Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5,

Size: px
Start display at page:

Download "Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5,"

Transcription

1 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, Motif Finding Sources for this section: Rouchka, 1997, A Brief Overview of Gibbs Sapling. J. Buhler, M. Topa: Finding otifs using rando projections, RECOMB 2001, P.A. Pevzner and S.-H. Sze, Cobinatorial approaches to finding subtle signals in DNA sequences, ISMB 2000, The goal of otif finding is the detection of new, unknown signals in a set of sequences. For exaple, assue we have a collection of s that appear to be co-regulated and have the sae pattern of expression. You would like to search for a transcription factor binding site that occurs in the upstrea regions of all the s. search for coon otif here The ai is to copute soething like this, where we highlight a otif that occurs in all given DNA sequences: 11.1 The Gibbs sapling ethod We will first describe an algorith based on the Gibbs-sapler. Basic assuptions:

2 32 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 Input is a set of DNA sequences s 1,..., s. Each sequence contains a copy or instance of the otif. The otif has a fixed length l. The otif is rated by a position weight atrix Sequence rating odels We describe two odels for randoly rating DNA sequences: 1. The background odel B is given by a vector that specifices a probability for each of the four character states. 2. The otif odel M specifies for each position i = 1, 2,... a probability M(i, c) for each of the four states c for a word of length l: A C G T l We will refer to this as a position weight atrix, although usually it is required that a position weight atrix contains the logariths of the probabilities rather than the probabilities theselves Siple coputations If we know both M and B then we can score any word w of length l. In ore detail, with l l P (w) = B(w[i]) and Q(w) = M(i, w[i]) i=1 i=1 we can define the log-odds ratio as R(w) = log Q(w) P (w). If R(w) > 0, it is ore likely that the word w was rated by the otif odel. If R(w) < 0, then it is ore likely that w was rated by the rando odel. If both M and B are given, then we can ake a axiu likelihood prediction of the locations of the otif in sequence of the input sequences:

3 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, s s 1 s 2 3 a 1 a 3 a 2 s a In each sequence s i, choose a location a i such that the word w starting at a i axiizes R(w). Vice versa, if we are given the locations a 1,..., a of the instances of the otif in s 1,..., s, then we can setup M and B for all states c and positions i as follows: and M(i, c) = B(c) = # occurences of state c outside of otif # all bases outside of otif # occurrences of c at the i-th position of the otif. For exaple consider the following sequences and otif instances: A C G T A A G C G T T A A C T T T G We have B = and M = A C G T l Note: to avoid zeros in either distributions, pseudo counts are added to all counts. The axiu likelihood score of a choice of otif locations a 1,..., a is defined as follows: L(a 1,..., a ) = L(a 1,..., a, M, B) = = P (s 1,..., s a 1,..., a, M, B) = ( ai ) ( 1 i=1 j=1 B(s ai +l 1 i[j]) j=a i ) M(j, s i [j]) ) ( si j=a i +l B(s i[j]) where s i = length of s i. In this forula, we use either the background odel or the otif odel to assign a probability to a given position in a given sequence depending on whether the position is outside of, or inside of, the current placeent of the otif, respectively., Motif-finding dilea Motif-finding dilea: If we know M and B, then we can deterine the ost likely otif locations a 1,..., a in s 1,..., s.

4 34 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 If we know a 1,..., a then we can deterine M and B. In otif-finding we know neither and therefore want to infer both. Idea: Construct M and B fro a i s fro 1 sequences and then use M and B to deterine a value for a i for reaining sequence s i. Repeat. The Gibbs-sapler is based on this idea. This ethod can be interpreted as an MCMC approach in which proposed new solutions are always accepted Gibbs sapling algorith Algorith (Gibbs-sapler-based otif finding) Input: Sequences s 1,..., s Output: Motif M, background B, locations a 1,..., a Init.: Choose a 1,..., a either randoly or using an algorith, as described later. repeat for h = 1,..., do Copute M and B fro a 1,..., a h 1, a h+1,..., a (i.e., fro data with h-th sequence and otif reoved) Using M and B, copute a new location a h in s h ( ) Copute M and B fro a 1,..., a (i.e., fro data with new choice of h-th otif location inserted) Copute score L(a 1,..., a ) until score L(a 1,..., a ) has converged Return M, B and a 1,..., a end In line ( ) choose the new value a for a h probabistically according to the distribution of noralized log-odds scores: R(a) sh l+1 a =1 R(a). Here, R(a) is the score obtained for M and B applied to sequence s h and otif location a Exaple We will now discuss an exaple taken fro Rouchka (1997) 1. The otif length is l = 6. Here we show the input sequences and the initial choice of locations (in red): 1 Rouchka, 1997, A Brief Overview of Gibbs Sapling

5 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, The nuber of A s in all of the sequences cobined is 327, the nuber of C s is 317, the nuber of G s is 272, and the nuber of T s is 304. To avoid zero entries in the otif atrix M, we will use 10% of each of the background counts as pseudocounts that are always added to the different counts obtained for different entries of M when calculating the frequencies. The pseudo counts to be added to values in M equal that is 32.7, 31.7, 27.2 and 30.4 for A, C, G and T, respectively. We will not look at the details of this, but this explains why the tables containing observed counts don t translate directly into the tables containing frequencies. In the first iteration of the ain loop we reove the first sequence s 1 =TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT. Here are M and B for the first sequence reoved: We then score all 36 = possible words of length l in s 1 =TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT.

6 36 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 The colun headed noralized A x contains the noralized log-odd scores for each choice of otif location in s 1. The algorith chooses one of the locations according to the given distribution of log-odds scores. We then repeat the ain loop and reove the second sequence etc. This is repeated until the score coverges or until a set axiu nuber of iterations has been perfored. Here is the final choice of otif:

7 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, The Projection Method We will now describe the projection ethod. Again, the coputational proble is to deterine a otif by analyzing a set of sequences that contain instances of the otif. Here is another way to foralize the otif-finding proble (Pevzner and Sze): Planted (l, d)-motif Proble: Suppose there is a fixed but unknown nucleotide sequence M (the otif) of length l. The proble is to deterine M, given sequences, each of length n and each containing a planted variant of M. More precisely, each such planted variant is a substring of length l that differs fro M in at ost d positions. In the Planted (l, d)-motif Proble assue the otif is ACAGGATCA. The following 4 sequences each contain a planted version of this otif: AGTTATCGCGGCACAGGCTCCTTCTTTATAGCC ATGATAGCATCAACCTAACCCTAGATATGGGAT TTTTGGGATATATCGCCCCTACACAGGATCACT GGATATACAGGATCACGGTGGGAAAACCCTGAC Notice that soe variants fully agree on a subset of the positions of the full otif: ACAGGcTCc AtAGcATCA ACAGGATCA ACAGGATCA The key idea is to repeatedly choose k rando positions fro the l positions of the otif and then to hash words fro the sequences using only those positions, in effect projecting to those k positions: ACAGGATCA project AAGTC If we happen to choose a set of k positions that are well conserved by the otif then we will obtain a hash bucket that contains a higher-than-expected nuber of hits. In other words, to address the Planted (l, d)-motif Proble, the key idea is to choose k of l positions at rando, then to use the k selected positions of each l-er w in a hash function h(x). When a larger-than-expected nuber of l-ers hash to the sae bucket, then it is likely that the bucket is enriched for instances of the planted otif M: S 1 x x xo o 1 S 2 x xo ox 2 S 3 x o oxx 3 hash to sae bucket S 4 x 4 xo xo (Here, for each instance i of the planted otif M, x s ark the d = 3 substitutions and o s ark the k = 2 positions used in hashing.) Like any probabilistic algoriths, the projection algorith perfors a nuber of independent runs of a basic iteration. In each such trial, it chooses a rando projection h and hashes each l-er x in the input sequences to its bucket h(x). Any hash bucket with a high nuber of entries is explored as a source of the planted otif, in a refineent step, as described below.

8 38 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 If k < l d, then there is a good chance that soe of the planted instances of M will be hashed to the sae bucket (the planted bucket), naely all planted instances for which the k hash positions and d substituted positions are disjoint. So, there is a good chance that the planted bucket will be enriched for the planted otif, and will contain ore entries than an average bucket Exaple Assue we are given the sequences s 1 s 2 s cagtaat ggaactt aagcaca. Let M = aaa be the (unknown) (3, 1)-otif. Hashing using the first two positions of every word of length 3 we get the following hash table: h(x) pos. aa (1,5), (2,3), (3,1) ac (2,4), (3,5) ag (1,2), (3,2) at (1,6) ca (1,1), (3,4), (3,6) cc h(x) pos. cg ct (2,5) ga (2,2) gc (3,3) gg (2.1) h(x) pos. gt (1,3) ta (1,4) tc tg tt (2,6) The otif M is planted at positions (1, 5), (2, 3), (3, 1) and (3, 5) and in this exaple, three of the four instances hash to the planted bucket h(m) = aa Choosing the paraeters Obviously, the algorith does not know which bucket is the actual planted bucket. So it considers every bucket that contains at least s eleents, where s is a suitable threshold. The algorith has three ain paraeters: the projection size k, the bucket (inspection) threshold s, and and the nuber of independent runs t. In the following, we will discuss how to choose each of these paraeters. projection size: Ideally, the algorith should hash a significant nuber of instances of the otif into the planted bucket, while avoiding containation of the planted bucket by rando background l-ers. To iniize the containation of the planted bucket, we ust choose k large enough. What size ust we choose k so that the average bucket will contain less than 1 rando l-er? Since we are hashing (n l + 1) l-ers into 4 k buckets, if we choose k such that 4 k > (n l + 1), then the average bucket will contain less than one rando l-er. For exaple, in a Planted (15, 4)-Proble, with = 20 and n = 600, we ust choose k to satisfy: k < l d = 15 4 = 11 and k > log((n l + 1)) log(4) = log(20( )) log(4) 6.76.

9 Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, If the total nuber of sequences is very large, then it ay be that one cannot choose k to satisfy both k < l d and 4 k > (n l + 1). In this case, set k = l d 1, as large as possible. Bucket threshold: A bucket size of s = 3 or 4 is practical, as we should not expect too any instances to hash to the sae bucket in a reasonable nuber of runs. Nuber of independent runs: We want to choose t so that the probability is at least q = 0.95 that the planted bucket contains s or ore planted otif instances in at least one of the t runs. Let ˆp(l, d, k) be the probability that a given planted otif instance hashes to the planted bucket, that is: ) ˆp(l, d, k) = Then the probability that fewer than s planted instances hash to the planted bucket in a given trial is B,ˆp(l,d,k) (s). Here, B,p (s) is the probability that there are fewer than s successes in independent Bernoulli trials, each having probability p of success. If the algorith is run for t runs, the probability that s or ore planted instances hash to the planted bucket is: 1 ( B,ˆp(l,d,k) (s) ) t For this to be q, choose t = ( l d k ( l k). log(1 q) log(b,ˆp(l,d,k) (s)). (11.1) Using this criterion for t, the choices for k and s above require at ost thousands of runs, and usually any fewer, to produce a bucket containing sufficiently any instances of the planted otif Motif refineent The ain loop of the projection algorith finds a set of buckets of size s. In the subsequent refineent step each such bucket is explored in an attept to recover the planted otif. The idea is that, if the current bucket is the planted bucket, then we have already found k of the planted otif residues. These, together with the reaining l k residues, should provide a strong signal that akes it easy to obtain the otif in only a few iterations of refineent. We will process each bucket of size s to obtain a candidate otif. Each of these candidates will be refined and the best refineent will be returned as the final solution. Candidate otifs are refined either using the Gibbs-sapler or a related approach called the EM algorith. In essence, the projection ethod is used to copute a good starting point and thus greatly speed-up the convergence of a ethod such as the Gibbs-sapler algorith.

Algorithms in Bioinformatics II SS 07 ZBIT, C. Dieterich, (modified script of D. Huson), April 25,

Algorithms in Bioinformatics II SS 07 ZBIT, C. Dieterich, (modified script of D. Huson), April 25, Algorithms in Bioinformatics II SS 07 ZBIT, C. Dieterich, (modified script of D. Huson), April 25, 200707 Motif Finding This exposition is based on the following sources, which are all recommended reading:.

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Matheatical Sciences 04,, p. 7 5 ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD M a t h e a t i c s Yu. A. HAKOPIAN, R. Z. HOVHANNISYAN

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

arxiv:math/ v1 [math.co] 22 Jul 2005

arxiv:math/ v1 [math.co] 22 Jul 2005 Distances between the winning nubers in Lottery Konstantinos Drakakis arxiv:ath/0507469v1 [ath.co] 22 Jul 2005 16 March 2005 Abstract We prove an interesting fact about Lottery: the winning 6 nubers (out

More information

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples Order Recursion Introduction Order versus Tie Updates Matrix Inversion by Partitioning Lea Levinson Algorith Interpretations Exaples Introduction Rc d There are any ways to solve the noral equations Solutions

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

What is Probability? (again)

What is Probability? (again) INRODUCTION TO ROBBILITY Basic Concepts and Definitions n experient is any process that generates well-defined outcoes. Experient: Record an age Experient: Toss a die Experient: Record an opinion yes,

More information

Ufuk Demirci* and Feza Kerestecioglu**

Ufuk Demirci* and Feza Kerestecioglu** 1 INDIRECT ADAPTIVE CONTROL OF MISSILES Ufuk Deirci* and Feza Kerestecioglu** *Turkish Navy Guided Missile Test Station, Beykoz, Istanbul, TURKEY **Departent of Electrical and Electronics Engineering,

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Homework 3 Solutions CSE 101 Summer 2017

Homework 3 Solutions CSE 101 Summer 2017 Hoework 3 Solutions CSE 0 Suer 207. Scheduling algoriths The following n = 2 jobs with given processing ties have to be scheduled on = 3 parallel and identical processors with the objective of iniizing

More information

A Smoothed Boosting Algorithm Using Probabilistic Output Codes

A Smoothed Boosting Algorithm Using Probabilistic Output Codes A Soothed Boosting Algorith Using Probabilistic Output Codes Rong Jin rongjin@cse.su.edu Dept. of Coputer Science and Engineering, Michigan State University, MI 48824, USA Jian Zhang jian.zhang@cs.cu.edu

More information

C na (1) a=l. c = CO + Clm + CZ TWO-STAGE SAMPLE DESIGN WITH SMALL CLUSTERS. 1. Introduction

C na (1) a=l. c = CO + Clm + CZ TWO-STAGE SAMPLE DESIGN WITH SMALL CLUSTERS. 1. Introduction TWO-STGE SMPLE DESIGN WITH SMLL CLUSTERS Robert G. Clark and David G. Steel School of Matheatics and pplied Statistics, University of Wollongong, NSW 5 ustralia. (robert.clark@abs.gov.au) Key Words: saple

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Lecture 9 November 23, 2015

Lecture 9 November 23, 2015 CSC244: Discrepancy Theory in Coputer Science Fall 25 Aleksandar Nikolov Lecture 9 Noveber 23, 25 Scribe: Nick Spooner Properties of γ 2 Recall that γ 2 (A) is defined for A R n as follows: γ 2 (A) = in{r(u)

More information

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x)

Ştefan ŞTEFĂNESCU * is the minimum global value for the function h (x) 7Applying Nelder Mead s Optiization Algorith APPLYING NELDER MEAD S OPTIMIZATION ALGORITHM FOR MULTIPLE GLOBAL MINIMA Abstract Ştefan ŞTEFĂNESCU * The iterative deterinistic optiization ethod could not

More information

Training an RBM: Contrastive Divergence. Sargur N. Srihari

Training an RBM: Contrastive Divergence. Sargur N. Srihari Training an RBM: Contrastive Divergence Sargur N. srihari@cedar.buffalo.edu Topics in Partition Function Definition of Partition Function 1. The log-likelihood gradient 2. Stochastic axiu likelihood and

More information

On the Maximum Number of Codewords of X-Codes of Constant Weight Three

On the Maximum Number of Codewords of X-Codes of Constant Weight Three On the Maxiu Nuber of Codewords of X-Codes of Constant Weight Three arxiv:190.097v1 [cs.it] 2 Mar 2019 Yu Tsunoda Graduate School of Science and Engineering Chiba University 1- Yayoi-Cho Inage-Ku, Chiba

More information

Birthday Paradox Calculations and Approximation

Birthday Paradox Calculations and Approximation Birthday Paradox Calculations and Approxiation Joshua E. Hill InfoGard Laboratories -March- v. Birthday Proble In the birthday proble, we have a group of n randoly selected people. If we assue that birthdays

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Processes: A Friendly Introduction for Electrical and oputer Engineers Roy D. Yates and David J. Goodan Proble Solutions : Yates and Goodan,1..3 1.3.1 1.4.6 1.4.7 1.4.8 1..6

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

Extension of CSRSM for the Parametric Study of the Face Stability of Pressurized Tunnels

Extension of CSRSM for the Parametric Study of the Face Stability of Pressurized Tunnels Extension of CSRSM for the Paraetric Study of the Face Stability of Pressurized Tunnels Guilhe Mollon 1, Daniel Dias 2, and Abdul-Haid Soubra 3, M.ASCE 1 LGCIE, INSA Lyon, Université de Lyon, Doaine scientifique

More information

Algorithmische Bioinformatik WS 11/12:, by R. Krause/ K. Reinert, 14. November 2011, 12: Motif finding

Algorithmische Bioinformatik WS 11/12:, by R. Krause/ K. Reinert, 14. November 2011, 12: Motif finding Algorithmische Bioinformatik WS 11/12:, by R. Krause/ K. Reinert, 14. November 2011, 12:00 4001 Motif finding This exposition was developed by Knut Reinert and Clemens Gröpl. It is based on the following

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate The Siplex Method is Strongly Polynoial for the Markov Decision Proble with a Fixed Discount Rate Yinyu Ye April 20, 2010 Abstract In this note we prove that the classic siplex ethod with the ost-negativereduced-cost

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method)

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method) Projectile Motion with Air Resistance (Nuerical Modeling, Euler s Method) Theory Euler s ethod is a siple way to approxiate the solution of ordinary differential equations (ode s) nuerically. Specifically,

More information

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are,

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are, Page of 8 Suppleentary Materials: A ultiple testing procedure for ulti-diensional pairwise coparisons with application to gene expression studies Anjana Grandhi, Wenge Guo, Shyaal D. Peddada S Notations

More information

arxiv: v2 [math.co] 8 Mar 2018

arxiv: v2 [math.co] 8 Mar 2018 Restricted lonesu atrices arxiv:1711.10178v2 [ath.co] 8 Mar 2018 Beáta Bényi Faculty of Water Sciences, National University of Public Service, Budapest beata.benyi@gail.co March 9, 2018 Keywords: enueration,

More information

On Poset Merging. 1 Introduction. Peter Chen Guoli Ding Steve Seiden. Keywords: Merging, Partial Order, Lower Bounds. AMS Classification: 68W40

On Poset Merging. 1 Introduction. Peter Chen Guoli Ding Steve Seiden. Keywords: Merging, Partial Order, Lower Bounds. AMS Classification: 68W40 On Poset Merging Peter Chen Guoli Ding Steve Seiden Abstract We consider the follow poset erging proble: Let X and Y be two subsets of a partially ordered set S. Given coplete inforation about the ordering

More information

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES S. E. Ahed, R. J. Tokins and A. I. Volodin Departent of Matheatics and Statistics University of Regina Regina,

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

Lower Bounds for Quantized Matrix Completion

Lower Bounds for Quantized Matrix Completion Lower Bounds for Quantized Matrix Copletion Mary Wootters and Yaniv Plan Departent of Matheatics University of Michigan Ann Arbor, MI Eail: wootters, yplan}@uich.edu Mark A. Davenport School of Elec. &

More information

Testing Properties of Collections of Distributions

Testing Properties of Collections of Distributions Testing Properties of Collections of Distributions Reut Levi Dana Ron Ronitt Rubinfeld April 9, 0 Abstract We propose a fraework for studying property testing of collections of distributions, where the

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

Sampling How Big a Sample?

Sampling How Big a Sample? C. G. G. Aitken, 1 Ph.D. Sapling How Big a Saple? REFERENCE: Aitken CGG. Sapling how big a saple? J Forensic Sci 1999;44(4):750 760. ABSTRACT: It is thought that, in a consignent of discrete units, a certain

More information

A Note on the Applied Use of MDL Approximations

A Note on the Applied Use of MDL Approximations A Note on the Applied Use of MDL Approxiations Daniel J. Navarro Departent of Psychology Ohio State University Abstract An applied proble is discussed in which two nested psychological odels of retention

More information

Interactive Markov Models of Evolutionary Algorithms

Interactive Markov Models of Evolutionary Algorithms Cleveland State University EngagedScholarship@CSU Electrical Engineering & Coputer Science Faculty Publications Electrical Engineering & Coputer Science Departent 2015 Interactive Markov Models of Evolutionary

More information

The Methods of Solution for Constrained Nonlinear Programming

The Methods of Solution for Constrained Nonlinear Programming Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 01-06 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.co The Methods of Solution for Constrained

More information

Acyclic Colorings of Directed Graphs

Acyclic Colorings of Directed Graphs Acyclic Colorings of Directed Graphs Noah Golowich Septeber 9, 014 arxiv:1409.7535v1 [ath.co] 6 Sep 014 Abstract The acyclic chroatic nuber of a directed graph D, denoted χ A (D), is the iniu positive

More information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information Cite as: Straub D. (2014). Value of inforation analysis with structural reliability ethods. Structural Safety, 49: 75-86. Value of Inforation Analysis with Structural Reliability Methods Daniel Straub

More information

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS MODIFICATIO OF A AALYTICAL MODEL FOR COTAIER LOADIG PROBLEMS Reception date: DEC.99 otification to authors: 04 MAR. 2001 Cevriye GECER Departent of Industrial Engineering, University of Gazi 06570 Maltepe,

More information

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3 A. Find all ordered pairs a, b) of positive integers for which a + b = 3 08. Answer. The six ordered pairs are 009, 08), 08, 009), 009 337, 674) = 35043, 674), 009 346, 673) = 3584, 673), 674, 009 337)

More information

arxiv: v2 [cs.lg] 30 Mar 2017

arxiv: v2 [cs.lg] 30 Mar 2017 Batch Renoralization: Towards Reducing Minibatch Dependence in Batch-Noralized Models Sergey Ioffe Google Inc., sioffe@google.co arxiv:1702.03275v2 [cs.lg] 30 Mar 2017 Abstract Batch Noralization is quite

More information

Fast Structural Similarity Search of Noncoding RNAs Based on Matched Filtering of Stem Patterns

Fast Structural Similarity Search of Noncoding RNAs Based on Matched Filtering of Stem Patterns Fast Structural Siilarity Search of Noncoding RNs Based on Matched Filtering of Ste Patterns Byung-Jun Yoon Dept. of Electrical Engineering alifornia Institute of Technology Pasadena, 91125, S Eail: bjyoon@caltech.edu

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Study on Markov Alternative Renewal Reward. Process for VLSI Cell Partitioning

Study on Markov Alternative Renewal Reward. Process for VLSI Cell Partitioning Int. Journal of Math. Analysis, Vol. 7, 2013, no. 40, 1949-1960 HIKARI Ltd, www.-hikari.co http://dx.doi.org/10.12988/ia.2013.36142 Study on Markov Alternative Renewal Reward Process for VLSI Cell Partitioning

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

Best Procedures For Sample-Free Item Analysis

Best Procedures For Sample-Free Item Analysis Best Procedures For Saple-Free Ite Analysis Benjain D. Wright University of Chicago Graha A. Douglas University of Western Australia Wright s (1969) widely used "unconditional" procedure for Rasch saple-free

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Stochastic vertex models and symmetric functions

Stochastic vertex models and symmetric functions Stochastic vertex odels and syetric functions Alexey Bufetov MIT 6Noveber,2017 Applications of the algebra of syetric functions to probability: Schur easures (Okounkov), Schur processes (Okounkov-Reshetikhin),

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

16 Independence Definitions Potential Pitfall Alternative Formulation. mcs-ftl 2010/9/8 0:40 page 431 #437

16 Independence Definitions Potential Pitfall Alternative Formulation. mcs-ftl 2010/9/8 0:40 page 431 #437 cs-ftl 010/9/8 0:40 page 431 #437 16 Independence 16.1 efinitions Suppose that we flip two fair coins siultaneously on opposite sides of a roo. Intuitively, the way one coin lands does not affect the way

More information

A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay

A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay A Low-Coplexity Congestion Control and Scheduling Algorith for Multihop Wireless Networks with Order-Optial Per-Flow Delay Po-Kai Huang, Xiaojun Lin, and Chih-Chun Wang School of Electrical and Coputer

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Midterm 1 Sample Solution

Midterm 1 Sample Solution Midter 1 Saple Solution NOTE: Throughout the exa a siple graph is an undirected, unweighted graph with no ultiple edges (i.e., no exact repeats of the sae edge) and no self-loops (i.e., no edges fro a

More information

arxiv: v1 [math.na] 10 Oct 2016

arxiv: v1 [math.na] 10 Oct 2016 GREEDY GAUSS-NEWTON ALGORITHM FOR FINDING SPARSE SOLUTIONS TO NONLINEAR UNDERDETERMINED SYSTEMS OF EQUATIONS MÅRTEN GULLIKSSON AND ANNA OLEYNIK arxiv:6.395v [ath.na] Oct 26 Abstract. We consider the proble

More information

Feedforward Networks

Feedforward Networks Feedforward Networks Gradient Descent Learning and Backpropagation Christian Jacob CPSC 433 Christian Jacob Dept.of Coputer Science,University of Calgary CPSC 433 - Feedforward Networks 2 Adaptive "Prograing"

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool Constant-Space String-Matching in Sublinear Average Tie (Extended Abstract) Maxie Crocheore Universite de Marne-la-Vallee Leszek Gasieniec y Max-Planck Institut fur Inforatik Wojciech Rytter z Warsaw University

More information

PAC-Bayes Analysis Of Maximum Entropy Learning

PAC-Bayes Analysis Of Maximum Entropy Learning PAC-Bayes Analysis Of Maxiu Entropy Learning John Shawe-Taylor and David R. Hardoon Centre for Coputational Statistics and Machine Learning Departent of Coputer Science University College London, UK, WC1E

More information

paper prepared for the 1996 PTRC Conference, September 2-6, Brunel University, UK ON THE CALIBRATION OF THE GRAVITY MODEL

paper prepared for the 1996 PTRC Conference, September 2-6, Brunel University, UK ON THE CALIBRATION OF THE GRAVITY MODEL paper prepared for the 1996 PTRC Conference, Septeber 2-6, Brunel University, UK ON THE CALIBRATION OF THE GRAVITY MODEL Nanne J. van der Zijpp 1 Transportation and Traffic Engineering Section Delft University

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Exact tensor completion with sum-of-squares

Exact tensor completion with sum-of-squares Proceedings of Machine Learning Research vol 65:1 54, 2017 30th Annual Conference on Learning Theory Exact tensor copletion with su-of-squares Aaron Potechin Institute for Advanced Study, Princeton David

More information