Bootstrapping Dependent Data

Size: px
Start display at page:

Download "Bootstrapping Dependent Data"

Transcription

1 Bootstrapping Dependent Data One of the key issues confronting bootstrap resapling approxiations is how to deal with dependent data. Consider a sequence fx t g n t= of dependent rando variables. Clearly it would be a istake to resaple fro the sequence scalar quantities, as the reshu ed resaples would break the teporal dependence. Our goal is ost often to learn the variance of a general statistic T n (X ; : : : ; X n ), we hereafter refer to the unknown variance as. The quantity ay not be calculable analytically because the dependence structure and the underlying distribution of the innovations are not assued to be known. In 985, Hall exained the proble of bootstrap estiation for data that was spatial in character. His proposed ethods could be applied to tie-series data, although the speci c details of his results cannot be directly applied. For the xed-block bootstrap, he proposes dividing the series into nonoverlapping blocks of equal length, each block has length n. For the oving-block bootstrap, he proposes dividing the series into n + overlapping blocks of equal length n. To x ideas, consider the saple fx ; : : : ; x 4 g with block length. The xed-block bootstrap is obtained by constructing the statistic of interest for each eber of the set f(x ; x ) ; (x 3 ; x 4 )g : The oving-block bootstrap is obtained by constructing the statistic of interest for each eber of the set f(x ; x ) ; (x ; x 3 ) ; (x 3 ; x 4 )g : The intuition underpinning the xed-block bootstrap is as follows. The ovingblock bootstrap has any saples that share a large nuber of observations, in this way there is redundancy. The xed-block bootstrap avoids such redundancy. Further, if grows with n, then a statistic constructed fro a given subsaple will eventually behave as though it is independent of all but two (the adjacent two) of the statistics constructed fro the other subsaples. In addition, should grow with n to allow for long-lived dynaics to be captured. One natural choice for would be = cn, with 0 < c <, as the subsaples would be of the sae order of agnitude as the original data. Unfortunately, such an approach would To see why consider the case of two diensional spatial data. Rather than a sequence of tie-series variables, the underlying coponents are rectangles. One assuption is that the ratio of the lengths of two adjoining edges of the rectancle is constant, which has no natural anlaog in tie-series data.

2 not provide enough subsaples, as we have only about subsaples regardless c of n. We require that increase ore slowly, so that! 0. n In 986, Carlstein independently developed the xed-block bootstrap for stationary, -ixing sequences. Forally, let fx t ; < t < g be a strictly stationary sequence de ned on probability space (; F; P ). The function T n (x ; : : : ; x n ), fro R 7! R n is de ned so that T n (X (!) ; : : : ; X n (!)) is F -easurable. Fixed blocks of data are de ned as X t = (X t+ ; X t+ ; : : : ; X t+ ) ; so the whole saple is denoted X 0 n. A general statistic de ned for the xed block is T t = T X t ; for exaple, the saple ean X t = X X t+j : The statistic is appropriately standardized, so that for the unknown variance j= li E hn i Tn t ETn 0 = (0; ) ; n! which is clear for the case of the saple ean li n n! n! E (X t ) = : t= The value of the statistic for each of the xed blocks is denoted T t : 0 t k n ; where k n = n. For exaple, let n = 00 and = 8, so kn = [:5] =, T 0 8 = T 8 (X ; : : : ; X 8 ) ; T 8 = T 8 (X 9 ; : : : ; X 6 ) : : : ; T 8 (X 89 ; : : : ; X 96 ) ; so the last four observations are not used. To construct the estiator of, rst construct the average value of T across the subsaples T = kx n k n t=0 T t :

3 With the saple average in hand, the variance estiator is siply the standard variance estiator ^ F Boot = kx n k n t=0 T t T : For coparison, consider the variance of the saple ean ^ = ne X n : Observe that there is no randoness in the construction of ^ F Boot, the statistic of interest is calculated for each subsaple (that is, for each xed block) and the variance is directly estiated. In this way, as Kunsch (989) argues, the xedblock bootstrap is really closer to the jackknife than the oving-block bootstrap. For the jackknife, one deletes each block of consecutive observations once and calculates the saple variance of the statistics constructed fro the n + saples of length n. Thus the jackknife di ers fro the xed-block bootstrap in that overlapping subsaples are used (and that tapering is used to ake a sooth transition between observations oitted and observations included). For the arithetic ean, Kunsch argues that the xed-block bootstrap and the jackknife are equivalent. For ore coplicated statistics they are not, and Kunsch argues that the jackknife outperfors the xed-block bootstrap. P!. How Carlstein shows that if n! and n! 0, then ^ n F Boot should one choose in practice? Increasing reduces bias and captures ore persistent dependence. Decreasing reduces variance as ore subsaples are available. The trade-o between bias and variance leads one to consider ean square error as the optial criterion. Because construction of the MSE depends on knowledge of the underlying data generating process, no optial results are available. For the special case in which iid X t = X t + U t ; with jj < and U t N (0; ), the value of the block length that iniizes rst-order MSE is n = jj 3 n 3. Sensibly, the block length increases with the agnitude of. In a 989 paper rich with results, Kunsch explored the oving-block bootstrap (as well as the jackknife, about which we have little to say here). Kunsch is clear that either the oving-block or xed-block ethods are only appropriate for statistics constructed fro the epirical distribution function, as Hall akes 3

4 clear fro the outset in his book. To construct the potential blocks of data for the oving-block bootstrap, we again let X t = (X t+ ; X t+ ; : : : ; X t+ ) and note that there are n + possible overlapping blocks. (For the case in which n = 00 and = 8, the xed-block bootstrap used nonoverlapping subsaples, while there are 93 potential (overlapping) blocks for the ovingblock bootstrap. Unlike the xed-block bootstrap, there is randoness for the oving-block bootstrap, as the potential overlap of the blocks does not ake clear precisely which subsaples should be used. If we let S t be a rando variable distributed uniforly on the integers f0; ; : : : ; n g, then the oving-block bootstrap begins by constructing a saple of length k (Kunsch assues that k = n, so we do as well in what follows) as X S ; X S ; : : : ; X S k : The statistic of interest is calculated for the entire bootstrap saple, rather than fro the subsaples as in the xed-block bootstrap, and is denoted T n = T X S ; X S ; : : : ; X S k : The oving-block estiator of the variance is ^ MBoot = V ar (T n ) = E (Tn E T n ) ; where E denotes expectation with respect to S ; : : : ; S k. Kunsch shows that if n! and n! 0, then n ^ P MBoot!. There has been no ention of onte carlo resapling. That is because the bootstrap is de ned literally as the variance of the statistic constructed fro all possible subsaples. In ost applications ^ MBoot ust be evaluated y onte carlo siulation. To illustrate how such a quantity could be calculated without coputer siulation, consider estiation of the (arithetic) ean. We consider estiation of the ean fro blocks of length. Because we are estiating the ean, calculation of the statistic on the entire bootstrap saple is equivalent to calculating the statistic on each block, and averaging the block eans T n = kx W n;t ; k where W n;t is the average fro block t. Because each block is equally likely to be sapled, the W n;t s are i.i.d. with P W n;t = X j+ + X j+ = for each j = 0; : : : ; n : n + 4 t=

5 We have E (T n jx ; : : : ; X n ) = EW n; = n + = X t c t ; n + t= j=0 X i= X j+i where c t = [in (t ; n ) ax (t ; 0) + ] is a counter that indexes the nuber of appearances of each X t in the total su. For exaple, X appears in only the rst block, so c =. Siilarly, X appears in the rst two blocks and c =. We thus have an analytic expression for the expectation of the ovingblock bootstrap estiator of the ean. Of course, we are typically interested in the variance of the estiator. We have V ar (T n jx ; : : : ; X n ) = k V ar (W n;) = k n + j=0 X (X j+i EW n; ) ; which provides an analytic expression for the variance of the bootstrap estiator. References Carlstein, E., 986, The Use of Subseries Values for Estiating the Variance of a General Statistic fro a Stationary Sequence Annals of Statistics 4, Hall, P., 985, Resapling a Coverage Pattern Stochastic Processes and their Applications 0, K unsch, :: H., 989, The Jackknife and the Bootstrap for General Stationary Observations Annals of Statistics 7, 7-4. i= 5

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

Introduction to Machine Learning. Recitation 11

Introduction to Machine Learning. Recitation 11 Introduction to Machine Learning Lecturer: Regev Schweiger Recitation Fall Seester Scribe: Regev Schweiger. Kernel Ridge Regression We now take on the task of kernel-izing ridge regression. Let x,...,

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Multi-Scale/Multi-Resolution: Wavelet Transform

Multi-Scale/Multi-Resolution: Wavelet Transform Multi-Scale/Multi-Resolution: Wavelet Transfor Proble with Fourier Fourier analysis -- breaks down a signal into constituent sinusoids of different frequencies. A serious drawback in transforing to the

More information

Supplement to: Subsampling Methods for Persistent Homology

Supplement to: Subsampling Methods for Persistent Homology Suppleent to: Subsapling Methods for Persistent Hoology A. Technical results In this section, we present soe technical results that will be used to prove the ain theores. First, we expand the notation

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 2: PAC Learning and VC Theory I Fro Adversarial Online to Statistical Three reasons to ove fro worst-case deterinistic

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

C na (1) a=l. c = CO + Clm + CZ TWO-STAGE SAMPLE DESIGN WITH SMALL CLUSTERS. 1. Introduction

C na (1) a=l. c = CO + Clm + CZ TWO-STAGE SAMPLE DESIGN WITH SMALL CLUSTERS. 1. Introduction TWO-STGE SMPLE DESIGN WITH SMLL CLUSTERS Robert G. Clark and David G. Steel School of Matheatics and pplied Statistics, University of Wollongong, NSW 5 ustralia. (robert.clark@abs.gov.au) Key Words: saple

More information

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre Multiscale Entropy Analysis: A New Method to Detect Deterinis in a Tie Series A. Sarkar and P. Barat Variable Energy Cyclotron Centre /AF Bidhan Nagar, Kolkata 700064, India PACS nubers: 05.45.Tp, 89.75.-k,

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS ISSN 1440-771X AUSTRALIA DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS An Iproved Method for Bandwidth Selection When Estiating ROC Curves Peter G Hall and Rob J Hyndan Working Paper 11/00 An iproved

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

Optimal Jackknife for Discrete Time and Continuous Time Unit Root Models

Optimal Jackknife for Discrete Time and Continuous Time Unit Root Models Optial Jackknife for Discrete Tie and Continuous Tie Unit Root Models Ye Chen and Jun Yu Singapore Manageent University January 6, Abstract Maxiu likelihood estiation of the persistence paraeter in the

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are,

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are, Page of 8 Suppleentary Materials: A ultiple testing procedure for ulti-diensional pairwise coparisons with application to gene expression studies Anjana Grandhi, Wenge Guo, Shyaal D. Peddada S Notations

More information

1 Generalization bounds based on Rademacher complexity

1 Generalization bounds based on Rademacher complexity COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #0 Scribe: Suqi Liu March 07, 08 Last tie we started proving this very general result about how quickly the epirical average converges

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical IEEE TRANSACTIONS ON INFORMATION THEORY Large Alphabet Source Coding using Independent Coponent Analysis Aichai Painsky, Meber, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE arxiv:67.7v [cs.it] Jul

More information

Nonmonotonic Networks. a. IRST, I Povo (Trento) Italy, b. Univ. of Trento, Physics Dept., I Povo (Trento) Italy

Nonmonotonic Networks. a. IRST, I Povo (Trento) Italy, b. Univ. of Trento, Physics Dept., I Povo (Trento) Italy Storage Capacity and Dynaics of Nononotonic Networks Bruno Crespi a and Ignazio Lazzizzera b a. IRST, I-38050 Povo (Trento) Italy, b. Univ. of Trento, Physics Dept., I-38050 Povo (Trento) Italy INFN Gruppo

More information

Pseudo-marginal Metropolis-Hastings: a simple explanation and (partial) review of theory

Pseudo-marginal Metropolis-Hastings: a simple explanation and (partial) review of theory Pseudo-arginal Metropolis-Hastings: a siple explanation and (partial) review of theory Chris Sherlock Motivation Iagine a stochastic process V which arises fro soe distribution with density p(v θ ). Iagine

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

MSEC MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL SOLUTION FOR MAINTENANCE AND PERFORMANCE

MSEC MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL SOLUTION FOR MAINTENANCE AND PERFORMANCE Proceeding of the ASME 9 International Manufacturing Science and Engineering Conference MSEC9 October 4-7, 9, West Lafayette, Indiana, USA MSEC9-8466 MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

Lecture 12: Ensemble Methods. Introduction. Weighted Majority. Mixture of Experts/Committee. Σ k α k =1. Isabelle Guyon

Lecture 12: Ensemble Methods. Introduction. Weighted Majority. Mixture of Experts/Committee. Σ k α k =1. Isabelle Guyon Lecture 2: Enseble Methods Isabelle Guyon guyoni@inf.ethz.ch Introduction Book Chapter 7 Weighted Majority Mixture of Experts/Coittee Assue K experts f, f 2, f K (base learners) x f (x) Each expert akes

More information

Understanding Machine Learning Solution Manual

Understanding Machine Learning Solution Manual Understanding Machine Learning Solution Manual Written by Alon Gonen Edited by Dana Rubinstein Noveber 17, 2014 2 Gentle Start 1. Given S = ((x i, y i )), define the ultivariate polynoial p S (x) = i []:y

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016/2017 Lessons 9 11 Jan 2017 Outline Artificial Neural networks Notation...2 Convolutional Neural Networks...3

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

arxiv: v1 [stat.ot] 7 Jul 2010

arxiv: v1 [stat.ot] 7 Jul 2010 Hotelling s test for highly correlated data P. Bubeliny e-ail: bubeliny@karlin.ff.cuni.cz Charles University, Faculty of Matheatics and Physics, KPMS, Sokolovska 83, Prague, Czech Republic, 8675. arxiv:007.094v

More information

When Short Runs Beat Long Runs

When Short Runs Beat Long Runs When Short Runs Beat Long Runs Sean Luke George Mason University http://www.cs.gu.edu/ sean/ Abstract What will yield the best results: doing one run n generations long or doing runs n/ generations long

More information

SPECTRUM sensing is a core concept of cognitive radio

SPECTRUM sensing is a core concept of cognitive radio World Acadey of Science, Engineering and Technology International Journal of Electronics and Counication Engineering Vol:6, o:2, 202 Efficient Detection Using Sequential Probability Ratio Test in Mobile

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

The Transactional Nature of Quantum Information

The Transactional Nature of Quantum Information The Transactional Nature of Quantu Inforation Subhash Kak Departent of Coputer Science Oklahoa State University Stillwater, OK 7478 ABSTRACT Inforation, in its counications sense, is a transactional property.

More information

Stochastic Subgradient Methods

Stochastic Subgradient Methods Stochastic Subgradient Methods Lingjie Weng Yutian Chen Bren School of Inforation and Coputer Science University of California, Irvine {wengl, yutianc}@ics.uci.edu Abstract Stochastic subgradient ethods

More information

IN modern society that various systems have become more

IN modern society that various systems have become more Developent of Reliability Function in -Coponent Standby Redundant Syste with Priority Based on Maxiu Entropy Principle Ryosuke Hirata, Ikuo Arizono, Ryosuke Toohiro, Satoshi Oigawa, and Yasuhiko Takeoto

More information

Comparing Probabilistic Forecasting Systems with the Brier Score

Comparing Probabilistic Forecasting Systems with the Brier Score 1076 W E A T H E R A N D F O R E C A S T I N G VOLUME 22 Coparing Probabilistic Forecasting Systes with the Brier Score CHRISTOPHER A. T. FERRO School of Engineering, Coputing and Matheatics, University

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

An Improved Particle Filter with Applications in Ballistic Target Tracking

An Improved Particle Filter with Applications in Ballistic Target Tracking Sensors & ransducers Vol. 72 Issue 6 June 204 pp. 96-20 Sensors & ransducers 204 by IFSA Publishing S. L. http://www.sensorsportal.co An Iproved Particle Filter with Applications in Ballistic arget racing

More information

Estimation of Korean Monthly GDP with Mixed-Frequency Data using an Unobserved Component Error Correction Model

Estimation of Korean Monthly GDP with Mixed-Frequency Data using an Unobserved Component Error Correction Model 100Econoic Papers Vol.11 No.1 Estiation of Korean Monthly GDP with Mixed-Frequency Data using an Unobserved Coponent Error Correction Model Ki-Ho Ki* Abstract Since GDP is announced on a quarterly basis,

More information

Research in Area of Longevity of Sylphon Scraies

Research in Area of Longevity of Sylphon Scraies IOP Conference Series: Earth and Environental Science PAPER OPEN ACCESS Research in Area of Longevity of Sylphon Scraies To cite this article: Natalia Y Golovina and Svetlana Y Krivosheeva 2018 IOP Conf.

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

Testing equality of variances for multiple univariate normal populations

Testing equality of variances for multiple univariate normal populations University of Wollongong Research Online Centre for Statistical & Survey Methodology Working Paper Series Faculty of Engineering and Inforation Sciences 0 esting equality of variances for ultiple univariate

More information

Figure 1: Equivalent electric (RC) circuit of a neurons membrane

Figure 1: Equivalent electric (RC) circuit of a neurons membrane Exercise: Leaky integrate and fire odel of neural spike generation This exercise investigates a siplified odel of how neurons spike in response to current inputs, one of the ost fundaental properties of

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

On Conditions for Linearity of Optimal Estimation

On Conditions for Linearity of Optimal Estimation On Conditions for Linearity of Optial Estiation Erah Akyol, Kuar Viswanatha and Kenneth Rose {eakyol, kuar, rose}@ece.ucsb.edu Departent of Electrical and Coputer Engineering University of California at

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data Suppleentary to Learning Discriinative Bayesian Networks fro High-diensional Continuous Neuroiaging Data Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, and Dinggang Shen Proposition. Given a sparse

More information

Sexually Transmitted Diseases VMED 5180 September 27, 2016

Sexually Transmitted Diseases VMED 5180 September 27, 2016 Sexually Transitted Diseases VMED 518 Septeber 27, 216 Introduction Two sexually-transitted disease (STD) odels are presented below. The irst is a susceptibleinectious-susceptible (SIS) odel (Figure 1)

More information

A Theoretical Analysis of a Warm Start Technique

A Theoretical Analysis of a Warm Start Technique A Theoretical Analysis of a War Start Technique Martin A. Zinkevich Yahoo! Labs 701 First Avenue Sunnyvale, CA Abstract Batch gradient descent looks at every data point for every step, which is wasteful

More information

As a model for an ATM switch we consider the overow frequency of a queue that

As a model for an ATM switch we consider the overow frequency of a queue that BUFFER OVERFLOW ASYMPTOTICS FOR A BUFFER HANDLING MANY TRAFFIC SOURCES COSTAS COURCOUBETIS, University of Crete RICHARD WEBER, University of Cabridge Abstract As a odel for an ATM switch we consider the

More information

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine CSCI699: Topics in Learning and Gae Theory Lecture October 23 Lecturer: Ilias Scribes: Ruixin Qiang and Alana Shine Today s topic is auction with saples. 1 Introduction to auctions Definition 1. In a single

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

Optimal Jamming Over Additive Noise: Vector Source-Channel Case

Optimal Jamming Over Additive Noise: Vector Source-Channel Case Fifty-first Annual Allerton Conference Allerton House, UIUC, Illinois, USA October 2-3, 2013 Optial Jaing Over Additive Noise: Vector Source-Channel Case Erah Akyol and Kenneth Rose Abstract This paper

More information

Symmetrization and Rademacher Averages

Symmetrization and Rademacher Averages Stat 928: Statistical Learning Theory Lecture: Syetrization and Radeacher Averages Instructor: Sha Kakade Radeacher Averages Recall that we are interested in bounding the difference between epirical and

More information

Distributed Subgradient Methods for Multi-agent Optimization

Distributed Subgradient Methods for Multi-agent Optimization 1 Distributed Subgradient Methods for Multi-agent Optiization Angelia Nedić and Asuan Ozdaglar October 29, 2007 Abstract We study a distributed coputation odel for optiizing a su of convex objective functions

More information

SEISMIC FRAGILITY ANALYSIS

SEISMIC FRAGILITY ANALYSIS 9 th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability PMC24 SEISMIC FRAGILITY ANALYSIS C. Kafali, Student M. ASCE Cornell University, Ithaca, NY 483 ck22@cornell.edu M. Grigoriu,

More information

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS MODIFICATIO OF A AALYTICAL MODEL FOR COTAIER LOADIG PROBLEMS Reception date: DEC.99 otification to authors: 04 MAR. 2001 Cevriye GECER Departent of Industrial Engineering, University of Gazi 06570 Maltepe,

More information

Multi-Dimensional Hegselmann-Krause Dynamics

Multi-Dimensional Hegselmann-Krause Dynamics Multi-Diensional Hegselann-Krause Dynaics A. Nedić Industrial and Enterprise Systes Engineering Dept. University of Illinois Urbana, IL 680 angelia@illinois.edu B. Touri Coordinated Science Laboratory

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. Proceedings of the 2016 Winter Siulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtan, E. Zhou, T. Huschka, and S. E. Chick, eds. THE EMPIRICAL LIKELIHOOD APPROACH TO SIMULATION INPUT UNCERTAINTY

More information

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

Proceedings of the 2015 Winter Simulation Conference L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds. Proceedings of the 205 Winter Siulation Conference L. Yilaz, W. K. V. Chan, I. Moon, T. M. K. oeder, C. Macal, and M. D. ossetti, eds. EFFICIENT SIMULATION FO BANCHING LINEA ECUSIONS Ningyuan Chen Mariana

More information

On weighted averages of double sequences

On weighted averages of double sequences nnales Matheaticae et Inforaticae 39 0) pp. 7 8 Proceedings of the Conference on Stochastic Models and their pplications Faculty of Inforatics, University of Derecen, Derecen, Hungary, ugust 4, 0 On weighted

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

General Properties of Radiation Detectors Supplements

General Properties of Radiation Detectors Supplements Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat Overview Phys. 649: Nuclear Techniques Physics Departent

More information

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool Constant-Space String-Matching in Sublinear Average Tie (Extended Abstract) Maxie Crocheore Universite de Marne-la-Vallee Leszek Gasieniec y Max-Planck Institut fur Inforatik Wojciech Rytter z Warsaw University

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

AN OPTIMAL SHRINKAGE FACTOR IN PREDICTION OF ORDERED RANDOM EFFECTS

AN OPTIMAL SHRINKAGE FACTOR IN PREDICTION OF ORDERED RANDOM EFFECTS Statistica Sinica 6 016, 1709-178 doi:http://dx.doi.org/10.5705/ss.0014.0034 AN OPTIMAL SHRINKAGE FACTOR IN PREDICTION OF ORDERED RANDOM EFFECTS Nilabja Guha 1, Anindya Roy, Yaakov Malinovsky and Gauri

More information

AVOIDING PITFALLS IN MEASUREMENT UNCERTAINTY ANALYSIS

AVOIDING PITFALLS IN MEASUREMENT UNCERTAINTY ANALYSIS VOIDING ITFLLS IN ESREENT NERTINTY NLYSIS Benny R. Sith Inchwor Solutions Santa Rosa, Suary: itfalls, both subtle and obvious, await the new or casual practitioner of easureent uncertainty analysis. This

More information

Learnability and Stability in the General Learning Setting

Learnability and Stability in the General Learning Setting Learnability and Stability in the General Learning Setting Shai Shalev-Shwartz TTI-Chicago shai@tti-c.org Ohad Shair The Hebrew University ohadsh@cs.huji.ac.il Nathan Srebro TTI-Chicago nati@uchicago.edu

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information