Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

Size: px
Start display at page:

Download "Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data"

Transcription

1 Suppleentary to Learning Discriinative Bayesian Networks fro High-diensional Continuous Neuroiaging Data Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, and Dinggang Shen Proposition. Given a sparse Gaussian Bayesian Network paraeterized by Θ and its associated directed graph G with nodes, the graph G is DAG if and only if there exist soe o i (i =,, ) and Υ R, such that for arbitary > 0, the following constraints are satisfied: o j o i Υ ij, i, j {,, }, i j (a) Υ ij 0, Υ ij Θ ij = 0, o i 0. (b) (c) (d) Proof. As is known, a Bayesian network is equivalent to a topological ordering (Chapter 8, Section 8. on Page 362 in []). Therefore, we prove Proposition by showing that i) Eqn. (a d) lead to a topological ordering (the necessary condition), and ii) a topological ordering fro a DAG can eet the requireents in Eqn. (a d) (sufficient condition). First, we prove the necessary condition by contradiction (Fig. ). We consider three cases for two nodes j and i. Case ) the nodes j and i are directly connected. If there is an edge fro node i to node j, the paraeter Θ ij is then non-zero, and thus Υ ij ust be zero. According to Eqn. (a), we have o j > o i. If at the sae tie, there is an edge fro node j to node i, siilarly we have o i > o j, which contradicts with o j > o i, and therefore is ipossible. Case 2: the nodes j and i are not directly linked but connected

2 by a path. Suppose there is a directed path P fro node i to node j, where P is coposed of nodes k, k 2,, k in order. Following the above proof, we can have o j > o k > > o k > o i. If at the sae tie another directed path P 2 links node j to node i, where P 2 is coposed of nodes l, l 2,, l 2 in order, siilarly we have o i > o l2 > > o l > o j, aking the contradiction. Case 3) If there is no edge between node i and node j, by definition Θ ij = 0. It is straightforward to see Eqn. (b) and Eqn. (c) hold for any arbitrary non-negative Υ ij. Moreover, for any o i and o j satisfying Eqn. (d), we can show that as long as Υ ij ( + ) (which is positive), Eqn. (a) will always hold. This is further explained as follows. By Eqn. (d), we have o j o i. For Eqn. (a) to be always held, we need soe Υ ij such that o j o i Υ ij, which requires Υ ij ( + ). Therefore, there exist a set of o i and Υ valid for Eqn. (a d) when no edge links node i and node j. In su, Eqn. (a d) show a topological ordering, that is, if node j coes after node i (that is, o j > o i ) in the ordering, there can not be a link fro node j to node i, which guarantees the acyclicity. Figure : Explanation of our ordering based DAG constraint. Now let us consider the sufficient condition. if G is a DAG, we can obtain soe topological ordering (, 2,, ) fro it. Let õ i be the index of node i in this ordering. Setting o i = (õ i ) ( i {,, }), we have in(o i) = ( ) = 0 and ax(o i) = ( ). If node j coes after node i, we have o j o i Υ ij. If node j coes before node i, we can always set Υ ij sufficiently large to satisfy Eqn. (a d). Therefore, fro a DAG, we can always construct a set of ordering variables that satisfy Eqn. (a d). Cobining the proofs above, Eqn. (a d) are the sufficient and nec- 2

3 essary condition for a directed graph G to be DAG. Proposition 2. The optiization proble in Eqn. (2) (i.e., Eqn. (4.2) in the paper) is iteratively solved by alternate optiizations of (i) o and Υ with Θ fixed, and (ii) Θ with o and Υ fixed. This optiization converges and the output Θ is DAG when λ dag > 2( 2)(n )2 +λ (2n 2 λ ) λ, where is (+) the nuber of nodes and n is the nuber of saples. in Θ,o,Υ x :,i PA i θ i λ θ i + λ dag ɛ i θ i (2) i= s.t. o j o i Υ ij, i, j {,, }, 0 o i, Υ ij 0 i j Here o and Υ are the variables defined in the DAG constraint in Section 4.2, and Θ is the odel paraeters of SGBN. The vector ɛ i denotes the i-th colun of the atrix Υ, and θ i the coponent-wise absolute value of the i-th colun of Θ. Other paraeters are defined in Table in the paper. Proof. In the following, we prove that:. The alternate optiization in Eqn. (2) converges. 2. The solution Θ of Eqn. (2) is DAG when λ dag is sufficiently large. Let us denote f(θ, o, Υ) = i= x :,i PA i θ i λ θ i + λ dag ɛ i θ i. First, we prove Eqn. (2) converges by showing that (i) f(θ, o, Υ) is lower bounded; and (ii) f(θ (t+), o (t+), Υ (t+) ) f(θ (t), o (t), Υ (t) ), eaning that the function value will onotonically decrease with the iteration nuber t. It is easy to see that f(θ, o, Υ) is lower bounded by 0, since each ter in f(θ, o, Υ) is non-negative. And the second point can be proven as follows. 3

4 At the t-th iteration, we update Θ by Θ (t+) = arg in Θ x :,i PA i θ i λ θ i + λ dag ɛ (t) i θ i (3) i= = arg in f(θ, o (t), Υ (t) ). Θ It holds that f(θ (t+), o (t), Υ (t) ) f(θ (t), o (t), Υ (t) ). Also it is noted that Θ (t+) is an achievable global iniu of Θ since f(θ, o (t), Υ (t) ) is a convex function with respect to Θ. Siilarly, we then update o and Υ by {o (t+), Υ (t+) } =arg in o,υ f(θ(t+), o, Υ) (4) s.t. o j o i Υ ij, i, j {,, }, 0 o i, Υ ij 0. i j It holds that f(θ (t+), o (t+), Υ (t+) ) f(θ (t+), o (t), Υ (t) ). Also, f(θ (t+), o, Υ) is a linear function with respect to o and Υ. Consequently we have f(θ (t+), o (t+), Υ (t+) ) f(θ (t+), o (t), Υ (t) ) f(θ (t), o (t), Υ (t) ). Therefore, the optiization proble in Eqn. (2) is guaranteed to converge with the alternate optiization strategy, because the objective function is lower-bounded and onotonically decreases with the iteration nubers. Second, we prove that when λ dag > 2( 2)(n )2 +λ (2n 2 λ ) λ, the output Θ is guaranteed to be DAG. This could be proven by contradiction. Sup- (+) pose that such a λ dag does not lead to a DAG, say, Υ ji Θ ji 0 for at least one pair of nodes i and j, with Θ ji 0 and Υ ji > 0. Without loss of generality, we assue Υ ji ( + ) (where is an arbitary positive nuber), so the ordering constraints in Eqn. (2) always hold regardless of the variables o i and o j. This is because o i and o j are constrained by 0 o i and 0 o j, and o j o i = ( + ). Based on the first-order optiality condition, Θ ji 0 i.f.f. 2 ( x :,i PA i(\j,:)θi\j) x:,j (λ + λ dag Υ ij ) > 0. Here, PA i(\j,:) denotes the eleents in the atrix PA i with the j-th row reoved (i.e., parents of the node i without the node j), and θ i\j denotes 4

5 the eleents in θ i without Θ ji. However, it can be shown that, ( ) x :,i PA i(\j,:)θ i\j x:,j x :,i x :,j + θ i\j PA i(\j,:) x :,j (5) = x :,i x :,j + k=,k i,j Θ kix :,kx :,j (n ) + ( 2)(n ) ax Θ ki (n ) + ( 2)(n )2 λ. The second last inequality holds due to the noralization of features x :,i (to zero ean ( and unit std). The last inequality holds because ax Θ ki θ i x:,i λ PA i θ i λ θ i + λ dag ɛ i θ i ) = λ f(θ, o, Υ ) λ f(0, o, Υ ) = λ x :,ix :,i = n λ. With the given λ dag, Eqn. (5) results in 2 ( x :,i PA i(\j,:)θi\j) x:,j (λ + λ dag Υ ij ) < 0, which contradicts the above first-order optiality condition with Θ ji 0. Therefore, when λ dag is sufficiently large, the output Θ is guaranteed to be DAG. Suing up the proofs above, the alternate optiization of Eqn. (2) converges and the output Θ is guaranteed to be DAG when λ dag is sufficiently large. References [] C. Bishop, Pattern Recognition and Machine Learning. Springer,

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Lecture 9 November 23, 2015

Lecture 9 November 23, 2015 CSC244: Discrepancy Theory in Coputer Science Fall 25 Aleksandar Nikolov Lecture 9 Noveber 23, 25 Scribe: Nick Spooner Properties of γ 2 Recall that γ 2 (A) is defined for A R n as follows: γ 2 (A) = in{r(u)

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters journal of ultivariate analysis 58, 96106 (1996) article no. 0041 The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Paraeters H. S. Steyn

More information

Supplementary Material for Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion

Supplementary Material for Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion Suppleentary Material for Fast and Provable Algoriths for Spectrally Sparse Signal Reconstruction via Low-Ran Hanel Matrix Copletion Jian-Feng Cai Tianing Wang Ke Wei March 1, 017 Abstract We establish

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Support Vector Machines. Maximizing the Margin

Support Vector Machines. Maximizing the Margin Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography

Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography Tight Bounds for axial Identifiability of Failure Nodes in Boolean Network Toography Nicola Galesi Sapienza Università di Roa nicola.galesi@uniroa1.it Fariba Ranjbar Sapienza Università di Roa fariba.ranjbar@uniroa1.it

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are,

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are, Page of 8 Suppleentary Materials: A ultiple testing procedure for ulti-diensional pairwise coparisons with application to gene expression studies Anjana Grandhi, Wenge Guo, Shyaal D. Peddada S Notations

More information

Support Vector Machines. Machine Learning Series Jerry Jeychandra Blohm Lab

Support Vector Machines. Machine Learning Series Jerry Jeychandra Blohm Lab Support Vector Machines Machine Learning Series Jerry Jeychandra Bloh Lab Outline Main goal: To understand how support vector achines (SVMs) perfor optial classification for labelled data sets, also a

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

Consistent Multiclass Algorithms for Complex Performance Measures. Supplementary Material

Consistent Multiclass Algorithms for Complex Performance Measures. Supplementary Material Consistent Multiclass Algoriths for Coplex Perforance Measures Suppleentary Material Notations. Let λ be the base easure over n given by the unifor rando variable (say U over n. Hence, for all easurable

More information

Understanding Machine Learning Solution Manual

Understanding Machine Learning Solution Manual Understanding Machine Learning Solution Manual Written by Alon Gonen Edited by Dana Rubinstein Noveber 17, 2014 2 Gentle Start 1. Given S = ((x i, y i )), define the ultivariate polynoial p S (x) = i []:y

More information

Linear Transformations

Linear Transformations Linear Transforations Hopfield Network Questions Initial Condition Recurrent Layer p S x W S x S b n(t + ) a(t + ) S x S x D a(t) S x S S x S a(0) p a(t + ) satlins (Wa(t) + b) The network output is repeatedly

More information

Math Reviews classifications (2000): Primary 54F05; Secondary 54D20, 54D65

Math Reviews classifications (2000): Primary 54F05; Secondary 54D20, 54D65 The Monotone Lindelöf Property and Separability in Ordered Spaces by H. Bennett, Texas Tech University, Lubbock, TX 79409 D. Lutzer, College of Willia and Mary, Williasburg, VA 23187-8795 M. Matveev, Irvine,

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Multi-Dimensional Hegselmann-Krause Dynamics

Multi-Dimensional Hegselmann-Krause Dynamics Multi-Diensional Hegselann-Krause Dynaics A. Nedić Industrial and Enterprise Systes Engineering Dept. University of Illinois Urbana, IL 680 angelia@illinois.edu B. Touri Coordinated Science Laboratory

More information

Supplementary Materials: Proofs and Technical Details for Parsimonious Tensor Response Regression Lexin Li and Xin Zhang

Supplementary Materials: Proofs and Technical Details for Parsimonious Tensor Response Regression Lexin Li and Xin Zhang Suppleentary Materials: Proofs and Tecnical Details for Parsionious Tensor Response Regression Lexin Li and Xin Zang A Soe preliinary results We will apply te following two results repeatedly. For a positive

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016/2017 Lessons 9 11 Jan 2017 Outline Artificial Neural networks Notation...2 Convolutional Neural Networks...3

More information

PAC-Bayes Analysis Of Maximum Entropy Learning

PAC-Bayes Analysis Of Maximum Entropy Learning PAC-Bayes Analysis Of Maxiu Entropy Learning John Shawe-Taylor and David R. Hardoon Centre for Coputational Statistics and Machine Learning Departent of Coputer Science University College London, UK, WC1E

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Lean Walsh Transform

Lean Walsh Transform Lean Walsh Transfor Edo Liberty 5th March 007 inforal intro We show an orthogonal atrix A of size d log 4 3 d (α = log 4 3) which is applicable in tie O(d). By applying a rando sign change atrix S to the

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Random Process Review

Random Process Review Rando Process Review Consider a rando process t, and take k saples. For siplicity, we will set k. However it should ean any nuber of saples. t () t x t, t, t We have a rando vector t, t, t. If we find

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK eospatial Science INNER CONSRAINS FOR A 3-D SURVEY NEWORK hese notes follow closely the developent of inner constraint equations by Dr Willie an, Departent of Building, School of Design and Environent,

More information

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine CSCI699: Topics in Learning and Gae Theory Lecture October 23 Lecturer: Ilias Scribes: Ruixin Qiang and Alana Shine Today s topic is auction with saples. 1 Introduction to auctions Definition 1. In a single

More information

Bootstrapping Dependent Data

Bootstrapping Dependent Data Bootstrapping Dependent Data One of the key issues confronting bootstrap resapling approxiations is how to deal with dependent data. Consider a sequence fx t g n t= of dependent rando variables. Clearly

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA Multivariate Methos Xiaoun Qi Principal Coponents Analysis -- PCA he PCA etho generates a new set of variables, calle principal coponents Each principal coponent is a linear cobination of the original

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS MODIFICATIO OF A AALYTICAL MODEL FOR COTAIER LOADIG PROBLEMS Reception date: DEC.99 otification to authors: 04 MAR. 2001 Cevriye GECER Departent of Industrial Engineering, University of Gazi 06570 Maltepe,

More information

Introduction to Machine Learning. Recitation 11

Introduction to Machine Learning. Recitation 11 Introduction to Machine Learning Lecturer: Regev Schweiger Recitation Fall Seester Scribe: Regev Schweiger. Kernel Ridge Regression We now take on the task of kernel-izing ridge regression. Let x,...,

More information

Constrained Consensus and Optimization in Multi-Agent Networks arxiv: v2 [math.oc] 17 Dec 2008

Constrained Consensus and Optimization in Multi-Agent Networks arxiv: v2 [math.oc] 17 Dec 2008 LIDS Report 2779 1 Constrained Consensus and Optiization in Multi-Agent Networks arxiv:0802.3922v2 [ath.oc] 17 Dec 2008 Angelia Nedić, Asuan Ozdaglar, and Pablo A. Parrilo February 15, 2013 Abstract We

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

On Lotka-Volterra Evolution Law

On Lotka-Volterra Evolution Law Advanced Studies in Biology, Vol. 3, 0, no. 4, 6 67 On Lota-Volterra Evolution Law Farruh Muhaedov Faculty of Science, International Islaic University Malaysia P.O. Box, 4, 570, Kuantan, Pahang, Malaysia

More information

Distributed Subgradient Methods for Multi-agent Optimization

Distributed Subgradient Methods for Multi-agent Optimization 1 Distributed Subgradient Methods for Multi-agent Optiization Angelia Nedić and Asuan Ozdaglar October 29, 2007 Abstract We study a distributed coputation odel for optiizing a su of convex objective functions

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

A Theoretical Analysis of a Warm Start Technique

A Theoretical Analysis of a Warm Start Technique A Theoretical Analysis of a War Start Technique Martin A. Zinkevich Yahoo! Labs 701 First Avenue Sunnyvale, CA Abstract Batch gradient descent looks at every data point for every step, which is wasteful

More information

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words) 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME 04469 Tel (07) 866-3540 Eail: farlow@ath.uaine.edu

More information

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes Graphical Models in Local, Asyetric Multi-Agent Markov Decision Processes Ditri Dolgov and Edund Durfee Departent of Electrical Engineering and Coputer Science University of Michigan Ann Arbor, MI 48109

More information

Design of Spatially Coupled LDPC Codes over GF(q) for Windowed Decoding

Design of Spatially Coupled LDPC Codes over GF(q) for Windowed Decoding IEEE TRANSACTIONS ON INFORMATION THEORY (SUBMITTED PAPER) 1 Design of Spatially Coupled LDPC Codes over GF(q) for Windowed Decoding Lai Wei, Student Meber, IEEE, David G. M. Mitchell, Meber, IEEE, Thoas

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning by Prof. Seungchul Lee isystes Design Lab http://isystes.unist.ac.kr/ UNIST Table of Contents I.. Probabilistic Linear Regression I... Maxiu Likelihood Solution II... Maxiu-a-Posteriori

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

A Note on Online Scheduling for Jobs with Arbitrary Release Times

A Note on Online Scheduling for Jobs with Arbitrary Release Times A Note on Online Scheduling for Jobs with Arbitrary Release Ties Jihuan Ding, and Guochuan Zhang College of Operations Research and Manageent Science, Qufu Noral University, Rizhao 7686, China dingjihuan@hotail.co

More information

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Boosting Mehryar Mohri Courant Institute and Google Research ohri@cis.nyu.edu Weak Learning Definition: concept class C is weakly PAC-learnable if there exists a (weak)

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

1 The algorithm for variable-order linear-chain CRFs

1 The algorithm for variable-order linear-chain CRFs 1 he algorith for variable-order linear-chain CRFs In this section, we introduce three algoriths that constitute the ain part of this paper. One is Su-Difference algorith, which is used to calculate the

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

Handout 6 Solutions to Problems from Homework 2

Handout 6 Solutions to Problems from Homework 2 CS 85/185 Fall 2003 Lower Bounds Handout 6 Solutions to Probles fro Hoewor 2 Ait Charabarti Couter Science Dartouth College Solution to Proble 1 1.2: Let f n stand for A 111 n. To decide the roerty f 3

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples Order Recursion Introduction Order versus Tie Updates Matrix Inversion by Partitioning Lea Levinson Algorith Interpretations Exaples Introduction Rc d There are any ways to solve the noral equations Solutions

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Time-Varying Jamming Links

Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Time-Varying Jamming Links Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Tie-Varying Jaing Links Jun Kurihara KDDI R&D Laboratories, Inc 2 5 Ohara, Fujiino, Saitaa, 356 8502 Japan Eail: kurihara@kddilabsjp

More information

Geometrical intuition behind the dual problem

Geometrical intuition behind the dual problem Based on: Geoetrical intuition behind the dual proble KP Bennett, EJ Bredensteiner, Duality and Geoetry in SVM Classifiers, Proceedings of the International Conference on Machine Learning, 2000 1 Geoetrical

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

Fairness via priority scheduling

Fairness via priority scheduling Fairness via priority scheduling Veeraruna Kavitha, N Heachandra and Debayan Das IEOR, IIT Bobay, Mubai, 400076, India vavitha,nh,debayan}@iitbacin Abstract In the context of ulti-agent resource allocation

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approxiation in Stochastic Scheduling: The Power of -Based Priority Policies Rolf Möhring, Andreas Schulz, Marc Uetz Setting (A P p stoch, r E( w and (B P p stoch E( w We will assue that the processing

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

}, (n 0) be a finite irreducible, discrete time MC. Let S = {1, 2,, m} be its state space. Let P = [p ij. ] be the transition matrix of the MC.

}, (n 0) be a finite irreducible, discrete time MC. Let S = {1, 2,, m} be its state space. Let P = [p ij. ] be the transition matrix of the MC. Abstract Questions are posed regarding the influence that the colun sus of the transition probabilities of a stochastic atrix (with row sus all one) have on the stationary distribution, the ean first passage

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

The Fundamental Basis Theorem of Geometry from an algebraic point of view

The Fundamental Basis Theorem of Geometry from an algebraic point of view Journal of Physics: Conference Series PAPER OPEN ACCESS The Fundaental Basis Theore of Geoetry fro an algebraic point of view To cite this article: U Bekbaev 2017 J Phys: Conf Ser 819 012013 View the article

More information

Midterm 1 Sample Solution

Midterm 1 Sample Solution Midter 1 Saple Solution NOTE: Throughout the exa a siple graph is an undirected, unweighted graph with no ultiple edges (i.e., no exact repeats of the sae edge) and no self-loops (i.e., no edges fro a

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Support Vector Machines. Goals for the lecture

Support Vector Machines. Goals for the lecture Support Vector Machines Mark Craven and David Page Coputer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Soe of the slides in these lectures have been adapted/borrowed fro aterials developed

More information

A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay

A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay A Low-Coplexity Congestion Control and Scheduling Algorith for Multihop Wireless Networks with Order-Optial Per-Flow Delay Po-Kai Huang, Xiaojun Lin, and Chih-Chun Wang School of Electrical and Coputer

More information

Introduction to Optimization Techniques. Nonlinear Programming

Introduction to Optimization Techniques. Nonlinear Programming Introduction to Optiization echniques Nonlinear Prograing Optial Solutions Consider the optiization proble in f ( x) where F R n xf Definition : x F is optial (global iniu) for this proble, if f( x ) f(

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Lecture 20 November 7, 2013

Lecture 20 November 7, 2013 CS 229r: Algoriths for Big Data Fall 2013 Prof. Jelani Nelson Lecture 20 Noveber 7, 2013 Scribe: Yun Willia Yu 1 Introduction Today we re going to go through the analysis of atrix copletion. First though,

More information

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization Use of PSO in Paraeter Estiation of Robot Dynaics; Part One: No Need for Paraeterization Hossein Jahandideh, Mehrzad Navar Abstract Offline procedures for estiating paraeters of robot dynaics are practically

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Support recovery in compressed sensing: An estimation theoretic approach

Support recovery in compressed sensing: An estimation theoretic approach Support recovery in copressed sensing: An estiation theoretic approach Ain Karbasi, Ali Horati, Soheil Mohajer, Martin Vetterli School of Coputer and Counication Sciences École Polytechnique Fédérale de

More information

Asynchronous Gossip Algorithms for Stochastic Optimization

Asynchronous Gossip Algorithms for Stochastic Optimization Asynchronous Gossip Algoriths for Stochastic Optiization S. Sundhar Ra ECE Dept. University of Illinois Urbana, IL 680 ssrini@illinois.edu A. Nedić IESE Dept. University of Illinois Urbana, IL 680 angelia@illinois.edu

More information

An improved self-adaptive harmony search algorithm for joint replenishment problems

An improved self-adaptive harmony search algorithm for joint replenishment problems An iproved self-adaptive harony search algorith for joint replenishent probles Lin Wang School of Manageent, Huazhong University of Science & Technology zhoulearner@gail.co Xiaojian Zhou School of Manageent,

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information