Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Size: px
Start display at page:

Download "Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation"

Transcription

1 Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: Graduate Instructor: Max Sichowitz Eail: October 15, Stochastic optiization he goal in stochastic optiization is to iniize functions of the for f (x) = E z D g(x, z) which have stochastic coponent given by a distribution D. In the case where the distribution has finite support, the function can be written as f (x) = 1 f i (x). o solve these kinds of probles, we exaine the stochastic gradient descent ethod and soe if its any applications he stochastic gradient ethod Following Robbins-Monro [RM51], we define the stochastic gradient ethod as follows. Definition 10.1 (Stochastic gradient ethod). he stochastic gradient ethod starts fro a point x 0 Ω and proceeds according to the update rule x t+1 = x t η t f it (x t ) where i t {1,..., } is either selected at rando at each step, or cycled through a rando perutation of {1,..., }. 1

2 Either of the two ethods for selecting i t above, lead to the fact that E f it (x) = f (x) his is also true when f (x) = E g(x, z) and at each step we update according to g(x, z) for randoly drawn z D Sanity check Let us check that on a siple proble that the stochastic gradient descent yields the optiu. Let p 1,..., p R n, and define f : R n R + : x R n, f (x) = 1 2 x p i 2 2 Note that here f i (x) = 1 2 x p i 2 2 and f i(x) = x p i. Moreover, x = argin x R d f (x) = 1 p i Now, run SGM with η t = 1 t in cyclic order i.e. i t = t and x 0 = 0: 10.2 he Perceptron x 0 = 0 x 1 = (0 p 1) = p 1 x 2 = p (p 1 p 2 ) = p 1 + p 2 2. x n = 1 p i = x he New York ies wrote in 1958 that the Perceptron [Ros58] was: the ebryo of an electronic coputer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence. So, let s see. Definition 10.2 (Perceptron). Given labeled points ((x 1, y 1 ),..., (x, y )) (R n { 1, 1}), and and initial point w 0 R n, the Perceptron is the following algorith. For i t {1,..., } selected uniforly at rando, { y w t+1 = w t (1 γ) + it x it if y it w t, x it < 1 η 0 otherwise 2

3 Reverse-engineering the algorith, the Perceptron is equivalent to running the SGM on the Support Vector Machine (SVM) objective function. Definition 10.3 (SVM). Given labeled points ((x 1, y 1 ),..., (x, y )) (R n { 1, 1}), the SVM objective function is: f (w) = 1 n ax(1 y i w, x i, 0) + λ w 2 2 he loss function ax(1 z, 0) is known as the Hinge Loss. he extra ter λ w 2 2 is known as the regularization ter Epirical risk iniization We have two spaces of objects X and Y, where we think of X as the space of instances or exaples, and Y is a the set of labels or classes. Our goal is to learn a function h : X Y which outputs an object y Y, given x X. Assue there is a joint distribution D over the space X Y and the training set consists of instances S = ((x 1, y 1 ),..., (x, y )) drawn i.i.d. fro D. We also define a non-negative real-valued loss function l(y, y) to easure the difference between the prediction y and the true outcoe y. Definition he risk of a function h : X Y is defined as R[h] = E (x,y) D l(h(x), y). he ultiate goal of a learning algorith is to find h aong a class of functions H that iniizes R[h]: h arg in h H R[h] In general, the risk R[h] cannot be coputed because the joint distribution is unknown. herefore, we instead iniize a proxy objective known as epirical risk and defined by averaging the loss function over the training set: R S [h] = 1 l(h(x i ), y i ) An epirical risk iniizer is any point h arg in h H R S [h]. he stochastic gradient ethod can be thought of as iniizing the risk directly, if each exaple is only used once. In cases where we ake ultiple passes over the training set, it is better to think of it as iniizing the epirical risk, which can give different solutions than iniizing the risk. We ll develop tools to relate risk and epirical risk in the next lecture. 3

4 10.4 Online learning An interesting variant of this learning setup is called online learning. It arises when we do not have a set of training data, but rather ust ake decisions one-by-one. aking advice fro experts. Iagine we have access to the predictions of n experts. We start fro an initial distribution over experts, given by weights w 1 n = {w R n : i w i = 1, w i 0}. At each step t = 1,..., : we randoly choose an expert according to w t nature deals us a loss function f t [ 1, 1] n, specifying for each expert i the loss f t [i] incurred by the prediction of expert i at tie t. we incur the expected loss E i wt f t [i] = w t, f t. we get to update our distribution to fro w t to w t+1. At the end of the day, we easure how well we perfored relative to the best fixed distribution over experts in hindsight. his is called regret: R = t=1 w n t=1 w t, f t in w, f t his is a relative benchark. Sall regret does not say that the loss is necessarily sall. It only says that had we played the sae strategy at all steps, we couldn t have done uch better even with the benefit of hindsight Multiplicative weights update Perhaps the ost iportant online learning algorith is the ultiplicative weights update. Starting fro the unifor distribution w 1, proceed according to the following siple update rule for t > 1, v t [i] = w t 1 [i]e η f t[i] w t = v t /( i v t [i]) (exponential weights update) (noralize) he question is how do we bound the regret of the ultiplicative weights update? We could do a direct analysis, but instead we ll relate ultiplicative weights to gradient descent and use the convergence guarantees we already know. Specifically, we will interpret ultiplicative weights as an instance of irror descent. Recall that irror descent requires a irror ap φ : Ω R over a doain Ω R n where φ is strongly convex and continuously differentiable. 4

5 he associated projection is Π φ Ω where D φ (x, y) is Bregan divergence. (y) = argin D φ (x, y) x Ω Definition he Bregan divergence easures how good the first order approxiation of the function φ is: he irror descent update rule is: D φ (x, y) = φ(x) φ(y) φ(y) (x y) φ(y t+1 ) = φ(x t ) ηg t x t+1 = Π φ Ω (y t+1) where g t f (x t ). In the first hoework, we proved the following results. heore Let be an arbitrary nor and suppose that φ is α-strongly convex w.r.t. on Ω. Suppose that f t is L-lipschitz w.r.t.. hen, we have 1 f t (x t ) D φ(x, x 0 ) + η L2 η 2α. t=1 Multiplicative weights are an instance of the irror descent where φ(w) = w i log(w i ) is the negative entropy function. We have that φ(w) = 1 + log(w), where the logarith is eleentwise. he update rule for irror descent is which iplies that φ(v t+1 ) = φ(w t ) η t f t, v t+1 = w t e η t f t and thus recovers the ultiplicative weights update. Now coes the projection step. he Bregan divergence corresponding to φ is D φ (x, y) = φ(x) φ(y) φ(y) (x y) = x i log(x i /y i ) x i + y i, i i i which we recognize as the relative entropy or Kullback-Leibler divergence over the probability siplex. We thus choose the doain Ω to be the probability siplex Ω = {w R n i w i = 1, w i 0}. he projection Π φ Ω (y) = argin D φ (x, y) x Ω turns out to just correspond to the noralization step in the update rule of the ultiplicative weights algorith. 5

6 Concrete rate of convergence. o get a concrete rate of convergence fro the preceding theore, we still need to deterine what value of the strong convexity constant α we get in our setting. Here, we choose the nor to be the l -nor. It follows fro Pinsker s inequality that φ is 1/2-strongly convex with respect to the l -nor. Moreover, in the l -nor all gradients are bounded by 1, since the loss ranges in [1, 1]. Finally, the relative entropy between the initial unifor distribution any any other distribution is at ost log(n). Putting these facts together and balancing the step size η, we get the noralized regret bound ( ) log n O. In particular, this shows that the noralized regret of the ultiplicative update rule is vanishing over tie. References [RM51] H. Robbins and S. Monro. A stochastic approxiation ethod. Annals of Matheatical Statistics, 22: , [Ros58] F. Rosenblatt. he perceptron: A probabilistic odel for inforation storage and organization in the brain. Psychological Review, pages ,

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Stochastic Subgradient Methods

Stochastic Subgradient Methods Stochastic Subgradient Methods Lingjie Weng Yutian Chen Bren School of Inforation and Coputer Science University of California, Irvine {wengl, yutianc}@ics.uci.edu Abstract Stochastic subgradient ethods

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Support Vector Machines. Machine Learning Series Jerry Jeychandra Blohm Lab

Support Vector Machines. Machine Learning Series Jerry Jeychandra Blohm Lab Support Vector Machines Machine Learning Series Jerry Jeychandra Bloh Lab Outline Main goal: To understand how support vector achines (SVMs) perfor optial classification for labelled data sets, also a

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 2: PAC Learning and VC Theory I Fro Adversarial Online to Statistical Three reasons to ove fro worst-case deterinistic

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Symmetrization and Rademacher Averages

Symmetrization and Rademacher Averages Stat 928: Statistical Learning Theory Lecture: Syetrization and Radeacher Averages Instructor: Sha Kakade Radeacher Averages Recall that we are interested in bounding the difference between epirical and

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

Fixed-to-Variable Length Distribution Matching

Fixed-to-Variable Length Distribution Matching Fixed-to-Variable Length Distribution Matching Rana Ali Ajad and Georg Böcherer Institute for Counications Engineering Technische Universität München, Gerany Eail: raa2463@gail.co,georg.boecherer@tu.de

More information

Lecture 12: Ensemble Methods. Introduction. Weighted Majority. Mixture of Experts/Committee. Σ k α k =1. Isabelle Guyon

Lecture 12: Ensemble Methods. Introduction. Weighted Majority. Mixture of Experts/Committee. Σ k α k =1. Isabelle Guyon Lecture 2: Enseble Methods Isabelle Guyon guyoni@inf.ethz.ch Introduction Book Chapter 7 Weighted Majority Mixture of Experts/Coittee Assue K experts f, f 2, f K (base learners) x f (x) Each expert akes

More information

1 Rademacher Complexity Bounds

1 Rademacher Complexity Bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #10 Scribe: Max Goer March 07, 2013 1 Radeacher Coplexity Bounds Recall the following theore fro last lecture: Theore 1. With probability

More information

Consistent Multiclass Algorithms for Complex Performance Measures. Supplementary Material

Consistent Multiclass Algorithms for Complex Performance Measures. Supplementary Material Consistent Multiclass Algoriths for Coplex Perforance Measures Suppleentary Material Notations. Let λ be the base easure over n given by the unifor rando variable (say U over n. Hence, for all easurable

More information

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x)

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x) 7Applying Nelder Mead s Optiization Algorith APPLYING NELDER MEAD S OPTIMIZATION ALGORITHM FOR MULTIPLE GLOBAL MINIMA Abstract Ştefan ŞTEFĂNESCU * The iterative deterinistic optiization ethod could not

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Support Vector Machines. Goals for the lecture

Support Vector Machines. Goals for the lecture Support Vector Machines Mark Craven and David Page Coputer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Soe of the slides in these lectures have been adapted/borrowed fro aterials developed

More information

Prediction by random-walk perturbation

Prediction by random-walk perturbation Prediction by rando-walk perturbation Luc Devroye School of Coputer Science McGill University Gábor Lugosi ICREA and Departent of Econoics Universitat Popeu Fabra lucdevroye@gail.co gabor.lugosi@gail.co

More information

Asynchronous Gossip Algorithms for Stochastic Optimization

Asynchronous Gossip Algorithms for Stochastic Optimization Asynchronous Gossip Algoriths for Stochastic Optiization S. Sundhar Ra ECE Dept. University of Illinois Urbana, IL 680 ssrini@illinois.edu A. Nedić IESE Dept. University of Illinois Urbana, IL 680 angelia@illinois.edu

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

A Theoretical Analysis of a Warm Start Technique

A Theoretical Analysis of a Warm Start Technique A Theoretical Analysis of a War Start Technique Martin A. Zinkevich Yahoo! Labs 701 First Avenue Sunnyvale, CA Abstract Batch gradient descent looks at every data point for every step, which is wasteful

More information

RANDOM GRADIENT EXTRAPOLATION FOR DISTRIBUTED AND STOCHASTIC OPTIMIZATION

RANDOM GRADIENT EXTRAPOLATION FOR DISTRIBUTED AND STOCHASTIC OPTIMIZATION RANDOM GRADIENT EXTRAPOLATION FOR DISTRIBUTED AND STOCHASTIC OPTIMIZATION GUANGHUI LAN AND YI ZHOU Abstract. In this paper, we consider a class of finite-su convex optiization probles defined over a distributed

More information

Robustness and Regularization of Support Vector Machines

Robustness and Regularization of Support Vector Machines Robustness and Regularization of Support Vector Machines Huan Xu ECE, McGill University Montreal, QC, Canada xuhuan@ci.cgill.ca Constantine Caraanis ECE, The University of Texas at Austin Austin, TX, USA

More information

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine CSCI699: Topics in Learning and Gae Theory Lecture October 23 Lecturer: Ilias Scribes: Ruixin Qiang and Alana Shine Today s topic is auction with saples. 1 Introduction to auctions Definition 1. In a single

More information

Machine Learning: Fisher s Linear Discriminant. Lecture 05

Machine Learning: Fisher s Linear Discriminant. Lecture 05 Machine Learning: Fisher s Linear Discriinant Lecture 05 Razvan C. Bunescu chool of Electrical Engineering and Coputer cience bunescu@ohio.edu Lecture 05 upervised Learning ask learn an (unkon) function

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

1 Generalization bounds based on Rademacher complexity

1 Generalization bounds based on Rademacher complexity COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #0 Scribe: Suqi Liu March 07, 08 Last tie we started proving this very general result about how quickly the epirical average converges

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Logistic Regression. by Prof. Seungchul Lee isystems Design Lab UNIST. Table of Contents

Logistic Regression. by Prof. Seungchul Lee isystems Design Lab  UNIST. Table of Contents Logistic Regression by Prof. Seungchul Lee isystes Design Lab http://isystes.unist.ac.kr/ UNIST Table of Contents I.. Linear Classification: Logistic Regression I... Using all Distances II..2. Probabilistic

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space

Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space Journal of Machine Learning Research 3 (2003) 1333-1356 Subitted 5/02; Published 3/03 Grafting: Fast, Increental Feature Selection by Gradient Descent in Function Space Sion Perkins Space and Reote Sensing

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information Cite as: Straub D. (2014). Value of inforation analysis with structural reliability ethods. Structural Safety, 49: 75-86. Value of Inforation Analysis with Structural Reliability Methods Daniel Straub

More information

PAC-Bayes Analysis Of Maximum Entropy Learning

PAC-Bayes Analysis Of Maximum Entropy Learning PAC-Bayes Analysis Of Maxiu Entropy Learning John Shawe-Taylor and David R. Hardoon Centre for Coputational Statistics and Machine Learning Departent of Coputer Science University College London, UK, WC1E

More information

Domain-Adversarial Neural Networks

Domain-Adversarial Neural Networks Doain-Adversarial Neural Networks Hana Ajakan, Pascal Gerain 2, Hugo Larochelle 3, François Laviolette 2, Mario Marchand 2,2 Départeent d inforatique et de génie logiciel, Université Laval, Québec, Canada

More information

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes Radeacher Coplexity Margin Bounds for Learning with a Large Nuber of Classes Vitaly Kuznetsov Courant Institute of Matheatical Sciences, 25 Mercer street, New York, NY, 002 Mehryar Mohri Courant Institute

More information

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Boosting Mehryar Mohri Courant Institute and Google Research ohri@cis.nyu.edu Weak Learning Definition: concept class C is weakly PAC-learnable if there exists a (weak)

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

Soft-margin SVM can address linearly separable problems with outliers

Soft-margin SVM can address linearly separable problems with outliers Non-linear Support Vector Machines Non-linearly separable probles Hard-argin SVM can address linearly separable probles Soft-argin SVM can address linearly separable probles with outliers Non-linearly

More information

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical IEEE TRANSACTIONS ON INFORMATION THEORY Large Alphabet Source Coding using Independent Coponent Analysis Aichai Painsky, Meber, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE arxiv:67.7v [cs.it] Jul

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approxiation in Stochastic Scheduling: The Power of -Based Priority Policies Rolf Möhring, Andreas Schulz, Marc Uetz Setting (A P p stoch, r E( w and (B P p stoch E( w We will assue that the processing

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

Interactive Markov Models of Evolutionary Algorithms

Interactive Markov Models of Evolutionary Algorithms Cleveland State University EngagedScholarship@CSU Electrical Engineering & Coputer Science Faculty Publications Electrical Engineering & Coputer Science Departent 2015 Interactive Markov Models of Evolutionary

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networs Brain s. Coputer Designed to sole logic and arithetic probles Can sole a gazillion arithetic and logic probles in an hour absolute precision Usually one ery fast procesor high

More information

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011)

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011) E0 370 Statistical Learning Theory Lecture 5 Aug 5, 0 Covering Nubers, Pseudo-Diension, and Fat-Shattering Diension Lecturer: Shivani Agarwal Scribe: Shivani Agarwal Introduction So far we have seen how

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

PAC-Bayesian Learning of Linear Classifiers

PAC-Bayesian Learning of Linear Classifiers Pascal Gerain Pascal.Gerain.@ulaval.ca Alexandre Lacasse Alexandre.Lacasse@ift.ulaval.ca François Laviolette Francois.Laviolette@ift.ulaval.ca Mario Marchand Mario.Marchand@ift.ulaval.ca Départeent d inforatique

More information

On Constant Power Water-filling

On Constant Power Water-filling On Constant Power Water-filling Wei Yu and John M. Cioffi Electrical Engineering Departent Stanford University, Stanford, CA94305, U.S.A. eails: {weiyu,cioffi}@stanford.edu Abstract This paper derives

More information

Hamming Compressed Sensing

Hamming Compressed Sensing Haing Copressed Sensing Tianyi Zhou, and Dacheng Tao, Meber, IEEE Abstract arxiv:.73v2 [cs.it] Oct 2 Copressed sensing CS and -bit CS cannot directly recover quantized signals and require tie consuing

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

Distributed Subgradient Methods for Multi-agent Optimization

Distributed Subgradient Methods for Multi-agent Optimization 1 Distributed Subgradient Methods for Multi-agent Optiization Angelia Nedić and Asuan Ozdaglar October 29, 2007 Abstract We study a distributed coputation odel for optiizing a su of convex objective functions

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Introduction to Machine Learning. Recitation 11

Introduction to Machine Learning. Recitation 11 Introduction to Machine Learning Lecturer: Regev Schweiger Recitation Fall Seester Scribe: Regev Schweiger. Kernel Ridge Regression We now take on the task of kernel-izing ridge regression. Let x,...,

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Ensemble Based on Data Envelopment Analysis

Ensemble Based on Data Envelopment Analysis Enseble Based on Data Envelopent Analysis So Young Sohn & Hong Choi Departent of Coputer Science & Industrial Systes Engineering, Yonsei University, Seoul, Korea Tel) 82-2-223-404, Fax) 82-2- 364-7807

More information

Learnability and Stability in the General Learning Setting

Learnability and Stability in the General Learning Setting Learnability and Stability in the General Learning Setting Shai Shalev-Shwartz TTI-Chicago shai@tti-c.org Ohad Shair The Hebrew University ohadsh@cs.huji.ac.il Nathan Srebro TTI-Chicago nati@uchicago.edu

More information

arxiv: v1 [cs.lg] 8 Jan 2019

arxiv: v1 [cs.lg] 8 Jan 2019 Data Masking with Privacy Guarantees Anh T. Pha Oregon State University phatheanhbka@gail.co Shalini Ghosh Sasung Research shalini.ghosh@gail.co Vinod Yegneswaran SRI international vinod@csl.sri.co arxiv:90.085v

More information

Tracking using CONDENSATION: Conditional Density Propagation

Tracking using CONDENSATION: Conditional Density Propagation Tracking using CONDENSATION: Conditional Density Propagation Goal Model-based visual tracking in dense clutter at near video frae rates M. Isard and A. Blake, CONDENSATION Conditional density propagation

More information

A Smoothed Boosting Algorithm Using Probabilistic Output Codes

A Smoothed Boosting Algorithm Using Probabilistic Output Codes A Soothed Boosting Algorith Using Probabilistic Output Codes Rong Jin rongjin@cse.su.edu Dept. of Coputer Science and Engineering, Michigan State University, MI 48824, USA Jian Zhang jian.zhang@cs.cu.edu

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Soft Coputing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Beverly Rivera 1,2, Irbis Gallegos 1, and Vladik Kreinovich 2 1 Regional Cyber and Energy Security Center RCES

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

Kinematics and dynamics, a computational approach

Kinematics and dynamics, a computational approach Kineatics and dynaics, a coputational approach We begin the discussion of nuerical approaches to echanics with the definition for the velocity r r ( t t) r ( t) v( t) li li or r( t t) r( t) v( t) t for

More information

Weighted- 1 minimization with multiple weighting sets

Weighted- 1 minimization with multiple weighting sets Weighted- 1 iniization with ultiple weighting sets Hassan Mansour a,b and Özgür Yılaza a Matheatics Departent, University of British Colubia, Vancouver - BC, Canada; b Coputer Science Departent, University

More information

A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay

A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay A Low-Coplexity Congestion Control and Scheduling Algorith for Multihop Wireless Networks with Order-Optial Per-Flow Delay Po-Kai Huang, Xiaojun Lin, and Chih-Chun Wang School of Electrical and Coputer

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

arxiv: v3 [cs.lg] 7 Jan 2016

arxiv: v3 [cs.lg] 7 Jan 2016 Efficient and Parsionious Agnostic Active Learning Tzu-Kuo Huang Alekh Agarwal Daniel J. Hsu tkhuang@icrosoft.co alekha@icrosoft.co djhsu@cs.colubia.edu John Langford Robert E. Schapire jcl@icrosoft.co

More information

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. Proceedings of the 2016 Winter Siulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtan, E. Zhou, T. Huschka, and S. E. Chick, eds. THE EMPIRICAL LIKELIHOOD APPROACH TO SIMULATION INPUT UNCERTAINTY

More information

Optimum Value of Poverty Measure Using Inverse Optimization Programming Problem

Optimum Value of Poverty Measure Using Inverse Optimization Programming Problem International Journal of Conteporary Matheatical Sciences Vol. 14, 2019, no. 1, 31-42 HIKARI Ltd, www.-hikari.co https://doi.org/10.12988/ijcs.2019.914 Optiu Value of Poverty Measure Using Inverse Optiization

More information

An incremental mirror descent subgradient algorithm with random sweeping and proximal step

An incremental mirror descent subgradient algorithm with random sweeping and proximal step An increental irror descent subgradient algorith with rando sweeping and proxial step Radu Ioan Boţ Axel Böh Septeber 7, 07 Abstract We investigate the convergence properties of increental irror descent

More information

Bootstrapping Dependent Data

Bootstrapping Dependent Data Bootstrapping Dependent Data One of the key issues confronting bootstrap resapling approxiations is how to deal with dependent data. Consider a sequence fx t g n t= of dependent rando variables. Clearly

More information

MSEC MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL SOLUTION FOR MAINTENANCE AND PERFORMANCE

MSEC MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL SOLUTION FOR MAINTENANCE AND PERFORMANCE Proceeding of the ASME 9 International Manufacturing Science and Engineering Conference MSEC9 October 4-7, 9, West Lafayette, Indiana, USA MSEC9-8466 MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL

More information

On Conditions for Linearity of Optimal Estimation

On Conditions for Linearity of Optimal Estimation On Conditions for Linearity of Optial Estiation Erah Akyol, Kuar Viswanatha and Kenneth Rose {eakyol, kuar, rose}@ece.ucsb.edu Departent of Electrical and Coputer Engineering University of California at

More information

Compression and Predictive Distributions for Large Alphabet i.i.d and Markov models

Compression and Predictive Distributions for Large Alphabet i.i.d and Markov models 2014 IEEE International Syposiu on Inforation Theory Copression and Predictive Distributions for Large Alphabet i.i.d and Markov odels Xiao Yang Departent of Statistics Yale University New Haven, CT, 06511

More information

An l 1 Regularized Method for Numerical Differentiation Using Empirical Eigenfunctions

An l 1 Regularized Method for Numerical Differentiation Using Empirical Eigenfunctions Journal of Matheatical Research with Applications Jul., 207, Vol. 37, No. 4, pp. 496 504 DOI:0.3770/j.issn:2095-265.207.04.0 Http://jre.dlut.edu.cn An l Regularized Method for Nuerical Differentiation

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression

Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression Sha M Kakade Microsoft Research and Wharton, U Penn skakade@icrosoftco Varun Kanade SEAS, Harvard University vkanade@fasharvardedu

More information