Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Size: px
Start display at page:

Download "Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions"

Transcription

1 Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae {C} by both translation and rotation. You ay assue that frae {C} is located at the center of ass. Solving this proble involves using the Parallel Axis Theore to translate the inertia tensor to a frae at a different location, and a siilarity transforation to rotate it into the new frae. These operations can be done in either order, as long as we re careful that the vectors we use are expressed in the correct frae. However, it is definitely easier to do the rotation first. Assue that we have A CT, the transforation fro frae {C} coordinates to frae {A} coordinates, which contains the rotation atrix A C R and the translation vector A p C which locates the origin of frae {C} with respect to {A}. Let s first solve the proble by a rotation followed by a translation. Consider an interediate frae {C } which has the sae origin as {C}, but whose axes are parallel to frae {A}. Using a siilarity transforation (see p of Lecture Notes), we know that C I C C R C I C C R T However, since frae {C } has the sae orientation as frae {A}, we know that C C R A C R, so C I A C R C I A CR T We now have the inertia tensor expressed in the interediate frae {C }. Since {C } is parallel to {A}, we can use the Parallel Axis Theore to transfor C I to A I. To use this theore, we just need the vector A p C that locates the center of frae {C } with respect to {A}, expressed in frae {A}, which yields the forula A I C I + ( A p T C A p C )I 3 A p A C p T C where is the total ass of the object and I 3 is the 3 3 identity atrix. Since {C } and {C} have the sae origin, the vector A p C is just A p C. Substituting this value and our previous expression for C I yields: A I A C R C I A CR T + ( A p T C A p C )I 3 A p A C p T C Equivalently, we could do this proble with a translation first, and then a rotation. To do that, we can define an interediate frae {A }, which has the sae origin as {A}, but whose axes are parallel to {C}. We can get the intertia tensor in the interediate frae by using the Parallel Axis Theore. To use it, however, we need the vector A p C which locates the origin of frae {C} with respect to frae {A }, expressed in frae {A }. Using this forula with the vector expressed in frae {A} is incorrect. We can R, and then siplify: A I C I + ( A p T C A p C )I 3 A A p C p T C C I + ( C AR A p C ) T ( C AR A p C )I 3 ( C AR A p C )( C AR A p C ) T get A p C by rotating A p C with A A R C A

2 C I + A p T C( C AR T AR) C A p C I 3 C A R( A p A Cp T C) C AR T C I + A p T C A p C I 3 C A R( A p A Cp T C) C AR T Then, to get the inertia tensor in frae {A}, we can use a siilarity transforation to rotate A I: A I A A RA I A A RT A C R A I A CR T ( ) A C CR I + A p T C A p C I 3 C A R( A p A Cp T C) C AR T A C RT A CR C I A CR T + A A CR p T C A p C I 3 C A R( A p A Cp T C) C AR T A C RT A CR C I A CR T + ( A p T C A p C ) A A CRI 3C R T A C RAR( C A p A Cp T C) C AR T A CR T A I A CR C I A CR T + ( A p T C A p C )I 3 A p A Cp T C This is the sae expression that we got fro the other approach. (b) Consider, for exaple, the unifor density box shown below. It has ass kg, and diensions 6 4 : Y C {C} Y A 6 X C {A} Z C Z A X A 4 Frae {C} lies at the center of ass of the box, and the coordinate axes are ligned up with the principal axes of the box. In other words, Y C is aligned with the long axis of the box, and X C and Z C are aligned with the short axes of the box. Copute the inertia tensor of the box in frae {C}. Here, we just put nuerical values into the forula given in the hoework, to get: 4 C I 5 (c) Given the transforation atrix fro {C} to {A}: A CT

3 use your forula fro part (a) and your inertia tensor fro part (b) to copute the inertia tensor of the box in frae {A}. We apply our forula fro part (a). In this case, fro A CT, we know: A CR, p C The first part of the transforation (into the interediate frae {A }) is A I A C R C I A CR T 4 5 To copute the parallel axis transforation, we need to find the atrix p T C p C 6, p C p T C 4, (p T C p C )I 3 p C p T C We now copute the entire transforation: A I A CR C I A CR T + (p C p T C)I 3 p C p T C A I (p T C p C)I 3 p C p T C 5 5. In the rest of this proble set, we will walk through the process of finding the equations of otion for a siple anipulator fro the Lagrange forulation. Consider the RP spatial anipulator shown below. The links of this anipulator are odeled as bars of unifor density, having square cross-sections of thickness h, lengths of L and L, and total asses of and, with centers of ass shown. Assue that the joints theselves are assless. :

4 Fro the derivation on pp.3-33 of the notes, we know that the equations of otion have the for: M(q) q + C(q) + B(q) + G(q) τ where M is the ass atrix, C is the atrix of coefficients for centrifugal forces, B is the atrix of coefficients for Coriolis forces, and G is the vector of gravity forces. (a) For each link i, we have attached a frae {C i } to the center of ass (in this case, frae {} is the sae as {C }). Copute kineatics for these fraes: that is, calculate the atrices T and C T. The transforation T is just a constant offset of L / along the x axis; the other transforations are found in the regular anner: T c s L c s c L s c s L c, C T s c L s d For a two-link anipulator, the ass atrix has the for M J T v J v + J T v J v + J T ω I J ω + J T ω C I J ω where J vi is the linear Jacobian of the center of ass of link i, J ωi is the angular velocity of link i, and C i I i is the inertia tensor of link i expressed in frae {C i }. (b) Calculate J v and J v. These atrices are found directly by differentiating the last coluns of C i T : J v p C θ L s L c, J v p C θ p C d L s L c (c) Calculate J ω and C J ω. J ω ɛ z, C J ω ɛ C z ε C z (d) Calculate I and C I in ters of the asses and diensions of the links. You can use the sae forula that was given for a box of unifor density in Proble (b). Be careful which easureents you use along the axes. Using the forula fro proble, we see that the inertia tensor written at the center of ass of a unifor density rectangular solid is (s y + s z) C I (s x + s z) (s x + s y)

5 (e) where s x, s y and s z are the diensions of the solid along the x C, y C and z C axes, respectively. Plugging in the values for our links yields 6 h I (L + h ), (L + h ) I (L + (L + h ) h ) Calculate the ass atrix, M(q). To ake your algebra easier, leave the inertia tensors in sybolic for until the end, i.e. I xx I I yy I zz This just requires a bit of atrix algebra: L Jv T J v 4, Jv T J v Jω T Izz I J ω, J T C ω I J ω L Izz 6 h M Jv T J v + Jv T J v + Jω T I J ω + Jω T C I J ω 4 L + (L ) + I zz + I zz M 3 L + h + L + 6 h Now we need to calculate the centrifugal and Coriolis forces. We will derive the for directly. (f) Beginning with the equation fro p. 36 in the lecture notes, v(q, ) Ṁ M T q T M, q anipulate this equation sybolically into the for v(q, ) C(q) + B(q) where C and B are atrices in ters of the partial derivatives ijk of the ass atrix. Don t actually substitute in your answer fro part (e) into this equation yet: just leave the eleents of these atrices in ijk sybolic for. v(q, ) Ṁ ṁ ṁ ṁ ṁ T M q T M q

6 (g) v(q, ) So we have C, B Using your answer to part (e), copute the atrices C(q) and B(q) in ters of the asses, diensions, and configuration q of the anipulator. This wasn t eant to be tricky - the ass atrix is independent of the joints, so C, B The last thing that reains is to derive the gravity vector G(q). This you should be able to figure out for yourself. (h) (i) Calculate, G(q), the gravity vector in frae {}, in ters of the asses, the configuration q, and the gravity constant g (g is positive). Assue that gravity pulls things along the z direction. Be careful with your signs. In ters of a unit gravity vector g, we have G Jv T g + Jv T g In frae {}, the gravity vector is g g T, which yields G L s L c L s L c g G g g As a final step, use your answers to parts (e), (g) and (h) to write out the equations of otion as two great big equations M θ d τ τ f ( q,, q) τ f ( q,, q) + C θ θ + B θ d τ + G τ ( 3 L + h + L + ) 6 h θ τ d + g

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

Basic concept of dynamics 3 (Dynamics of a rigid body)

Basic concept of dynamics 3 (Dynamics of a rigid body) Vehicle Dynaics (Lecture 3-3) Basic concept of dynaics 3 (Dynaics of a rigid body) Oct. 1, 2015 김성수 Vehicle Dynaics Model q How to describe vehicle otion? Need Reference fraes and Coordinate systes 2 Equations

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

Dimensions and Units

Dimensions and Units Civil Engineering Hydraulics Mechanics of Fluids and Modeling Diensions and Units You already know how iportant using the correct diensions can be in the analysis of a proble in fluid echanics If you don

More information

Linear Transformations

Linear Transformations Linear Transforations Hopfield Network Questions Initial Condition Recurrent Layer p S x W S x S b n(t + ) a(t + ) S x S x D a(t) S x S S x S a(0) p a(t + ) satlins (Wa(t) + b) The network output is repeatedly

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Lecture 9 November 23, 2015

Lecture 9 November 23, 2015 CSC244: Discrepancy Theory in Coputer Science Fall 25 Aleksandar Nikolov Lecture 9 Noveber 23, 25 Scribe: Nick Spooner Properties of γ 2 Recall that γ 2 (A) is defined for A R n as follows: γ 2 (A) = in{r(u)

More information

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1-D otion 3-D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 2: PAC Learning and VC Theory I Fro Adversarial Online to Statistical Three reasons to ove fro worst-case deterinistic

More information

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization Use of PSO in Paraeter Estiation of Robot Dynaics; Part One: No Need for Paraeterization Hossein Jahandideh, Mehrzad Navar Abstract Offline procedures for estiating paraeters of robot dynaics are practically

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

Computergestuurde Regeltechniek exercise session Case study : Quadcopter

Computergestuurde Regeltechniek exercise session Case study : Quadcopter Coputergestuurde Regeltechniek exercise session Case study : Quadcopter Oscar Mauricio Agudelo, Bart De Moor (auricio.agudelo@esat.kuleuven.be, bart.deoor@esat.kuleuven.be) February 5, 016 Proble description

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

Name: Partner(s): Date: Angular Momentum

Name: Partner(s): Date: Angular Momentum Nae: Partner(s): Date: Angular Moentu 1. Purpose: In this lab, you will use the principle of conservation of angular oentu to easure the oent of inertia of various objects. Additionally, you develop a

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Wall Juggling of one Ball by Robot Manipulator with Visual Servo

Wall Juggling of one Ball by Robot Manipulator with Visual Servo Juggling of one Ball by obot Manipulator with Visual Servo Akira Nakashia Yosuke Kobayashi Yoshikazu Hayakawa Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,

More information

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces Energy Balance, Units & Proble Solving: Mechanical Energy Balance ABET Course Outcoes: 1. solve and docuent the solution of probles involving eleents or configurations not previously encountered (e) (e.g.

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

Lectures 8 & 9: The Z-transform.

Lectures 8 & 9: The Z-transform. Lectures 8 & 9: The Z-transfor. 1. Definitions. The Z-transfor is defined as a function series (a series in which each ter is a function of one or ore variables: Z[] where is a C valued function f : N

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

( ). One set of terms has a ω in

( ). One set of terms has a ω in Laptag Class Notes W. Gekelan Cold Plasa Dispersion relation Suer Let us go back to a single particle and see how it behaves in a high frequency electric field. We will use the force equation and Maxwell

More information

Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models

Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models Structural Engineering and Mechanics, Vol. 41, No. 1 (2012) 113-137 113 Dynaic analysis of fraes with viscoelastic dapers: a coparison of daper odels R. Lewandowski*, A. Bartkowiak a and H. Maciejewski

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

Kinetics of Rigid (Planar) Bodies

Kinetics of Rigid (Planar) Bodies Kinetics of Rigi (Planar) Boies Types of otion Rectilinear translation Curvilinear translation Rotation about a fixe point eneral planar otion Kinetics of a Syste of Particles The center of ass for a syste

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

(a) As a reminder, the classical definition of angular momentum is: l = r p

(a) As a reminder, the classical definition of angular momentum is: l = r p PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

The Fundamental Basis Theorem of Geometry from an algebraic point of view

The Fundamental Basis Theorem of Geometry from an algebraic point of view Journal of Physics: Conference Series PAPER OPEN ACCESS The Fundaental Basis Theore of Geoetry fro an algebraic point of view To cite this article: U Bekbaev 2017 J Phys: Conf Ser 819 012013 View the article

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Jordan Journal of Physics

Jordan Journal of Physics Volue 5, Nuber 3, 212. pp. 113-118 ARTILE Jordan Journal of Physics Networks of Identical apacitors with a Substitutional apacitor Departent of Physics, Al-Hussein Bin Talal University, Ma an, 2, 71111,

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

arxiv: v2 [hep-th] 16 Mar 2017

arxiv: v2 [hep-th] 16 Mar 2017 SLAC-PUB-6904 Angular Moentu Conservation Law in Light-Front Quantu Field Theory arxiv:70.07v [hep-th] 6 Mar 07 Kelly Yu-Ju Chiu and Stanley J. Brodsky SLAC National Accelerator Laboratory, Stanford University,

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK

INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK eospatial Science INNER CONSRAINS FOR A 3-D SURVEY NEWORK hese notes follow closely the developent of inner constraint equations by Dr Willie an, Departent of Building, School of Design and Environent,

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems ASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent of echanical Engineering 2.010: Systes odeling and Dynaics III Final Eaination Review Probles Fall 2000 Good Luck And have a great winter break! page 1 Proble

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield:

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield: PHYSICS 75: The Standard Model Midter Exa Solution Key. [3 points] Short Answer (6 points each (a In words, explain how to deterine the nuber of ediator particles are generated by a particular local gauge

More information

Deflation of the I-O Series Some Technical Aspects. Giorgio Rampa University of Genoa April 2007

Deflation of the I-O Series Some Technical Aspects. Giorgio Rampa University of Genoa April 2007 Deflation of the I-O Series 1959-2. Soe Technical Aspects Giorgio Rapa University of Genoa g.rapa@unige.it April 27 1. Introduction The nuber of sectors is 42 for the period 1965-2 and 38 for the initial

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Astro 7B Midterm 1 Practice Worksheet

Astro 7B Midterm 1 Practice Worksheet Astro 7B Midter 1 Practice Worksheet For all the questions below, ake sure you can derive all the relevant questions that s not on the forula sheet by heart (i.e. without referring to your lecture notes).

More information

1 Generalization bounds based on Rademacher complexity

1 Generalization bounds based on Rademacher complexity COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #0 Scribe: Suqi Liu March 07, 08 Last tie we started proving this very general result about how quickly the epirical average converges

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Motion in a Non-Inertial Frame of Reference vs. Motion in the Gravitomagnetical Field

Motion in a Non-Inertial Frame of Reference vs. Motion in the Gravitomagnetical Field Motion in a Non-Inertial Frae of Reference vs. Motion in the Gravitoanetical Field Mirosław J. Kubiak Zespół Szkół Technicznych, Grudziądz, Poland We atheatically proved that the inertial forces, which

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate The Siplex Method is Strongly Polynoial for the Markov Decision Proble with a Fixed Discount Rate Yinyu Ye April 20, 2010 Abstract In this note we prove that the classic siplex ethod with the ost-negativereduced-cost

More information

A Simulation Study for Practical Control of a Quadrotor

A Simulation Study for Practical Control of a Quadrotor A Siulation Study for Practical Control of a Quadrotor Jeongho Noh* and Yongkyu Song** *Graduate student, Ph.D. progra, ** Ph.D., Professor Departent of Aerospace and Mechanical Engineering, Korea Aerospace

More information

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade Lect- 0 1 Lect-0 In this lecture... Axial flow turbine Ipulse and reaction turbine stages Work and stage dynaics Turbine blade cascade Lect-0 Axial flow turbines Axial turbines like axial copressors usually

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Physics 57 Proble Set 8 Solutions Proble The decays in question will be given by soe Hadronic atric eleent: Γ i V f where i is the initial state, V is an interaction ter, f is the final state. The strong

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016/2017 Lessons 9 11 Jan 2017 Outline Artificial Neural networks Notation...2 Convolutional Neural Networks...3

More information

TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1

TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1 TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1 Aaron D. Aes, 2 Robert D. Gregg, Eric D.B. Wendel and Shankar Sastry Departent of Electrical Engineering and Coputer

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

On the approximation of Feynman-Kac path integrals

On the approximation of Feynman-Kac path integrals On the approxiation of Feynan-Kac path integrals Stephen D. Bond, Brian B. Laird, and Benedict J. Leikuhler University of California, San Diego, Departents of Matheatics and Cheistry, La Jolla, CA 993,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN IJSER International Journal of Scientific & Engineering Research, Volue 5, Issue 7, July-4 ISSN 9-558 74 Advanced Dynaics & Control Lab Dept. of Mech Engg. CET, Kerala, India rajanakash@gail.co Dept. of Mech

More information

Actuators & Mechanisms Actuator sizing

Actuators & Mechanisms Actuator sizing Course Code: MDP 454, Course Nae:, Second Seester 2014 Actuators & Mechaniss Actuator sizing Contents - Modelling of Mechanical Syste - Mechaniss and Drives The study of Mechatronics systes can be divided

More information

RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS MEMBRANE

RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS MEMBRANE Proceedings of ICIPE rd International Conference on Inverse Probles in Engineering: Theory and Practice June -8, 999, Port Ludlow, Washington, USA : RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Matheatical Sciences 04,, p. 7 5 ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD M a t h e a t i c s Yu. A. HAKOPIAN, R. Z. HOVHANNISYAN

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples Order Recursion Introduction Order versus Tie Updates Matrix Inversion by Partitioning Lea Levinson Algorith Interpretations Exaples Introduction Rc d There are any ways to solve the noral equations Solutions

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields Finite fields I talked in class about the field with two eleents F 2 = {, } and we ve used it in various eaples and hoework probles. In these notes I will introduce ore finite fields F p = {,,...,p } for

More information

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1 16.30/31 Septeber 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders 16.30/31 Lab #1 1 Introduction The Quanser helicopter is a echanical device that eulates the flight

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

Lecture 13 Eigenvalue Problems

Lecture 13 Eigenvalue Problems Lecture 13 Eigenvalue Probles MIT 18.335J / 6.337J Introduction to Nuerical Methods Per-Olof Persson October 24, 2006 1 The Eigenvalue Decoposition Eigenvalue proble for atrix A: Ax = λx with eigenvalues

More information