A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

Size: px
Start display at page:

Download "A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)"

Transcription

1 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME Tel (07) Eail: farlow@ath.uaine.edu 1 Jerry Farlow, Dept of Matheatics, University of Maine, Orono, ME , farlow@ath.uaine.edu

2 Abstract: Logical regression, as described by Ruczinski, Kooperberg, and LeBlanc (003) is a ultivariable regression ethodology for predicting a Boolean variable Y fro logical relationships aong a collection of Boolean predictor variables, More specifically, one seeks a regression odel of the for g E Y = b + b L + b L + b L (1) ( [ ]) where the coefficients b0, b1,..., b and the logical expressions L, = 1,..., are to be deterined. The expressions L are logical relationships (Boolean functions having values 0 or 1) aong the predictor variables, such as " 1, are true but not ", or 5 " 3, 5, 7 are true but not 1 or " or "if 1 and are true then 5 is true, where true is taken as 1 and false taken as 0. A aor proble in finding the best odel is the oveent fro one logical expression to another in an effort to find a path to optiality. The authors investigate the use of a greedy algorith as well as the siulated annealing algorith in their search for optiality. In this paper we develop a strategy, based on the self-organizing ethod of Ivakhnenko, to first find a collection of logical relations L k for predicting the dependent variable Y and then use ordinary linear regression to find a regression equation of the for (1) and possibly a ore general odel by adding continuous predictor variables to the ix. An exaple is presented to deonstrate the potential use of this ethod. Key Words: Logical regression, GMDH algorith

3 3 1. Introduction Our goal is to use a variation of the self-organizing GMDH algorith to find a collection of logical relations Y = L (,,..., ), k = 1,,..., () k 1 for predicting the Boolean variable Y fro the Boolean variables 1,,...,. Although the procedure as described finds the best logical relations, one ost likely is interested only in the best one or two. Inasuch as the GMDH algorith is not known to ost people, we outline the basic ethod so that the adoption to logical regression is better appreciated. For ore inforation on the GMDH algorith the reader can consult the book, Self-Organizing Methods in Modeling, by Farlow (1984) or the ore coplete and recent book, Self-Organizing Data Mining by Johann Mueller and Frank Leke, which can be purchased and downloaded online at The Group Method of Data Handling (GMDH) Algorith One ight say that the GMDH algorith builds a atheatical odel siilar to the way biological organiss are created through evolution. That is, starting with a few basic prieval fors (i.e. equations); one grows a new generation of ore coplex off-springs (equations), then allows a survival-of-the-fittest principle to deterine which off-springs survive and which do not. The idea being that each new generation of offsprings (equations) is better suited to odel the real world than previous ones. Continuing this process for ore generations, one finds a collection of odels that hopefully describes the proble at hand. The process is stopped once the odel begins to overfit the real world, thus stopping when the odel reaches optial coplexity. In 1966 the Ukrainian cyberneticist, A.G. Ivakhnenko, discouraged by the fact that any atheatical odels require knowledge of the real world that are difficult or ipossible to know, devised a heuristic self-organizing ethod, called the Group Method of Data Handling algorith. The GMDH algorith can be broken into a few distinct steps.

4 4 Step 1 (constructing new variables z1, z,..., z C (,) ) The algorith begins with regression-type data yi, xi 1, xi,..., xi, i = 1,,..., n where y is the dependent variable to be predicted and x1, x,... x are predictor variables. The n observations required for the algorith are subdivided into two groups, one group of nt observations are called the training observations (fro which the odel is built) and the reaining n nt observations (which deterines when the odel is optial) are called checking observations. This is a coon cross-validation strategy for deterining when odels are optial; building the odel fro one set of observations (training set) and checking the odel against independent observations (checking set). See Figure 1. Input Data for the GMDH Algorith Figure 1 The algorith begins by finding the least-squares regression polynoial of the for y = A + Bx + Cx + Dx + Ex + Fx x (3) i i i for each C(, ) = ( 1) / pair of distinct independent variables x, x using the i observations in the training set. These ( 1) / regression surfaces are illustrated in Figure.

5 5 Coputed Quadratic Regression Surfaces Figure One now evaluates each of the C(, ) regression polynoials at all n data points and stores these values (new generation of variables) in coluns of a new n C(, ) array, say Z. The evaluation of the first regression polynoial and the storage if its n values in the first colun of Z is illustrated in Figure 3. Evaluating the (, ) C Quadratic Regression Polynoials Figure 3

6 6 The obect is to keep only the best of these new coluns and this is where the checking set coes into play. Step (screening out the least effective variables) This step replaces the original variables (coluns of ) by those coluns of Z that best predict y, based on the training set observations. This is done by coputing for each colun of Z soe easure of association; say the root ean square r given by nt ( yi zi ) i= 1 r = nt, = 1,,..., C(, ) y i= 1 i (4) then selecting those coluns of Z that satisfy r < R, where R is soe prescribed nuber. The nuber of coluns of Z that replace the coluns of ay be larger or saller than the nuber of coluns of, although often one siply chooses coluns of Z to replace the coluns of, thus keeping the nuber of predictor variables constant. Step 3 (test for optiality) We now cross validate the odel by coputing the goodness of fit of new variables sued over the checking set. That is, we copute n ( yi zi ) i= nt+ 1 R = n, = 1,,..., C(, ) y i= nt+ 1 Step we find the sallest of the root ean squares each generation (iteration) this value is plotted as shown in Figure 4. i R s and call it RMIN, and then at

7 7 Deterining the Optial Polynoial Figure 4 The values of RMIN will decrease for a few iterations (aybe fro 3-5 iterations) but then starts to increase when the odel begins to overfit the observations on which it was built. Hence, one stops procedure when the RMIN curve reaches its iniu and selects the colun of Z having the sallest value of R as the best predictor. When the algorith stops, the quadratic regression polynoials found at each generation has been stored, and hence by coposition one can for a high-order regression polynoial of the for 1 (5) y = a + b x + c x x + d x x x + i i i ik i k i= 1 i= 1 = 1 i= 1 = 1 k = 1 known as the Ivakhnenko polynoial that best predicts Y fro. At each iteration the degree of the Ivakhnenko doubles, and for a p-th order regression polynoial the nuber of ters in the polynoial will be ( + 1)( + ) ( + p) /!. If one started with = 10 input variables and the algorith went through 4 generations, the Ivakhnenko polynoial would be of degree 4 = 16 and would contain ters such as x1x3 x 7. Step 4 (Applying the results of the GMDH Algorith)

8 8 One doesn t actually copute the coefficients in the Ivakhenko polynoial, but saves the regression coefficients A,B,C,D,E,F at each generation. Hence, to evaluate the Ivakhnenko polynoial and use the odel as a predictor of Y fro new observations, one siply carries out repeated copositions of these quadratic expressions. Figure 5 illustrates this process. Evaluation of the Ivakhnenko Polynoial Figure 5 3. Applying GMDH to Logical Regression We now use the ideas of the GMDH algorith to find logical expressions aong the Boolean variables 1,,..., that best predict of Y. Starting with n observations of Y and 1,,..., we subdivide the observations into nt training observations and nc = n nt checking observations. We then use the observations in the training set to deterine for each C(, ) pair of dependent variables, how well each of binary functions i,,,,,,, (6) i i i i i i i i

9 9 predicts Y. We do this by assigning a 1 to an observation if Y f (, ), where f (, ) is one of the eight binary functions. Carrying out this operation for each of i the n observation for each of the eight binary functions and each pair of dependent variables yields an n 8 C(, ) atrix of 0 s and 1 s which we call Z. Since the 1 s in the coluns of Z represent correct predictions of Y for a given logical function and pair of predictor variables, we su the coluns of Z in the training set and rank the in descending order and select the largest ones. We have chosen the largest sus. These coluns of Z with the largest sus represent those logical relations between a given two variables that best predicts Y. Typical exaples ight be 3 7 or. 5 7 We now replace the original data by the best coluns of Z. This gives us a new data set which are evaluations of the best logical relationships of the original variables, hence should act as better predictors of Y than the original observations. We then repeat this process again and again, each tie finding new logical relations of the previous variables which in tern are logical relations of earlier variables. Before starting each new iteration however, we check best predicted values of Y (the first colun of the atrix Z in the last nc rows) against the nc observations of Y in the checking set to deterine goodness of fit. When the percentage of correct predictions reaches a axiu, the process is stopped. At this tie we have logical expressions L for estiating Y ordered fro top to botto. We then continue the process by finding the linear regression equation i g( E[ Y ]) = b + b L + b L + b L + a + a W + a W a W (7) p p where the variables W1, W,..., W p are continuous variables we can (possibly) add to the Boolean variables L1, L,..., L. We then find the coefficients b, a by usual linear regression using the original data Y, along with the data for the continuous variables W1, W,..., W p.

10 10 4. Siulation of the Process We generated ten data sets, each with 50 observations and ten predictor variables. The predictor variables 1,, were independent Boolean variables ( p = 0.5 ), and the dependent variable Y was deterined by Y ( A B) ( C D) with probability q = Bernoulli var iable (0.5) with probability 1 q (8) where 0 q 1 was chosen (generally about 0.7) and A, B, C, D were any four of the variables 1,,... 10, possibly repeated, or their negations. Exaple: We generated 50 observations of 10 independent variables, each with a Bernoulli distribution ( p = 0.5 ) and dependent variable Y generated by Y ( 1 ) ( 3 4) with probability q = Boolean var iable(0.5) with probability 1 q Input: input nuber of independent variables 10 input nuber of observations 50 input nuber of observations in the training set 150 input p = Bernoulli variable in dep variables... aybe p =.5.5 input q = probability of picking Y as a logical relation of independent variables.9 input the first of the 4 variables to be used 1 input the second of the 4 variables to be used input the third of the 4 variables to be used 3 input the fourth of the 4 variables to be used 4 input nuber of iterations 5 Output:

11 11 Logical Regression nuber of variables = 10 nuber of observations = 50 nuber of observations in the training set = 150 nuber of observations in the checking set = 100 Iteration 1 (best 3 predictors) predicts independent variable in the training set 76% of the tie 3 4 predicts independent variable in the training set 75% of the tie 1 predicts independent variable in the training set 68% of the tie 3 best predictor 3 4 predicts checking set dependent variable 75% of the tie Iteration (best 3 predictors) ( ) ( ) predicts independent variable in training set 95% of the tie ( ) ( ) predicts independent variable in training set 95% of the tie 4 3 ( ) ( ) predicts independent variable in training set 93% of the tie best predictor ( 1 ) ( 3 4) predicts checking set Y 93% of the tie coefficients in linear cobination of logical functions, the first one is a constant ter stopped after iterations References: Farlow, S. J., 1984, Self-Organizing Methods in Modeling: GMDH Type Algoriths, Marcel Dekker. Ruczinski, I., Kooperberg, C., and LeBlanc, M., 003, Logic Regression, Cop. Graph. Statist 1.

12 1

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Mathematical Model and Algorithm for the Task Allocation Problem of Robots in the Smart Warehouse

Mathematical Model and Algorithm for the Task Allocation Problem of Robots in the Smart Warehouse Aerican Journal of Operations Research, 205, 5, 493-502 Published Online Noveber 205 in SciRes. http://www.scirp.org/journal/ajor http://dx.doi.org/0.4236/ajor.205.56038 Matheatical Model and Algorith

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

Bipartite subgraphs and the smallest eigenvalue

Bipartite subgraphs and the smallest eigenvalue Bipartite subgraphs and the sallest eigenvalue Noga Alon Benny Sudaov Abstract Two results dealing with the relation between the sallest eigenvalue of a graph and its bipartite subgraphs are obtained.

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

A method to determine relative stroke detection efficiencies from multiplicity distributions

A method to determine relative stroke detection efficiencies from multiplicity distributions A ethod to deterine relative stroke detection eiciencies ro ultiplicity distributions Schulz W. and Cuins K. 2. Austrian Lightning Detection and Inoration Syste (ALDIS), Kahlenberger Str.2A, 90 Vienna,

More information

Homework 3 Solutions CSE 101 Summer 2017

Homework 3 Solutions CSE 101 Summer 2017 Hoework 3 Solutions CSE 0 Suer 207. Scheduling algoriths The following n = 2 jobs with given processing ties have to be scheduled on = 3 parallel and identical processors with the objective of iniizing

More information

REDUCTION OF FINITE ELEMENT MODELS BY PARAMETER IDENTIFICATION

REDUCTION OF FINITE ELEMENT MODELS BY PARAMETER IDENTIFICATION ISSN 139 14X INFORMATION TECHNOLOGY AND CONTROL, 008, Vol.37, No.3 REDUCTION OF FINITE ELEMENT MODELS BY PARAMETER IDENTIFICATION Riantas Barauskas, Vidantas Riavičius Departent of Syste Analysis, Kaunas

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters journal of ultivariate analysis 58, 96106 (1996) article no. 0041 The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Paraeters H. S. Steyn

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

Ensemble Based on Data Envelopment Analysis

Ensemble Based on Data Envelopment Analysis Enseble Based on Data Envelopent Analysis So Young Sohn & Hong Choi Departent of Coputer Science & Industrial Systes Engineering, Yonsei University, Seoul, Korea Tel) 82-2-223-404, Fax) 82-2- 364-7807

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

The Methods of Solution for Constrained Nonlinear Programming

The Methods of Solution for Constrained Nonlinear Programming Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 01-06 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.co The Methods of Solution for Constrained

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Time-Varying Jamming Links

Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Time-Varying Jamming Links Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Tie-Varying Jaing Links Jun Kurihara KDDI R&D Laboratories, Inc 2 5 Ohara, Fujiino, Saitaa, 356 8502 Japan Eail: kurihara@kddilabsjp

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

A general forulation of the cross-nested logit odel Michel Bierlaire, Dpt of Matheatics, EPFL, Lausanne Phone: Fax:

A general forulation of the cross-nested logit odel Michel Bierlaire, Dpt of Matheatics, EPFL, Lausanne Phone: Fax: A general forulation of the cross-nested logit odel Michel Bierlaire, EPFL Conference paper STRC 2001 Session: Choices A general forulation of the cross-nested logit odel Michel Bierlaire, Dpt of Matheatics,

More information

Qualitative Modelling of Time Series Using Self-Organizing Maps: Application to Animal Science

Qualitative Modelling of Time Series Using Self-Organizing Maps: Application to Animal Science Proceedings of the 6th WSEAS International Conference on Applied Coputer Science, Tenerife, Canary Islands, Spain, Deceber 16-18, 2006 183 Qualitative Modelling of Tie Series Using Self-Organizing Maps:

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

R. L. Ollerton University of Western Sydney, Penrith Campus DC1797, Australia

R. L. Ollerton University of Western Sydney, Penrith Campus DC1797, Australia FURTHER PROPERTIES OF GENERALIZED BINOMIAL COEFFICIENT k-extensions R. L. Ollerton University of Western Sydney, Penrith Capus DC1797, Australia A. G. Shannon KvB Institute of Technology, North Sydney

More information

Convex Programming for Scheduling Unrelated Parallel Machines

Convex Programming for Scheduling Unrelated Parallel Machines Convex Prograing for Scheduling Unrelated Parallel Machines Yossi Azar Air Epstein Abstract We consider the classical proble of scheduling parallel unrelated achines. Each job is to be processed by exactly

More information

When Short Runs Beat Long Runs

When Short Runs Beat Long Runs When Short Runs Beat Long Runs Sean Luke George Mason University http://www.cs.gu.edu/ sean/ Abstract What will yield the best results: doing one run n generations long or doing runs n/ generations long

More information

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval Unifor Approxiation and Bernstein Polynoials with Coefficients in the Unit Interval Weiang Qian and Marc D. Riedel Electrical and Coputer Engineering, University of Minnesota 200 Union St. S.E. Minneapolis,

More information

A Generalized Permanent Estimator and its Application in Computing Multi- Homogeneous Bézout Number

A Generalized Permanent Estimator and its Application in Computing Multi- Homogeneous Bézout Number Research Journal of Applied Sciences, Engineering and Technology 4(23): 5206-52, 202 ISSN: 2040-7467 Maxwell Scientific Organization, 202 Subitted: April 25, 202 Accepted: May 3, 202 Published: Deceber

More information

Stochastic Subgradient Methods

Stochastic Subgradient Methods Stochastic Subgradient Methods Lingjie Weng Yutian Chen Bren School of Inforation and Coputer Science University of California, Irvine {wengl, yutianc}@ics.uci.edu Abstract Stochastic subgradient ethods

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Understanding Machine Learning Solution Manual

Understanding Machine Learning Solution Manual Understanding Machine Learning Solution Manual Written by Alon Gonen Edited by Dana Rubinstein Noveber 17, 2014 2 Gentle Start 1. Given S = ((x i, y i )), define the ultivariate polynoial p S (x) = i []:y

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3 A. Find all ordered pairs a, b) of positive integers for which a + b = 3 08. Answer. The six ordered pairs are 009, 08), 08, 009), 009 337, 674) = 35043, 674), 009 346, 673) = 3584, 673), 674, 009 337)

More information

SPECTRUM sensing is a core concept of cognitive radio

SPECTRUM sensing is a core concept of cognitive radio World Acadey of Science, Engineering and Technology International Journal of Electronics and Counication Engineering Vol:6, o:2, 202 Efficient Detection Using Sequential Probability Ratio Test in Mobile

More information

The Transactional Nature of Quantum Information

The Transactional Nature of Quantum Information The Transactional Nature of Quantu Inforation Subhash Kak Departent of Coputer Science Oklahoa State University Stillwater, OK 7478 ABSTRACT Inforation, in its counications sense, is a transactional property.

More information

Testing Properties of Collections of Distributions

Testing Properties of Collections of Distributions Testing Properties of Collections of Distributions Reut Levi Dana Ron Ronitt Rubinfeld April 9, 0 Abstract We propose a fraework for studying property testing of collections of distributions, where the

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Analysis of Impulsive Natural Phenomena through Finite Difference Methods A MATLAB Computational Project-Based Learning

Analysis of Impulsive Natural Phenomena through Finite Difference Methods A MATLAB Computational Project-Based Learning Analysis of Ipulsive Natural Phenoena through Finite Difference Methods A MATLAB Coputational Project-Based Learning Nicholas Kuia, Christopher Chariah, Mechatronics Engineering, Vaughn College of Aeronautics

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information

The dynamic game theory methods applied to ship control with minimum risk of collision

The dynamic game theory methods applied to ship control with minimum risk of collision Risk Analysis V: Siulation and Hazard Mitigation 293 The dynaic gae theory ethods applied to ship control with iu risk of collision J. Lisowski Departent of Ship Autoation, Gdynia Maritie University, Poland

More information

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS Jochen Till, Sebastian Engell, Sebastian Panek, and Olaf Stursberg Process Control Lab (CT-AST), University of Dortund,

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

On Rough Interval Three Level Large Scale Quadratic Integer Programming Problem

On Rough Interval Three Level Large Scale Quadratic Integer Programming Problem J. Stat. Appl. Pro. 6, No. 2, 305-318 2017) 305 Journal of Statistics Applications & Probability An International Journal http://dx.doi.org/10.18576/jsap/060206 On Rough Interval Three evel arge Scale

More information

Support Vector Machines. Maximizing the Margin

Support Vector Machines. Maximizing the Margin Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

More information

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical

ASSUME a source over an alphabet size m, from which a sequence of n independent samples are drawn. The classical IEEE TRANSACTIONS ON INFORMATION THEORY Large Alphabet Source Coding using Independent Coponent Analysis Aichai Painsky, Meber, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE arxiv:67.7v [cs.it] Jul

More information

Divisibility of Polynomials over Finite Fields and Combinatorial Applications

Divisibility of Polynomials over Finite Fields and Combinatorial Applications Designs, Codes and Cryptography anuscript No. (will be inserted by the editor) Divisibility of Polynoials over Finite Fields and Cobinatorial Applications Daniel Panario Olga Sosnovski Brett Stevens Qiang

More information

Soft-margin SVM can address linearly separable problems with outliers

Soft-margin SVM can address linearly separable problems with outliers Non-linear Support Vector Machines Non-linearly separable probles Hard-argin SVM can address linearly separable probles Soft-argin SVM can address linearly separable probles with outliers Non-linearly

More information

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS MODIFICATIO OF A AALYTICAL MODEL FOR COTAIER LOADIG PROBLEMS Reception date: DEC.99 otification to authors: 04 MAR. 2001 Cevriye GECER Departent of Industrial Engineering, University of Gazi 06570 Maltepe,

More information

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm Acta Polytechnica Hungarica Vol., No., 04 Sybolic Analysis as Universal Tool for Deriving Properties of Non-linear Algoriths Case study of EM Algorith Vladiir Mladenović, Miroslav Lutovac, Dana Porrat

More information

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation journal of coplexity 6, 459473 (2000) doi:0.006jco.2000.0544, available online at http:www.idealibrary.co on On the Counication Coplexity of Lipschitzian Optiization for the Coordinated Model of Coputation

More information

PROXSCAL. Notation. W n n matrix with weights for source k. E n s matrix with raw independent variables F n p matrix with fixed coordinates

PROXSCAL. Notation. W n n matrix with weights for source k. E n s matrix with raw independent variables F n p matrix with fixed coordinates PROXSCAL PROXSCAL perfors ultidiensional scaling of proxiity data to find a leastsquares representation of the obects in a low-diensional space. Individual differences odels can be specified for ultiple

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate The Siplex Method is Strongly Polynoial for the Markov Decision Proble with a Fixed Discount Rate Yinyu Ye April 20, 2010 Abstract In this note we prove that the classic siplex ethod with the ost-negativereduced-cost

More information

Recursive Algebraic Frisch Scheme: a Particle-Based Approach

Recursive Algebraic Frisch Scheme: a Particle-Based Approach Recursive Algebraic Frisch Schee: a Particle-Based Approach Stefano Massaroli Renato Myagusuku Federico Califano Claudio Melchiorri Atsushi Yaashita Hajie Asaa Departent of Precision Engineering, The University

More information

M ath. Res. Lett. 15 (2008), no. 2, c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS. Van H. Vu. 1.

M ath. Res. Lett. 15 (2008), no. 2, c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS. Van H. Vu. 1. M ath. Res. Lett. 15 (2008), no. 2, 375 388 c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS Van H. Vu Abstract. Let F q be a finite field of order q and P be a polynoial in F q[x

More information

Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem

Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem Genetic Quantu Algorith and its Application to Cobinatorial Optiization Proble Kuk-Hyun Han Dept. of Electrical Engineering, KAIST, 373-, Kusong-dong Yusong-gu Taejon, 305-70, Republic of Korea khhan@vivaldi.kaist.ac.kr

More information

EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS

EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS Zhi-Wei Sun Departent of Matheatics, Nanjing University Nanjing 10093, People s Republic of China zwsun@nju.edu.cn Abstract In this paper we establish soe explicit

More information

Interactive Markov Models of Evolutionary Algorithms

Interactive Markov Models of Evolutionary Algorithms Cleveland State University EngagedScholarship@CSU Electrical Engineering & Coputer Science Faculty Publications Electrical Engineering & Coputer Science Departent 2015 Interactive Markov Models of Evolutionary

More information

IN modern society that various systems have become more

IN modern society that various systems have become more Developent of Reliability Function in -Coponent Standby Redundant Syste with Priority Based on Maxiu Entropy Principle Ryosuke Hirata, Ikuo Arizono, Ryosuke Toohiro, Satoshi Oigawa, and Yasuhiko Takeoto

More information

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 3: Linear Multistep Methods: Absolute Stability, Part II 5.7 Linear ultistep ethods: absolute stability At this point, it ay well

More information

The Algorithms Optimization of Artificial Neural Network Based on Particle Swarm

The Algorithms Optimization of Artificial Neural Network Based on Particle Swarm Send Orders for Reprints to reprints@benthascience.ae The Open Cybernetics & Systeics Journal, 04, 8, 59-54 59 Open Access The Algoriths Optiization of Artificial Neural Network Based on Particle Swar

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

ANALYTICAL INVESTIGATION AND PARAMETRIC STUDY OF LATERAL IMPACT BEHAVIOR OF PRESSURIZED PIPELINES AND INFLUENCE OF INTERNAL PRESSURE

ANALYTICAL INVESTIGATION AND PARAMETRIC STUDY OF LATERAL IMPACT BEHAVIOR OF PRESSURIZED PIPELINES AND INFLUENCE OF INTERNAL PRESSURE DRAFT Proceedings of the ASME 014 International Mechanical Engineering Congress & Exposition IMECE014 Noveber 14-0, 014, Montreal, Quebec, Canada IMECE014-36371 ANALYTICAL INVESTIGATION AND PARAMETRIC

More information

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields.

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields. s Vector Moving s and Coputer Science Departent The University of Texas at Austin October 28, 2014 s Vector Moving s Siple classical dynaics - point asses oved by forces Point asses can odel particles

More information

Support Vector Machines. Goals for the lecture

Support Vector Machines. Goals for the lecture Support Vector Machines Mark Craven and David Page Coputer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Soe of the slides in these lectures have been adapted/borrowed fro aterials developed

More information

Lecture 13 Eigenvalue Problems

Lecture 13 Eigenvalue Problems Lecture 13 Eigenvalue Probles MIT 18.335J / 6.337J Introduction to Nuerical Methods Per-Olof Persson October 24, 2006 1 The Eigenvalue Decoposition Eigenvalue proble for atrix A: Ax = λx with eigenvalues

More information

Distributed Subgradient Methods for Multi-agent Optimization

Distributed Subgradient Methods for Multi-agent Optimization 1 Distributed Subgradient Methods for Multi-agent Optiization Angelia Nedić and Asuan Ozdaglar October 29, 2007 Abstract We study a distributed coputation odel for optiizing a su of convex objective functions

More information

Lower Bounds for Quantized Matrix Completion

Lower Bounds for Quantized Matrix Completion Lower Bounds for Quantized Matrix Copletion Mary Wootters and Yaniv Plan Departent of Matheatics University of Michigan Ann Arbor, MI Eail: wootters, yplan}@uich.edu Mark A. Davenport School of Elec. &

More information

The Euler-Maclaurin Formula and Sums of Powers

The Euler-Maclaurin Formula and Sums of Powers DRAFT VOL 79, NO 1, FEBRUARY 26 1 The Euler-Maclaurin Forula and Sus of Powers Michael Z Spivey University of Puget Sound Tacoa, WA 98416 spivey@upsedu Matheaticians have long been intrigued by the su

More information

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes Graphical Models in Local, Asyetric Multi-Agent Markov Decision Processes Ditri Dolgov and Edund Durfee Departent of Electrical Engineering and Coputer Science University of Michigan Ann Arbor, MI 48109

More information

LONG-TERM PREDICTIVE VALUE INTERVAL WITH THE FUZZY TIME SERIES

LONG-TERM PREDICTIVE VALUE INTERVAL WITH THE FUZZY TIME SERIES Journal of Marine Science and Technology, Vol 19, No 5, pp 509-513 (2011) 509 LONG-TERM PREDICTIVE VALUE INTERVAL WITH THE FUZZY TIME SERIES Ming-Tao Chou* Key words: fuzzy tie series, fuzzy forecasting,

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information