Topic 5a Introduction to Curve Fitting & Linear Regression

Size: px
Start display at page:

Download "Topic 5a Introduction to Curve Fitting & Linear Regression"

Transcription

1 /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline Introduction Statistics o Data Sets Best Fit ethods Linear Regression (ugly ath) Linear Least Squares (clean ath)

2 /7/08 Introduction 3 What is Curve Fitting? Curve itting is siply itting an analytical equation to a set o easured data. data saple it curve x ABe xc D Curve itting deterines the values o A, B, C, and D so that (x) best represents the given data. 4

3 /7/08 Why Fit Data to a Curve? Estiate data between discrete values (interpolation) Find a axiu or iniu. Deriving inite dierence approxiations. Fit easured data to an analytical equation to extract eaningul paraeters. Reove noise ro a unction. Observe and quantiy general trends. 5 wo Categories o Curve Fitting Best Fit easured data has noise so the curve does not attept to intercept every point. Exact Fit Data saples are assued to be exact and the curve is orced to pass through each one. Linear regression (ugly ath) Linear least squares (clean ath) Nonlinear regression (oderate ath) Fitting to polynoials 6 3

4 /7/08 Statistics o Data Sets 7 Arithetic ean I we had to coe up with a single nuber that be represents an entire set o data, the arithetic ean would probably be it. avg 8 4

5 /7/08 Geoetric ean he geoetric ean is deined as g he arithetic ean tends to suppress the signiicance o outlying data saples. With the geoetric ean, even a single sall value aong any large values can doinate the ean. his is useul in optiizations where ultiple paraeters ust be axiized at the sae tie and it is not acceptable to have any one o the low. 9 Variance & Standard Deviation Standard Deviation he standard deviation is a easure o the spread o the data about the ean. It is convenient because it shares the sae units as the data. avg Variance v Variance is used ore coonly in calculations, but carries the sae inoration as the standard deviation. avg v 0 5

6 /7/08 Coeicient o Variation he coeicient o variation (CV) is the standard deviation noralized to the ean. hink o it as relative standard deviation. CV avg Linear Regression (Best Fit, Ugly ath) 6

7 /7/08 Goal o Linear Regression he goal o linear regression is to it a straight line to a set o easured data that has noise. x, y, x, y,, x, y y a a x 0 3 Stateent o Proble Given a set o easured data points: (x,y ), (x,y ),, (x,y ), we write our equation o the line or each point. y a a x 0 y a a x 0 y a a x 0 e e e o ake these equations correct, we ust introduce an error ter e called the residual. We wish to deterine values o a 0 and a such that the residual ters e are as sall as possible. 4 7

8 /7/08 Criteria or Best Fit We ust deine a single quantity that tells us how good the line its our set o data. Guess # Su o Residuals E e his does not work because negative and positive residuals can cancel and islead the overall criteria to think there is no error. Guess # Su o agnitude o Residuals E e his does not work because is does not lead to a unique best it. Guess #3 Su o Squares o Residuals E e his works and leads to a unique solution. 5 Equation or Criterion Our line equation or the th saple is y a a x e 0 Solving this or the residual e gives e y a ax 0 his is the value o y o our line at point x. his is our easured value o y. Fro this, we can write our criterion as e easured, line, a0 x E y y y a 6 8

9 /7/08 Least Squares Fit We wish to iniize the error criterion E. We can identiy inius when the irst order derivative is zero. E E 0 and 0 a a 0 We seek the values o a 0 and a that satisy these equations. his approach is solving the proble by least squares (we are iniizing the squares o the residuals). 7 he Fun ath Step Dierential E with respect to each o the unknowns. E a y a0 ax a 0 0 y a0 ax a 0 y a a x 0 y a a x 0 E y a0 ax a a y a0 ax a y a a x x 0 y a a x x 0 8 9

10 /7/08 he Fun ath Step We set the derivatives to zero to ind the iniu o E. E 0 a 0 y a a x 0 y a a x 0 y a a x 0 E 0 a y a a x x 0 y a a x x 0 yx a0x ax 9 he Fun ath Step 3 We write these as two siultaneous equations. hese are called the noral equations. E E 0 0 a0 a y a a x y a0 axx 0 y a0 ax y a0 ax y a0 axx yx a0x ax a a x y 0 0 a x a x y x 0 0

11 /7/08 he Fun ath Step 4 he noral equations are solved siultaneously and the solution is a y a x 0 avg avg x y avg avg x y x y x y x x a Yikes! here has to be an easier way! Linear Least Squares (Best Fit, Clean ath)

12 /7/08 Stateent o Proble We wish to it a set o easured data points to a curve containing N + ters: a z a z a z a z 0 0 N N z a n n easured value paraeters ro which is evaluated coeicients or the curve it 3 Forulation o atrix Equation We start by writing the unction or each o our easureents. We also include the residual ter. a0z0,az, anzn,e a0z0, az, anzn, e a z a z a z e 0 0,, N N, his large set o equations is put into atrix or. z z z e 0,, N, z 0, z, z N, a 0 e z 3 0,3 z,3 z N,3 a e 3 z 0, z, z N, a N e z 0, z, zn, e Zae or Zae 4

13 /7/08 Forulation o Solution by Least Squares ( o 4) Step Solve atrix equation or e. Zae e Za Step Calculate the error criterion E ro e. E Step 3 We substitute our equation or e ro Step into our equation or E ro Step. Za E e e Za e e e 3 e e e e3 e e e e ee 5 Forulation o Solution by Least Squares ( o 4) Step 4 Our new atrix equation is algebraically anipulated as ollows in order to ake it easier to ind its irst order derivative. Za Za original equation E a Z Za distribute the transpose Zaa Z a Z Za hese are scalars and transposes o each other so they are equal. expand equation a Z a Z Za cobine ters 6 3

14 /7/08 Forulation o Solution by Least Squares (3 o 4) Step 5 We dierential E with respect to a. We wish to deterine a that iniizes E. We can do this using the irst derivative rule. E a Z a Z Za E a Z a Z Za substitute in expression or E a a a is not a unction o a az a azza a Z ZZa inish dierentiation 7 Forulation o Solution by Least Squares (4 o 4) Step 6 We ind the value o a that akes the derivative equal to zero. E Z ZZa 0 a ZZZa0 ZZaZ Observe that this is the original equation preultiplied by Z. ZZa Z a Z Z Z 8 4

15 /7/08 DO NO SIPLIFY FURHER! I we were to sipliy our least squares equation, we would get a Z Z Z Z Z Z Z I his is just our original equation again ( = Za) without the leastsquares approach incorporated. 9 Visualizing Least Squares ( o 3) We are initially given a atrix equation with ore equations than unknowns. 30 5

16 /7/08 Visualizing Least Squares ( o 3) We preultiply by the transpose o A. 3 Visualizing Least Squares (3 o 3) he atrix equations reduces to the sae nuber o equations as unknowns, which is solvable by any standard algoriths. 3 6

17 /7/08 Least Squares Algorith Step Construct atrices. Z is essentially just a atrix o the coordinates o the data points. is a colun vector o the easureents. z z z z z z z z z z z z 0,, N, 0,, N, 3 0,3,3 N,3 Z 0,, N, z 0, z, zn, Step Solve or the unknown coeicients a. a Z Z Z Step 3 Extract the coeicients ro a. a0 a a an 33 Least Squares or Solving Ax = b Suppose we wish to solve Ax = b, but we have ore equations than we have unknowns. We ust solve this as a best it because a perect it is ipossible in the presence o noise. We apply least squares by preultipling by A. Ax b Ax b A b A b A A 34 7

18 /7/08 Exaple ( o 3) Let s it a line to the ollowing set o points. y x y xb 35 Exaple ( o 3) Step Build atrices y xb y x y x b y x y3 x3 b y3 x3 b Z y4 x4 b y4 x Step Solve by least squares. With soe practice, you will be able to write atrices directly ro easured data ZZxZ 6.9 b b b

19 /7/08 Exaple (3 o 3) Step 3 Extract coeicients b b0.860 Step 4 Plot the result y y xb0.3656x0.860 x 37 9

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

A method to determine relative stroke detection efficiencies from multiplicity distributions

A method to determine relative stroke detection efficiencies from multiplicity distributions A ethod to deterine relative stroke detection eiciencies ro ultiplicity distributions Schulz W. and Cuins K. 2. Austrian Lightning Detection and Inoration Syste (ALDIS), Kahlenberger Str.2A, 90 Vienna,

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information

Sexually Transmitted Diseases VMED 5180 September 27, 2016

Sexually Transmitted Diseases VMED 5180 September 27, 2016 Sexually Transitted Diseases VMED 518 Septeber 27, 216 Introduction Two sexually-transitted disease (STD) odels are presented below. The irst is a susceptibleinectious-susceptible (SIS) odel (Figure 1)

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Methodology Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Methodology Paper cgill University aculty o Science Departent o atheatics and Statistics Part A Exaination Statistics: ethodology Paper Date: 17th August 2018 Instructions Tie: 1p-5p Answer only two questions ro. I you

More information

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words) 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME 04469 Tel (07) 866-3540 Eail: farlow@ath.uaine.edu

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

c 2013 Society for Industrial and Applied Mathematics

c 2013 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 34, No. 3, pp. 1213 123 c 213 Society or Industrial and Applied Matheatics χ 2 TESTS FOR THE CHOICE OF THE REGULARIZATION PARAMETER IN NONLINEAR INVERSE PROBLEMS J. L. MEAD

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

Linear Algebra (I) Yijia Chen. linear transformations and their algebraic properties. 1. A Starting Point. y := 3x.

Linear Algebra (I) Yijia Chen. linear transformations and their algebraic properties. 1. A Starting Point. y := 3x. Linear Algebra I) Yijia Chen Linear algebra studies Exaple.. Consider the function This is a linear function f : R R. linear transforations and their algebraic properties.. A Starting Point y := 3x. Geoetrically

More information

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are,

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are, Page of 8 Suppleentary Materials: A ultiple testing procedure for ulti-diensional pairwise coparisons with application to gene expression studies Anjana Grandhi, Wenge Guo, Shyaal D. Peddada S Notations

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

Distributed Subgradient Methods for Multi-agent Optimization

Distributed Subgradient Methods for Multi-agent Optimization 1 Distributed Subgradient Methods for Multi-agent Optiization Angelia Nedić and Asuan Ozdaglar October 29, 2007 Abstract We study a distributed coputation odel for optiizing a su of convex objective functions

More information

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles Capter 5: Dierentiation In tis capter, we will study: 51 e derivative or te gradient o a curve Deinition and inding te gradient ro irst principles 5 Forulas or derivatives 5 e equation o te tangent line

More information

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data Suppleentary to Learning Discriinative Bayesian Networks fro High-diensional Continuous Neuroiaging Data Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, and Dinggang Shen Proposition. Given a sparse

More information

Optimization of Flywheel Weight using Genetic Algorithm

Optimization of Flywheel Weight using Genetic Algorithm IN: 78 7798 International Journal o cience, Engineering and Technology esearch (IJET) Volue, Issue, March 0 Optiization o Flywheel Weight using Genetic Algorith A. G. Appala Naidu*, B. T.N. Charyulu, C..C.V.aanaurthy

More information

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA Multivariate Methos Xiaoun Qi Principal Coponents Analysis -- PCA he PCA etho generates a new set of variables, calle principal coponents Each principal coponent is a linear cobination of the original

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

ALGEBRA REVIEW. MULTINOMIAL An algebraic expression consisting of more than one term.

ALGEBRA REVIEW. MULTINOMIAL An algebraic expression consisting of more than one term. Page 1 of 6 ALGEBRAIC EXPRESSION A cobination of ordinary nubers, letter sybols, variables, grouping sybols and operation sybols. Nubers reain fixed in value and are referred to as constants. Letter sybols

More information

Using a De-Convolution Window for Operating Modal Analysis

Using a De-Convolution Window for Operating Modal Analysis Using a De-Convolution Window for Operating Modal Analysis Brian Schwarz Vibrant Technology, Inc. Scotts Valley, CA Mark Richardson Vibrant Technology, Inc. Scotts Valley, CA Abstract Operating Modal Analysis

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Bootstrapping Dependent Data

Bootstrapping Dependent Data Bootstrapping Dependent Data One of the key issues confronting bootstrap resapling approxiations is how to deal with dependent data. Consider a sequence fx t g n t= of dependent rando variables. Clearly

More information

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK eospatial Science INNER CONSRAINS FOR A 3-D SURVEY NEWORK hese notes follow closely the developent of inner constraint equations by Dr Willie an, Departent of Building, School of Design and Environent,

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

Research in Area of Longevity of Sylphon Scraies

Research in Area of Longevity of Sylphon Scraies IOP Conference Series: Earth and Environental Science PAPER OPEN ACCESS Research in Area of Longevity of Sylphon Scraies To cite this article: Natalia Y Golovina and Svetlana Y Krivosheeva 2018 IOP Conf.

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5,

Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 31 11 Motif Finding Sources for this section: Rouchka, 1997, A Brief Overview of Gibbs Sapling. J. Buhler, M. Topa:

More information

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS. Introduction When it coes to applying econoetric odels to analyze georeferenced data, researchers are well

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

A practical approach to real-time application of speaker recognition using wavelets and linear algebra

A practical approach to real-time application of speaker recognition using wavelets and linear algebra A practical approach to real-tie application o speaker recognition using wavelets and linear algebra Duc Son Pha, Michael C. Orr, Brian Lithgow and Robert Mahony Departent o Electrical and Coputer Systes

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Journal of Solid Mechanics and Materials Engineering

Journal of Solid Mechanics and Materials Engineering Journal o Solid Mechanics and Materials Engineering First Order Perturbation-based Stochastic oogeniation Analysis or Short Fiber Reinorced Coposite Materials* Sei-ichiro SAKATA**, Fuihiro ASIDA** and

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

Lecture 13 Eigenvalue Problems

Lecture 13 Eigenvalue Problems Lecture 13 Eigenvalue Probles MIT 18.335J / 6.337J Introduction to Nuerical Methods Per-Olof Persson October 24, 2006 1 The Eigenvalue Decoposition Eigenvalue proble for atrix A: Ax = λx with eigenvalues

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

Bipartite subgraphs and the smallest eigenvalue

Bipartite subgraphs and the smallest eigenvalue Bipartite subgraphs and the sallest eigenvalue Noga Alon Benny Sudaov Abstract Two results dealing with the relation between the sallest eigenvalue of a graph and its bipartite subgraphs are obtained.

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

ANALYTICAL INVESTIGATION AND PARAMETRIC STUDY OF LATERAL IMPACT BEHAVIOR OF PRESSURIZED PIPELINES AND INFLUENCE OF INTERNAL PRESSURE

ANALYTICAL INVESTIGATION AND PARAMETRIC STUDY OF LATERAL IMPACT BEHAVIOR OF PRESSURIZED PIPELINES AND INFLUENCE OF INTERNAL PRESSURE DRAFT Proceedings of the ASME 014 International Mechanical Engineering Congress & Exposition IMECE014 Noveber 14-0, 014, Montreal, Quebec, Canada IMECE014-36371 ANALYTICAL INVESTIGATION AND PARAMETRIC

More information

Introduction to Machine Learning. Recitation 11

Introduction to Machine Learning. Recitation 11 Introduction to Machine Learning Lecturer: Regev Schweiger Recitation Fall Seester Scribe: Regev Schweiger. Kernel Ridge Regression We now take on the task of kernel-izing ridge regression. Let x,...,

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE

ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE CHRISTOPHER J. HILLAR Abstract. A long-standing conjecture asserts that the polynoial p(t = Tr(A + tb ] has nonnegative coefficients whenever is

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

Support recovery in compressed sensing: An estimation theoretic approach

Support recovery in compressed sensing: An estimation theoretic approach Support recovery in copressed sensing: An estiation theoretic approach Ain Karbasi, Ali Horati, Soheil Mohajer, Martin Vetterli School of Coputer and Counication Sciences École Polytechnique Fédérale de

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations

Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations Randoized Accuracy-Aware Progra Transforations For Efficient Approxiate Coputations Zeyuan Allen Zhu Sasa Misailovic Jonathan A. Kelner Martin Rinard MIT CSAIL zeyuan@csail.it.edu isailo@it.edu kelner@it.edu

More information

THE KALMAN FILTER: A LOOK BEHIND THE SCENE

THE KALMAN FILTER: A LOOK BEHIND THE SCENE HE KALMA FILER: A LOOK BEHID HE SCEE R.E. Deain School of Matheatical and Geospatial Sciences, RMI University eail: rod.deain@rit.edu.au Presented at the Victorian Regional Survey Conference, Mildura,

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES S. E. Ahed, R. J. Tokins and A. I. Volodin Departent of Matheatics and Statistics University of Regina Regina,

More information

Ufuk Demirci* and Feza Kerestecioglu**

Ufuk Demirci* and Feza Kerestecioglu** 1 INDIRECT ADAPTIVE CONTROL OF MISSILES Ufuk Deirci* and Feza Kerestecioglu** *Turkish Navy Guided Missile Test Station, Beykoz, Istanbul, TURKEY **Departent of Electrical and Electronics Engineering,

More information

Functions: Review of Algebra and Trigonometry

Functions: Review of Algebra and Trigonometry Sec. and. Functions: Review o Algebra and Trigonoetry A. Functions and Relations DEFN Relation: A set o ordered pairs. (,y) (doain, range) DEFN Function: A correspondence ro one set (the doain) to anther

More information

Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments

Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments Geophys. J. Int. (23) 155, 411 421 Optial nonlinear Bayesian experiental design: an application to aplitude versus offset experients Jojanneke van den Berg, 1, Andrew Curtis 2,3 and Jeannot Trapert 1 1

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Answers to Econ 210A Midterm, October A. The function f is homogeneous of degree 1/2. To see this, note that for all t > 0 and all (x 1, x 2 )

Answers to Econ 210A Midterm, October A. The function f is homogeneous of degree 1/2. To see this, note that for all t > 0 and all (x 1, x 2 ) Question. Answers to Econ 20A Midter, October 200 f(x, x 2 ) = ax {x, x 2 } A. The function f is hoogeneous of degree /2. To see this, note that for all t > 0 and all (x, x 2 ) f(tx, x 2 ) = ax {tx, tx

More information

Interactive Markov Models of Evolutionary Algorithms

Interactive Markov Models of Evolutionary Algorithms Cleveland State University EngagedScholarship@CSU Electrical Engineering & Coputer Science Faculty Publications Electrical Engineering & Coputer Science Departent 2015 Interactive Markov Models of Evolutionary

More information

When Short Runs Beat Long Runs

When Short Runs Beat Long Runs When Short Runs Beat Long Runs Sean Luke George Mason University http://www.cs.gu.edu/ sean/ Abstract What will yield the best results: doing one run n generations long or doing runs n/ generations long

More information

Convolutional Codes. Lecture Notes 8: Trellis Codes. Example: K=3,M=2, rate 1/2 code. Figure 95: Convolutional Encoder

Convolutional Codes. Lecture Notes 8: Trellis Codes. Example: K=3,M=2, rate 1/2 code. Figure 95: Convolutional Encoder Convolutional Codes Lecture Notes 8: Trellis Codes In this lecture we discuss construction of signals via a trellis. That is, signals are constructed by labeling the branches of an infinite trellis with

More information

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation journal of coplexity 6, 459473 (2000) doi:0.006jco.2000.0544, available online at http:www.idealibrary.co on On the Counication Coplexity of Lipschitzian Optiization for the Coordinated Model of Coputation

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

A NEW APPROACH TO DYNAMIC BUCKLING LOAD ESTIMATION FOR PLATE STRUCTURES

A NEW APPROACH TO DYNAMIC BUCKLING LOAD ESTIMATION FOR PLATE STRUCTURES Stability o Structures XIII-th Syposiu Zakopane 202 A NW APPROACH TO DYNAMIC BUCKLIN LOAD STIMATION FOR PLAT STRUCTURS T. KUBIAK, K. KOWAL-MICHALSKA Departent o Strength o Materials, Lodz University o

More information

Solving Fuzzy Linear Fractional Programming. Problem Using Metric Distance Ranking

Solving Fuzzy Linear Fractional Programming. Problem Using Metric Distance Ranking pplied Matheatical Sciences, Vol. 6, 0, no. 6, 75-85 Solving Fuzzy inear Fractional Prograing Proble Using Metric Distance anking l. Nachaai Kongu Engineering College, Erode, Tailnadu, India nachusenthilnathan@gail.co

More information

arxiv: v1 [math.na] 10 Oct 2016

arxiv: v1 [math.na] 10 Oct 2016 GREEDY GAUSS-NEWTON ALGORITHM FOR FINDING SPARSE SOLUTIONS TO NONLINEAR UNDERDETERMINED SYSTEMS OF EQUATIONS MÅRTEN GULLIKSSON AND ANNA OLEYNIK arxiv:6.395v [ath.na] Oct 26 Abstract. We consider the proble

More information

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes

Graphical Models in Local, Asymmetric Multi-Agent Markov Decision Processes Graphical Models in Local, Asyetric Multi-Agent Markov Decision Processes Ditri Dolgov and Edund Durfee Departent of Electrical Engineering and Coputer Science University of Michigan Ann Arbor, MI 48109

More information

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science A Better Algorith For an Ancient Scheduling Proble David R. Karger Steven J. Phillips Eric Torng Departent of Coputer Science Stanford University Stanford, CA 9435-4 Abstract One of the oldest and siplest

More information

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x)

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x) 7Applying Nelder Mead s Optiization Algorith APPLYING NELDER MEAD S OPTIMIZATION ALGORITHM FOR MULTIPLE GLOBAL MINIMA Abstract Ştefan ŞTEFĂNESCU * The iterative deterinistic optiization ethod could not

More information

Robust polynomial regression up to the information theoretic limit

Robust polynomial regression up to the information theoretic limit 58th Annual IEEE Syposiu on Foundations of Coputer Science Robust polynoial regression up to the inforation theoretic liit Daniel Kane Departent of Coputer Science and Engineering / Departent of Matheatics

More information

arxiv: v1 [cs.ds] 29 Jan 2012

arxiv: v1 [cs.ds] 29 Jan 2012 A parallel approxiation algorith for ixed packing covering seidefinite progras arxiv:1201.6090v1 [cs.ds] 29 Jan 2012 Rahul Jain National U. Singapore January 28, 2012 Abstract Penghui Yao National U. Singapore

More information

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization Use of PSO in Paraeter Estiation of Robot Dynaics; Part One: No Need for Paraeterization Hossein Jahandideh, Mehrzad Navar Abstract Offline procedures for estiating paraeters of robot dynaics are practically

More information