. Palomar 1
3 Definition of Convex Function A function f : R n R is said to be convex if the domain, dom f, is convex and for any x, y dom f and 0 θ 1, f (θx + (1 θ) y) θf (x) + (1 θ) f (y). f is strictly convex if the inequality is strict for 0 < θ < 1. f is concave if f is convex. Daniel P. Palomar 2
4 Convex functions: affine: ax + b on R Examples on R powers of absolute value: x p on R, for p 1 (e.g., x ) powers: x p on R ++, for p 1 or p 0 (e.g., x 2 ) exponential: e ax on R negative entropy: x log x on R ++ Concave functions: affine: ax + b on R powers: x p on R ++, for 0 p 1 logarithm: log x on R ++ Daniel P. Palomar 3
5 Examples on R n Affine functions f (x) = a T x + b are convex and concave on R n. Norms x are convex on R n (e.g., x, x 1, x 2 ). Quadratic functions f (x) = x T P x + 2q T x + r are convex R n if and only if P 0. The geometric mean f (x) = ( n i=1 x i) 1/n is concave on R n ++. The logsumexp f (x) = log i ex i used to approximate max x i). i=1,...,n is convex on R n (it can be Quadratic over linear: f (x, y) = x 2 /y is convex on R n R ++. Daniel P. Palomar 4
6 Affine functions: (prove it!) Examples on R n n f (X) = Tr (AX) + b are convex and concave on R n n. Logarithmic determinant function: (prove it!) f (X) = logdet (X) is concave on S n = {X R n n X 0}. Maximum eigenvalue function: (prove it!) is convex on S n. f (X) = λ max (X) = sup y 0 y T Xy y T y Daniel P. Palomar 5
7 Epigraph The epigraph of f if the set epi f = { (x, t) R n+1 x dom f, f (x) t }. Relation between convexity in sets and convexity in functions: f is convex epi f is convex Daniel P. Palomar 6
8 Restriction of a Convex Function to a Line f : R n R is convex if and only if the function g : R R g (t) = f (x + tv), dom g = {t x + tv dom f} is convex for any x dom f, v R n. In words: a function is convex if and only if it is convex when restricted to an arbitrary line. Implication: we can check convexity of f by checking convexity of functions of one variable! Example: concavity of logdet (X) follows from concavity of log (x). Daniel P. Palomar 7
9 Example: concavity of logdet (X) : g (t) = logdet (X + tv ) = logdet (X) + logdet (I + tx 1/2 V X 1/2) = logdet (X) + n i=1 log (1 + tλ i ) where λ i s are the eigenvalues of X 1/2 V X 1/2. The function g is concave in t for any choice of X 0 and V ; therefore, f is concave. Daniel P. Palomar 8
10 First and Second Order Condition Gradient (for differentiable f): f (x) = [ f(x) x 1 f(x) x n ] T R n. Hessian (for twice differentiable f): ( 2 2 ) f (x) f (x) = x i x j ij R n n. Taylor series: f (x + δ) = f (x) + f (x) T δ δt 2 f (x) δ + o ( δ 2). Daniel P. Palomar 9
11 Firstorder condition: convex if and only if a differentiable f with convex domain is f (y) f (x) + f (x) T (y x) x, y dom f Interpretation: firstorder approximation if a global underestimator. Secondorder condition: a twice differentiable f with convex domain is convex if and only if 2 f (x) 0 x dom f Daniel P. Palomar 10
12 Examples Quadratic function: f (x) = (1/2) x T P x + q T x + r (with P S n ) f (x) = P x + q, 2 f (x) = P is convex if P 0. Leastsquares objective: f (x) = Ax b 2 2 f (x) = 2A T (Ax b), 2 f (x) = 2A T A is convex. Daniel P. Palomar 11
13 Quadraticoverlinear: f (x, y) = x 2 /y is convex for y > 0. 2 f (x, y) = 2 y 3 [ y x ] [ y x ] 0 Daniel P. Palomar 12
14 Operations that Preserve Convexity How do we establish the convexity of a given function? 1. Applying the definition. 2. With first or secondorder conditions. 3. By restricting to a line. 4. Showing that the functions can be obtained from simple functions by operations that preserve convexity: nonnegative weighted sum composition with affine function (and other compositions) pointwise maximum and supremum, minimization perspective Daniel P. Palomar 13
15 Nonnegative weighted sum: if f 1, f 2 are convex, then α 1 f 1 +α 2 f 2 is convex, with α 1, α 2 0. Composition with affine functions: if f is convex, then f (Ax + b) is convex (e.g., y Ax is convex, logdet ( I + HXH T ) is concave). Pointwise maximum: if f 1,..., f m are convex, then f (x) = max {f 1,..., f m } is convex. Example: sum of r largest components of x R n : f (x) = x [1] + x [2] + + x [r] where x [i] is the ith largest component of x. Proof: f (x) = max {x i1 + x i2 + + x ir 1 i 1 < i 2 < < i r n}. Daniel P. Palomar 14
16 Pointwise supremum: if f (x, y) is convex in x for each y A, then g (x) = sup f (x, y) y A is convex. Example: distance to farthest point in a set C: f (x) = sup y C x y. Example: maximum eigenvalue of symmetric matrix: for X S n, λ max (X) = sup y 0 y T Xy y T y. Daniel P. Palomar 15
17 Composition with scalar functions: let g : R n R and h : R R, then the function f (x) = h (g (x)) satisfies: f (x) is convex if g convex, h convex nondecreasing g concave, h convex nonincreasing Minimization: if f (x, y) is convex in (x, y) and C is a convex set, then g (x) = inf f (x, y) y C is convex (e.g., distance to a convex set). Example: distance to a set C: is convex if C is convex. f (x) = inf y C x y Daniel P. Palomar 16
18 Perspective: if f (x) is convex, then its perspective g (x, t) = tf (x/t), dom g = { (x, t) R n+1 x/t dom f, t > 0 } is convex. Example: f (x) = x T x is convex; hence g (x, t) = x T x/t is convex for t > 0. Example: the negative logarithm f (x) = log x is convex; hence the relative entropy function g (x, t) = t log t t log x is convex on R Daniel P. Palomar 17
19 QuasiConvexity Functions A function f : R n R is quasiconvex if dom f is convex and the sublevel sets S α = {x dom f f (x) α} are convex for all α. f is quasiconcave if f is quasiconvex. Daniel P. Palomar 18
20 Examples: x is quasiconvex on R ceil (x) = inf {z Z z x} is quasilinear log x is quasilinear on R ++ f (x 1, x 2 ) = x 1 x 2 is quasiconcave on R 2 ++ the linearfractional function is quasilinear f (x) = at x + b c T x + d, dom f = { x c T x + d > 0 } Daniel P. Palomar 19
21 LogConvexity A positive function f is logconcave is log f is concave: f (θx + (1 θ) y) f (x) θ f (y) 1 θ for 0 θ 1. f is logconvex if log f is convex. Example: x a on R ++ is logconvex for a 0 and logconcave for a 0 Example: many common probability densities are logconcave Daniel P. Palomar 20
22 Convexity w.r.t. Generalized Inequalities f : R n R m is Kconvex if dom f is convex and for any x, y dom f and 0 θ 1, f (θx + (1 θ) y) K θf (x) + (1 θ) f (y). Example: f : S m S m, f (X) = X 2 is S m +convex. Daniel P. Palomar 21
23 References Chapter 3 of Stephen Boyd and Lieven Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, boyd/cvxbook/ Daniel P. Palomar 22
3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions
3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions logconcave and logconvex functions
More information3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions
3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions logconcave and logconvex functions
More informationConvex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y)
Convex functions I basic properties and I operations that preserve convexity I quasiconvex functions I logconcave and logconvex functions IOE 611: Nonlinear Programming, Fall 2017 3. Convex functions
More informationA function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3
Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is welldefined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all
More informationConvex Functions. WingKin (Ken) Ma The Chinese University of Hong Kong (CUHK)
Convex Functions WingKin (Ken) Ma The Chinese University of Hong Kong (CUHK) Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and WingKin (Ken) Ma
More informationLecture 2: Convex functions
Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on
More informationLagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)
Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470  Convex Optimization Fall 201718, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual
More informationConstrained Optimization and Lagrangian Duality
CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may
More informationIE 521 Convex Optimization
Lecture 5: Convex II 6th February 2019 Convex Local Lipschitz Outline Local Lipschitz 1 / 23 Convex Local Lipschitz Convex Function: f : R n R is convex if dom(f ) is convex and for any λ [0, 1], x, y
More informationConve functions 2{2 Conve functions f : R n! R is conve if dom f is conve and y 2 dom f 2 [0 1] + f ( + (1 ; )y) f () + (1 ; )f (y) (1) f is concave i
ELECE5420 Conve functions 2{1 Lecture 2 Conve functions conve functions, epigraph simple eamples, elementary properties more eamples, more properties Jensen's inequality quasiconve, quasiconcave functions
More informationThe proximal mapping
The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt2016fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function
More information8. Conjugate functions
L. Vandenberghe EE236C (Spring 201314) 8. Conjugate functions closed functions conjugate function 81 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve
More informationExtreme Abridgment of Boyd and Vandenberghe s Convex Optimization
Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very wellwritten and a pleasure to read. The
More informationCSE4830 Kernel Methods in Machine Learning
CSE4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This
More information15. Conic optimization
L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 151 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone
More informationPrimal/Dual Decomposition Methods
Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470  Convex Optimization Fall 201819, HKUST, Hong Kong Outline of Lecture Subgradients
More informationConvex Optimization & Lagrange Duality
Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT
More informationLecture 4: Convex Functions, Part I February 1
IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything
More informationLecture 15 Newton Method and SelfConcordance. October 23, 2008
Newton Method and SelfConcordance October 23, 2008 Outline Lecture 15 Selfconcordance Notion Selfconcordant Functions Operations Preserving Selfconcordance Properties of Selfconcordant Functions Implications
More information4. Convex optimization problems
Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization
More informationCSCI : Optimization and Control of Networks. Review on Convex Optimization
CSCI7000016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one
More informationEE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term
EE 150  Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko JPL Third Term 20112012 Due on Thursday May 3 in class. Homework Set #4 1. (10 points) (Adapted
More informationA Brief Review on Convex Optimization
A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review
More informationConvex Optimization. Convex Analysis  Functions
Convex Optimization Convex Analsis  Functions p. 1 A function f : K R n R is convex, if K is a convex set and x, K,x, λ (,1) we have f(λx+(1 λ)) λf(x)+(1 λ)f(). (x, f(x)) (,f()) x  strictl convex,
More informationLecture: Convex Optimization Problems
1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt2015fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization
More informationSubgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus
1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality
More informationLecture 3. Optimization Problems and Iterative Algorithms
Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex
More informationIntroduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research
Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,
More informationLecture: Duality of LP, SOCP and SDP
1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:
More informationLagrangian Duality and Convex Optimization
Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DSGA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?
More information5. Duality. Lagrangian
5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized
More information1. Introduction. mathematical optimization. leastsquares and linear programming. convex optimization. example. course goals and topics
1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization leastsquares and linear programming convex optimization example course goals and topics nonlinear optimization brief history
More information1. Introduction. mathematical optimization. leastsquares and linear programming. convex optimization. example. course goals and topics
1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization leastsquares and linear programming convex optimization example course goals and topics nonlinear optimization brief history
More informationEC9A0: Presessional Advanced Mathematics Course. Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1
EC9A0: Presessional Advanced Mathematics Course Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1 1 Infimum and Supremum Definition 1. Fix a set Y R. A number α R is an upper bound of Y if
More informationConvex Functions. Pontus Giselsson
Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum
More informationIntroduction to Convex Optimization
Introduction to Convex Optimization Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470  Convex Optimization Fall 201819, HKUST, Hong Kong Outline of Lecture Optimization
More information10. Unconstrained minimization
Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method selfconcordant functions implementation
More informationConvex Functions and Optimization
Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized
More informationLecture 1: January 12
10725/36725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 1: January 12 Scribes: SeoJin Bang, Prabhat KC, Josue Orellana 1.1 Review We begin by going through some examples and key
More informationLinear and nonlinear programming
Linear and nonlinear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)
More informationConvex Optimization Problems. Prof. Daniel P. Palomar
Conve Optimization Problems Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R Portfolio Optimization with R MSc in Financial Mathematics Fall 201819, HKUST,
More information4. Convex optimization problems (part 1: general)
EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem
More informationCourse Notes for EE227C (Spring 2018): Convex Optimization and Approximation
Course Notes for EE7C (Spring 018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu February
More information4. Convex optimization problems
Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization
More informationOptimisation convexe: performance, complexité et applications.
Optimisation convexe: performance, complexité et applications. Introduction, convexité, dualité. A. d Aspremont. M2 OJME: Optimisation convexe. 1/128 Today Convex optimization: introduction Course organization
More informationEE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1
EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (proxoperator) of a convex
More informationLecture: Duality.
Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt2016fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong
More informationConvex Optimization Boyd & Vandenberghe. 5. Duality
5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized
More informationChapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44
Chapter 13 Convex and Concave Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Monotone Function Function f is called monotonically increasing, if x 1 x 2 f (x 1 ) f (x 2 ) It
More informationA : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:
15: Leastsquares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 ChihJen Lin (National
More informationN. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:
0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything
More informationConvex optimization problems. Optimization problem in standard form
Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality
More informationA : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:
15: Leastsquares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 ChihJen Lin (National
More informationThe general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.
1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,
More informationConvex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014
Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,
More informationConvex Optimization M2
Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization
More information7) Important properties of functions: homogeneity, homotheticity, convexity and quasiconvexity
30C00300 Mathematical Methods for Economists (6 cr) 7) Important properties of functions: homogeneity, homotheticity, convexity and quasiconvexity Abolfazl Keshvari Ph.D. Aalto University School of Business
More informationMonotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2
Monotone Function Function f is called monotonically increasing, if Chapter 3 x x 2 f (x ) f (x 2 ) It is called strictly monotonically increasing, if f (x 2) f (x ) Convex and Concave x < x 2 f (x )
More informationSubgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives
Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic
More informationEE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17
EE/ACM 150  Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko
More informationStatic Problem Set 2 Solutions
Static Problem Set Solutions Jonathan Kreamer July, 0 Question (i) Let g, h be two concave functions. Is f = g + h a concave function? Prove it. Yes. Proof: Consider any two points x, x and α [0, ]. Let
More information6. Proximal gradient method
L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 61 Proximal mapping
More informationL. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. logdet barrier 181
L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones definition spectral decomposition quadratic representation logdet barrier 181 Introduction This lecture: theoretical properties of the following
More informationMotivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:
CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through
More information1. Gradient method. gradient method, firstorder methods. quadratic bounds on convex functions. analysis of gradient method
L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, firstorder methods quadratic bounds on convex functions analysis of gradient method 11 Approximate course outline Firstorder
More informationLecture 2: Convex Sets and Functions
Lecture 2: Convex Sets and Functions HyangWon Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are
More informationSubgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives
Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality
More informationEE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15
EE538R: Problem Set 5 Assigned: 6/0/5 Due: 06/03/5. BV Problem 4. The feasible set is the convex hull of (0, ), (0, ), (/5, /5), (, 0) and (, 0). (a) x = (/5, /5) (b) Unbounded below (c) X opt = {(0, x
More informationDuality. Geoff Gordon & Ryan Tibshirani Optimization /
Duality Geoff Gordon & Ryan Tibshirani Optimization 10725 / 36725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider
More informationIn English, this means that if we travel on a straight line between any two points in C, then we never leave C.
Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from
More informationLecture: Smoothing.
Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt2018fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate
More informationConvex Optimization. Problem set 2. Due Monday April 26th
Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Linesearch In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining
More informationOn the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,
Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,
More information6. Proximal gradient method
L. Vandenberghe EE236C (Spring 201314) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 61 Proximal mapping
More informationLecture 1: Background on Convex Analysis
Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes
More informationUnconstrained minimization
CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method selfconcordant functions 1 Unconstrained
More informationELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications
ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March
More informationConvex Optimization and Modeling
Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.Prof. Matthias Hein Reminder from last time Convex functions: firstorder condition: f(y) f(x) + f x,y x, secondorder
More informationAgenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Secondorder cone programming (SOCP)
Agenda 1 Cone programming 2 Convex cones 3 Generalized inequalities 4 Linear programming (LP) 5 Secondorder cone programming (SOCP) 6 Semidefinite programming (SDP) 7 Examples Optimization problem in
More informationLecture 7 Monotonicity. September 21, 2008
Lecture 7 Monotonicity September 21, 2008 Outline Introduce several monotonicity properties of vector functions Are satisfied immediately by gradient maps of convex functions In a sense, role of monotonicity
More informationDefinition of convex function in a vector space
Convex functions Nonlinear optimization Instituto Superior Técnico and Carnegie Mellon University PhD course João Xavier TAs: Brian Swenson, Shanghang Zhang, Lucas Balthazar Convex functions Nonconvex
More informationLecture Note 1: Background
ECE5463: Introduction to Robotics Lecture Note 1: Background Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 1 (ECE5463 Sp18)
More informationLecture Note 5: Semidefinite Programming for Stability Analysis
ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State
More informationDual Decomposition.
1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt2017fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:
More informationShiqian Ma, MAT258A: Numerical Optimization 1. Chapter 4. Subgradient
Shiqian Ma, MAT258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian
More informationConvex Optimization in Communications and Signal Processing
Convex Optimization in Communications and Signal Processing Prof. Dr.Ing. Wolfgang Gerstacker 1 University of ErlangenNürnberg Institute for Digital Communications National Technical University of Ukraine,
More informationFast proximal gradient methods
L. Vandenberghe EE236C (Spring 201314) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient
More informationConvex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University
Convex Optimization 9. Unconstrained minimization Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 40 Outline Unconstrained minimization
More informationNonlinear Optimization for Optimal Control
Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]
More information6.254 : Game Theory with Engineering Applications Lecture 7: Supermodular Games
6.254 : Game Theory with Engineering Applications Lecture 7: Asu Ozdaglar MIT February 25, 2010 1 Introduction Outline Uniqueness of a Pure Nash Equilibrium for Continuous Games Reading: Rosen J.B., Existence
More information13. Convex programming
CS/ISyE/ECE 524 Introduction to Optimization Spring 2015 16 13. Convex programming Convex sets and functions Convex programs Hierarchy of complexity Example: geometric programming Laurent Lessard (www.laurentlessard.com)
More informationCONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets
CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES DANIEL HENDRYCKS Abstract. This paper develops the fundamentals of convex optimization and applies them to Support Vector
More informationA SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06
A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 CHRISTIAN LÉONARD Contents Preliminaries 1 1. Convexity without topology 1 2. Convexity
More informationMathematical Economics: Lecture 16
Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave
More informationCHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.
1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function
More informationExamples of Dual Spaces from Measure Theory
Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an
More informationHW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.
HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a realvalued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard
More informationLecture 8 Plus properties, merit functions and gap functions. September 28, 2008
Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plusproperties and Funiqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FPI book:
More informationLecture: Examples of LP, SOCP and SDP
1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:
More informationConvex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs)
ORF 523 Lecture 8 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. 1 Outline Convexitypreserving operations Convex envelopes, cardinality
More information