Lecture 3. Optimization Problems and Iterative Algorithms

Size: px
Start display at page:

Download "Lecture 3. Optimization Problems and Iterative Algorithms"

Transcription

1 Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns

2 Outline Special Functions: Linear, Quadratic, Convex Criteria for Convexity of a Function Operations Preserving Convexity Unconstrained Optimization First-Order Necessary Optimality Conditions Constrained Optimization First-Order Necessary Optimality Conditions KKT Conditions Iterative Algorithms Stochastic Optimization 1

3 Convex Function f is convex when dom(f) is convex set and there holds f(αx + (1 α)y) αf(x) + (1 α)f(y) for all x, y dom(f) and α [0, 1] strictly convex if the inequality is strict for all x, y dom(f) & α (0, 1) Note that dom(f) is defined as dom(f) {x : f(x) < + }. Stochastic Optimization 2

4 f (x) f (y) f (x) x y x y f is concave when f is convex f is strictly concave when f is strictly convex Stochastic Optimization 3

5 Examples of Convex/Concave Functions Examples on R Convex: Affine: ax + b over R for any a, b R Exponential: e ax over R for any a R Power: x p over (0, + ) for p 1 or p 0 Powers of absolute value: x p over R for p 1 Negative entropy: x ln x over (0, + ) Concave: Affine: ax + b over R for any a, b R Powers: x p over (0, + ) for 0 p 1 Logarithm: ln x over (0, + ) Examples on R n Affine functions are both convex and concave Norms x, x 1, x are convex Stochastic Optimization 4

6 Second-Order Conditions for Convexity Let f be twice differentiable and let dom(f) be the domain of f [In general, when differentiability is considered, it is required that dom(f) is open] The Hessian 2 f(x) is a symmetric n n matrix whose entries are the second-order partial derivatives of f at x: [ 2 f(x) ] ij = 2 f(x) x i x j for i, j = 1,..., n 2nd-order conditions: f is convex if and only if dom(f) is convex set and 2 f(x) 0 for all x dom(f) Positive semidefiniteness of a matrix: [Recall that R n n M 0 if for all x R n, x T Mx 0] f is strictly convex if dom(f) is convex set 2 f(x) 0 for all x dom(f) Positive definiteness of a matrix: [Recall that R n n M 0 if for all x R n, x T Mx > 0] Stochastic Optimization 5

7 Examples Quadratic function: f(x) = (1/2)x Qx + q x + r with a symmetric n n matrix Q f(x) = Qx + q, 2 f(x) = Q Convex for Q 0 Least-squares objective: f(x) = Ax b 2 with an m n matrix A f(x) = 2A T (Ax b), Convex for any A 2 f(x) = 2A T A Quadratic-over-linear: f(x, y) = x 2 /y Convex for y > 0 2 f(x, y) = 2 y 3 [ y x ] [ y x ] T 0 Stochastic Optimization 6

8 First-Order Condition for Convexity Let f be differentiable and let dom(f) be its domain. Then, the gradient f(x) = f(x) x 1 f(x) x 2. f(x) x n exists at each x dom(f) 1st-order condition: f is convex if and only if dom(f) is convex and f(x) + f(x) T (z x) f(z) for all x, z dom(f) Note: A first order approximation is a global underestimate of f Stochastic Optimization 7

9 Very important property used in convex optimization for algorithm designs and performance analysis Stochastic Optimization 8

10 Operations Preserving Convexity Let f and g be convex functions over R n Positive Scaling: λf is convex for λ > 0; Sum: f + g is convex; (λf)(x) = λf(x) for all x (f + g)(x) = f(x) + g(x) for all x Composition with affine function: for g affine [i.e., g(x) = Ax + b], the composition f g is convex, where (f g)(x) = f(ax + b) for all x Pointwise maximum: For convex functions f 1,..., f m, the pointwisemax function h(x) = max {f 1 (x),..., f m (x)} is convex Polyhedral function: f(x) = max i=1,...,m (a T i x + b i ) is convex Pointwise supremum: Let Y R m and f : R n R m R. Let f(x, y) be convex in x for each y Y. Then, the supremum function over the set Y h(x) = sup y Y f(x, y) is convex Stochastic Optimization 9

11 Optimization Terminology Let C R n and f : C R. Consider the following optimization problem minimize subject to f(x) x C Example: C = {x R n g(x) 0, x X} Terminology: The set C is referred to as feasible set We say that the problem is feasible when C is nonempty The problem is unconstrained when C = R n, and it is constrained otherwise We say that a vector x is optimal solution or a global minimum when x is feasible and the value f(x ) is not exceeded at any x C, i.e., x C f(x ) f(x) for all x C Stochastic Optimization 10

12 Local Minimum minimize subject to f(x) x C A vector ˆx is a local minimum for the problem if ˆx C and there is a ball B(ˆx, r) such that f(ˆx) f(x) for all x C with x ˆx r Every global minimum is also a local minimum When the set C is convex and the function f is convex then a local minimum is also global Stochastic Optimization 11

13 First-Order Necessary Optimality Condition: Unconstrained Problem Let f be a differentiable function with dom(f) = R n and let C = R n. If ˆx is a local minimum of f over R n, then the following holds: f(ˆx) = 0 The gradient relation can be equivalently given as: (y ˆx) f(ˆx) 0 for all y R n This is a variational inequality V I(K, F ) with the set K and the mapping F given by K = R n, F (x) = f(x) Solving a minimization problem can be reduced to solving a corresponding variational inequality Stochastic Optimization 12

14 First-Order Necessary Optimality Condition: Constrained Problem Let f be a differentiable function with dom(f) = R n and let C R n be a closed convex set. If ˆx is a local minimum of f over C, then the following holds: (y ˆx) f(ˆx) 0 for all y C (1) Again, this is a variational inequality V I(K, F ) with the set K and the mapping F given by K = C, F (x) = f(x) Recall that when f is convex, then a local minimum is also global When f is convex: the preceding relation is also sufficient for ˆx to be a global minimum i.e., if ˆx satisfies relation (1), then ˆx is a (global) minimum Stochastic Optimization 13

15 Equality and Inequality Constrained Problem Consider the following problem minimize f(x) subject to h 1 (x) = 0,..., h p (x) = 0 g 1 (x) 0,..., g m (x) 0 where f, h i and g j are continuously differentiable over R n. Def. For a feasible vector x, an active set of (inequality) constraints is the set given by A(x) = {j g j (x) = 0} If j A(x), we say that the j-th constraint is inactive at x Def. We say that a vector x is regular if the gradients h 1 (x),..., h p (x), and g j (x) for j A(x) are linearly independent NOTE: x is regular when there are no equality constraints, and all the inequality constrains are inactive [p = 0 and A(x) = ] Stochastic Optimization 14

16 Lagrangian Function With the problem minimize f(x) subject to h 1 (x) = 0,..., h p (x) = 0 g 1 (x) 0,..., g m (x) 0 (2) we associate the Lagrangian function L(x, λ, µ) defined by L(x, λ, µ) = f(x) + p i=1 λ i h i (x) + m j=1 µ j g j (x) where λ i R for all i, and µ j R + for all j Stochastic Optimization 15

17 First-Order Karush-Kuhn-Tucker (KKT) Necessary Conditions Th. Let ˆx be a local minimum of the equality/inequality constrained problem (2). Also, assume that ˆx is regular. Then, there exist unique multipliers ˆλ and ˆµ such that x L(ˆx, ˆλ, ˆµ) = 0 [L is the Lagrangian function] ˆµ j 0 for all j ˆµ j = 0 for all j A(ˆx) The last condition is referred to as complementarity conditions We can compactly write them as: g(ˆx) ˆµ Stochastic Optimization 16

18 In fact, the complementarity-based formulation can be used to write the first-order optimality conditions more compactly. Consider the following constrained optimization problem: minimize f(x) subject to c 1 (x) 0. c m (x) 0 0. Then, if ˆx is regular, then there exists multipliers ˆλ such that 0 ˆx x f(ˆx) x c(ˆx) Tˆλ 0 (3) 0 ˆλ c(ˆx) 0 (4) More succinctly, this is a nonlinear complementarity problem, denoted by Stochastic Optimization 17

19 CP (R m+n, F ), a problem that requires a z that satisfies 0 z F (z) 0, where z ( ) x λ and F (z) ( x f x c T λ c(x) ). Stochastic Optimization 18

20 Second-Order KKT Necessary Conditions Th. Let ˆx be a local minimum of the equality/inequality constrained problem (2). Also, assume that ˆx is regular and that f, h i, g j are twice continuously differentiable. Then, there exist unique multipliers ˆλ and ˆµ such that x L(ˆx, ˆλ, ˆµ) = 0 ˆµ j 0 for all j ˆµ j = 0 for all j A(ˆx) For any vector y such that h i (ˆx) y = 0 for all i and g j (ˆx) y = 0 for all j A(ˆx), the following relation holds: y 2 xxl(ˆx, ˆλ, ˆµ)y 0 Stochastic Optimization 19

21 Solution Procedures: Iterative Algorithms For solving problems, we will consider iterative algorithms Given an initial iterate x 0 We generate a new iterate x k+1 = G k (x k ) where G k is a mapping that depends on the optimization problem Objectives: Provide necessary conditions on the mappings G k that yield a sequence {x k } converging to a solution of the problem of interest Study how fast the sequence {x k } converges: Global convergence rate (when far from optimal points) Local convergence rate (when near an optimal point) Stochastic Optimization 20

22 Gradient Descent Method Consider continuously differentiable function f. We want to minimize f(x) over x R n Gradient descent method x k+1 = x k α k f(x k ) The scalar α k is a stepsize: α k > 0 The stepsize choices α k = α, or line search, or other stepsize rule so that f(x k+1 ) < f(x k ) Convergence Rate: Looking at the tail of an error e(x k ) = dist(x k, X ) sequence: where dist(x, A) {d(x, a) : a A}. Local convergence is at the best linear lim sup k e(x k+1 ) e(x k ) q for some q (0, 1) Stochastic Optimization 21

23 Global convergence is also at the best linear Stochastic Optimization 22

24 Newton s Method Consider twice continuously differentiable function f with Hessian 2 f(x) 0 for all x. We want to solve the following problem: minimize {f(x) : x R n } Newton s method x k+1 = x k α k 2 f(x k ) 1 f(x k ) Local Convergence Rate (near x ) f(x) converges to zero quadratically: f(x k ) C q 2k for all large enough k where C > 0 and q (0, 1) Stochastic Optimization 23

25 Penalty Methods For solving inequality constrained problems: minimize f(x) subject to g j (x) 0, j = 1,..., m Penalty Approach: Remove the constraints but penalize their violation P c : minimize F (x, c) = f(x)+cp (g 1 (x),..., g m (x)) over x R n where c > 0 is a penalty parameter and P is some penalty function Penalty methods operate in two stages for c and x, respectively Choose initial value c 0 (1) Having c k, solve the problem P ck to obtain its optimal x (c k ) (2) Using x (c k ), update c k to obtain c k+1 and go to step 1 Stochastic Optimization 24

26 Q-Rates of Convergence Let {x k } be a sequence in R n that converges to x Convergence is said to be: 1. Q-linear if r (0, 1) such that x k+1 x x k x r for k > K. Example: ( k ) converges Q-linearly to Q-quadratic if M such that x k+1 x x k x 2 M for k > K. Example: ( k ) converges Q-quadratically to Q-superlinear if r (0, 1) such that lim k x k+1 x x k x = 0 Example: (1 + k k ) converges Q-superlinearly to Q-quadratically = Q-superlinearly = Q-linearly Stochastic Optimization 25

27 Example 1 f(x, y) = x 2 + y 2 1. Steepest descent from ( ) Newton from 3. Newton from ( ) 1 1 ( 1 1 ) Stochastic Optimization 26

28 y y y Uday V. Shanbhag Lecture x x x Figure 1: Well Conditioned Function:Steepest, Newton, Newton Stochastic Optimization 27

29 Example 2 f(x, y) = 0.1x 2 + y 2 1. Steepest descent from ( ) Newton from 3. Newton from ( ) 1 1 ( 1 1 ) Stochastic Optimization 28

30 y 0 y 0 y x x x Figure 2: Ill-Conditioned Function: Steepest, Newton, Newton Stochastic Optimization 29

31 Interior-Point Methods Solve inequality (and more generally) constrained problem: minimize f(x) subject to g j (x) 0, j = 1,..., m The IPM solves a sequence of problems parametrized by t > 0: minimize f(x) 1 t m j=1 ln( g j (x)) Can be viewed as a penalty method with Penalty parameter c = 1 t Penalty function P (u 1,..., u m ) = m j=1 over x R n ln( u j ) This function is known as logarithmic barrier or log barrier function Stochastic Optimization 30

32 The material for this lecture: References for this lecture (B) Bertsekas D.P. Nonlinear Programming Chapter 1 and Chapter 3 (descent and Newton s methods, KKT conditions) (FP) Facchinei and Pang Finite Dimensional..., Vol I (Part on Complementarity Problems) Chapter 1 for Normal Cone, Dual Cone, and Tangent Cone (BNO) Bertsekas, Nedić, Ozdaglar Convex Analysis and Optimization Chapter 1 (convex functions) Stochastic Optimization 31

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg MVE165/MMG631 Overview of nonlinear programming Ann-Brith Strömberg 2015 05 21 Areas of applications, examples (Ch. 9.1) Structural optimization Design of aircraft, ships, bridges, etc Decide on the material

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Introduction to Nonlinear Stochastic Programming

Introduction to Nonlinear Stochastic Programming School of Mathematics T H E U N I V E R S I T Y O H F R G E D I N B U Introduction to Nonlinear Stochastic Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio SPS

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Chapter 2. Optimization. Gradients, convexity, and ALS

Chapter 2. Optimization. Gradients, convexity, and ALS Chapter 2 Optimization Gradients, convexity, and ALS Contents Background Gradient descent Stochastic gradient descent Newton s method Alternating least squares KKT conditions 2 Motivation We can solve

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

Miscellaneous Nonlinear Programming Exercises

Miscellaneous Nonlinear Programming Exercises Miscellaneous Nonlinear Programming Exercises Henry Wolkowicz 2 08 21 University of Waterloo Department of Combinatorics & Optimization Waterloo, Ontario N2L 3G1, Canada Contents 1 Numerical Analysis Background

More information

2.3 Linear Programming

2.3 Linear Programming 2.3 Linear Programming Linear Programming (LP) is the term used to define a wide range of optimization problems in which the objective function is linear in the unknown variables and the constraints are

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Computational Finance

Computational Finance Department of Mathematics at University of California, San Diego Computational Finance Optimization Techniques [Lecture 2] Michael Holst January 9, 2017 Contents 1 Optimization Techniques 3 1.1 Examples

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

8 Barrier Methods for Constrained Optimization

8 Barrier Methods for Constrained Optimization IOE 519: NL, Winter 2012 c Marina A. Epelman 55 8 Barrier Methods for Constrained Optimization In this subsection, we will restrict our attention to instances of constrained problem () that have inequality

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Constrained optimization

Constrained optimization Constrained optimization In general, the formulation of constrained optimization is as follows minj(w), subject to H i (w) = 0, i = 1,..., k. where J is the cost function and H i are the constraints. Lagrange

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

More on Lagrange multipliers

More on Lagrange multipliers More on Lagrange multipliers CE 377K April 21, 2015 REVIEW The standard form for a nonlinear optimization problem is min x f (x) s.t. g 1 (x) 0. g l (x) 0 h 1 (x) = 0. h m (x) = 0 The objective function

More information

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way. AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2009 Copyright 2009 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

SECTION C: CONTINUOUS OPTIMISATION LECTURE 11: THE METHOD OF LAGRANGE MULTIPLIERS

SECTION C: CONTINUOUS OPTIMISATION LECTURE 11: THE METHOD OF LAGRANGE MULTIPLIERS SECTION C: CONTINUOUS OPTIMISATION LECTURE : THE METHOD OF LAGRANGE MULTIPLIERS HONOUR SCHOOL OF MATHEMATICS OXFORD UNIVERSITY HILARY TERM 005 DR RAPHAEL HAUSER. Examples. In this lecture we will take

More information

Sequential Unconstrained Minimization: A Survey

Sequential Unconstrained Minimization: A Survey Sequential Unconstrained Minimization: A Survey Charles L. Byrne February 21, 2013 Abstract The problem is to minimize a function f : X (, ], over a non-empty subset C of X, where X is an arbitrary set.

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 12: Nonlinear optimization, continued Prof. John Gunnar Carlsson October 20, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 20,

More information

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces Introduction to Optimization Techniques Nonlinear Optimization in Function Spaces X : T : Gateaux and Fréchet Differentials Gateaux and Fréchet Differentials a vector space, Y : a normed space transformation

More information

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 4: Introduction to Interior Point Methods Dianne P. O Leary c 2008 Interior Point Methods We ll discuss

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written 11.8 Inequality Constraints 341 Because by assumption x is a regular point and L x is positive definite on M, it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit Function

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Extended Monotropic Programming and Duality 1

Extended Monotropic Programming and Duality 1 March 2006 (Revised February 2010) Report LIDS - 2692 Extended Monotropic Programming and Duality 1 by Dimitri P. Bertsekas 2 Abstract We consider the problem minimize f i (x i ) subject to x S, where

More information

Convex Analysis and Optimization Chapter 2 Solutions

Convex Analysis and Optimization Chapter 2 Solutions Convex Analysis and Optimization Chapter 2 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Date: July 5, Contents

Date: July 5, Contents 2 Lagrange Multipliers Date: July 5, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 14 2.3. Informative Lagrange Multipliers...........

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE HANDE Y. BENSON, ARUN SEN, AND DAVID F. SHANNO Abstract. In this paper, we present global

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Primal Solutions and Rate Analysis for Subgradient Methods

Primal Solutions and Rate Analysis for Subgradient Methods Primal Solutions and Rate Analysis for Subgradient Methods Asu Ozdaglar Joint work with Angelia Nedić, UIUC Conference on Information Sciences and Systems (CISS) March, 2008 Department of Electrical Engineering

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2010 Copyright 2010 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Conic Linear Programming. Yinyu Ye

Conic Linear Programming. Yinyu Ye Conic Linear Programming Yinyu Ye December 2004, revised January 2015 i ii Preface This monograph is developed for MS&E 314, Conic Linear Programming, which I am teaching at Stanford. Information, lecture

More information

IOE 511/Math 652: Continuous Optimization Methods, Section 1

IOE 511/Math 652: Continuous Optimization Methods, Section 1 IOE 511/Math 652: Continuous Optimization Methods, Section 1 Marina A. Epelman Fall 2007 These notes can be freely reproduced for any non-commercial purpose; please acknowledge the author if you do so.

More information

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008 Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plus-properties and F-uniqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FP-I book:

More information

Lecture 13 Newton-type Methods A Newton Method for VIs. October 20, 2008

Lecture 13 Newton-type Methods A Newton Method for VIs. October 20, 2008 Lecture 13 Newton-type Methods A Newton Method for VIs October 20, 2008 Outline Quick recap of Newton methods for composite functions Josephy-Newton methods for VIs A special case: mixed complementarity

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information