(a) As a reminder, the classical definition of angular momentum is: l = r p

Size: px
Start display at page:

Download "(a) As a reminder, the classical definition of angular momentum is: l = r p"

Transcription

1 PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units of angular oentu in natural units? [l] [E] You can get this directly by noting that spin has units of angular oentu in ters of h and h 1. But also [r] [E] 1 and [p] [E] 1. (b) Let s do a short essay question (1 or 2 sentences). How does the resolution of the negative energy positrons in classical Dirac theory relate to the Pauli Exclusion Principle? There s a lot of flexibility in this answer, but I a essentially looking for three things: 1) Treated as a classical theory, the positrons have a negative energy, but the sae charge as the electron. 2) Quantization of ferions involves postuating an ANTI-coutation relation for creation and annihilation operators, which reverses the charge and energy for the positron. ) That negative sign eans that exchanges of particles are negatives of one another. Hence, p, p p, p for ferions, which is not possible unless the state is the vacuu. (c) Please give a short description of each of the big three discrete transforations, C, P, and T. C: Charge conjugation; reverse all electrical (and other quantu) charges P: Parity; reverse spatial coordinates T: Tie inverstion; reverse the arrow of tie. (d) I d like you to construct the siplest possible finite group that includes i under ordinary ultiplication. Given the requireents for a group, list all possible ebers. E.C. Is this group Abellian? The group is Abellian, since order clearly doesn t atter. The eleents and ultiplication table are: 1-1 i -i i -i i i i i -i i -i i [2 points] Consider a particle with the -oentu: p µ GeV (a) What is the ass of the particle? Based on the approxiate answer (within 1%), what type(s) of particle ight this be?

2 The ass is siply: 2 E 2 p 2 ( ) GeV 2 1 GeV 2 16 This is a proton or a neutron. 1 GeV (b) Now boost the particle by v.8 in the z-direction (the speed should increase). What is the -oentu in the boosted frae? Call it p µ. First note: γ ; vγ So the Boost is: p µ 1 1 GeV GeV (c) What is the speed of the particle in the pried (boosted) frae? We calculate the speed via: so (d) Take a second vector: v p p v 7.96 A µ as easured in the unboosted frae. What is p A as easured in the boosted frae? Tricked you! (Or hopefully not.) The dot product doesn t depend on frae so it s way easier to do it in the unbarred frae: A p 8 ( 8 ) ( ) 1

3 . [2 points] Consider our old friend, the coplex scalar field, but with an additional quartic potential: L µ φ µ φ 2 φφ 1 2 λ(φφ ) 2 (a) Copute the Euler Lagrange equation for φ. First note: ( µ φ ) µ φ and so: φ 2 φ φ 2 φ µ µ φ 2 φ φ 2 φ (b) Copute the T 11 coponent of the stress-energy tensor. First, note: T 11 ( 1 φ a ) 1 φ a + L where I ve used the fact that g Expanding out: T φ 1 φ + L φ φ φ φ φ 1 φ V (φ) φ φ 2 φ 2 φ φ φ + 1 φ 1 φ V (φ) (c) For an isotropic field, T 11 corresponds to the pressure. Isotropy eans that: 1 φ 1 φ 2 φ 2 φ φ φ 1 φ φ What is the pressure in the isotropic liit? Note: Your answer shouldn t include individual spatial derivatives, only gradients. In that case: P φ φ 1 φ φ V (φ) (d) The Lagrangian is invariant under a U(1) syetery transforation: φ e iqθ φ ; φ e +iqθ φ What is the Noether current for this syetry for our coplex field? In soe sense this is a trick, since the answer is identical to what we get for a coplex field with any other potential. First note: φ θ iqφ and φ θ iqφ and ( µ φ ) µ φ with a siilar expression (coplex conjugate) for φ. Cobining: J µ iq(φ µ φ φ µ φ )

4 (e) We have seen that a coplex scalar field ay be decoposed into plane waves: φ(x) d p 1 ( bp (2π) 2 e ip x + c pe ip x) 2Ep with a quantization of the for: ˆφ (...)(ˆb + ĉ ) where ˆb annihilates a φ particle, and ĉ creates a φ particle, and a transposed version for ˆφ. Iagine expanding out the quartic potential (interaction) ter in the Lagrangian: ˆL Int 1 2 ˆφ ˆφ ˆφ ˆφ In addition to the prefactors and explicit integrals (which you should ignore), the quantized version of the interaction potential will have cobinations of creation and annihilation ters. Write at least cobinations of creation/annihilation ters arising fro quantizing the field. Assuing φ particles have a charge of +1 and φ have a charge of 1, what would be the net charge of these reactions? Note: It sees like I asking a lot, but I just want quartets of possible operator cobinations. First note the general expansion: which yields: +2 φ-2φ: No change in charge ˆL int λ(ˆb + ĉ )(ˆb + ĉ )(ˆb + ĉ)(ˆb + ĉ) λˆbˆbˆb ˆb +2φ-1φ+φ : No change in charge λˆbˆbˆb ĉ +1φ-1φ+1φ -1φ : No change in charge ˆbĉ ĉˆb

5 . [2 points] We have only occasionally encountered the group SO(), a group which is isoorphic to the ore failiar SU(2). Like SU(2), SO() has three generators: i i X 1 i ; X 2 ; X i i i (a) What is the coutator, [X 1, X 2 ]? If, indeed, our generators for a coplete set, your answer should be a superposition of the generators above. [X 1, X 2 ] 1 1 ix (b) Copute the generalized for of M 1 (θ), where the rotation is around the x-axis (X 1 ). You ay find the trigonoetric expansions helpful: cos x 1 x2 2 + x!... We ve done this before. We get: sin x x x 6 + x!... M 1 1 cos θ sin θ sin θ cos θ (c) Show that the atrix eleent, M 1, is orthogonal and special. This is intended to be siply a sanity check. The deterinant is: so it s Special. As for orthogonality: 1 cos θ cos θ (sin θ( sin θ) 1) 1 M 1 M T the lower 2x2 can be treated as its own atrix. The transpose siply reverses the sign on the sin, which is, of course, the inverse. (d) The point of syetries in field theories is that they leave Lagrangians invariant under transforations, including ters like Φ T Φ. Consider a specific state for a triplet of real-valued scalar fields: Φ 1 1 For the specic case of a particle at rest: What is the Q 1 of the state above? Q 1 iqφ T X 1 Φ.

6 We begin with so XΦ i i Q 1 iqφ T XΦ 2q. [1 points] Consider a specific positive-energy, spin-up solution to the Dirac equation: 1 u + E + p E+p e ip x where in this case, p refers specifically to the z-oentu of the particle. (a) Copute and siplify u + γ u +. First, note: so uγ u N 2 ( 1 γ γ E+p ) [ (E ) 2 + p N 2 1] 2 [ E 2 + p 2 + 2pE 2 ] E + p 2 1 [ 2p 2 + 2pE ] E + p 2p E+p (b) (1 points) We found that the Hailtonian of a state is: Ĥ γ ( iγ i i + ) Copute Ĥu +. You ay find the process involved in the last part helpful. First, note: u + ip u + ipu + where the derivative is pulled down fro the exponential.

7 So: Ĥu + γ ( iγ + )u + (pγ + I)u + p γ p p p + p(e+p) γ p + E + p E 2 +Ep+p 2 E E 2 +Ep 1 E+p Eu + as expected, where I ignored the noralization and the exponential. (c) E.C.: points In class I noted that the probability of easuring a particle as right-handed versus left-handed is: We have: ψ 2 P R ψ1 2 + ψ2 Recalling that p/e v, copute the probability as a function of v. Siplify as uch as possible. P R (E+p) 2 2 (E+p) E 2 + 2p + p 2 E 2 + 2pE + p E2 + 2p + p 2 2E 2 + 2pE 1 + 2v + v2 2(1 + v) (1 + v)2 2(1 + v) 1 + v 2 Cool. P R (v 1) at P R (v )., and P R (v 1) 1.

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield:

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield: PHYSICS 75: The Standard Model Midter Exa Solution Key. [3 points] Short Answer (6 points each (a In words, explain how to deterine the nuber of ediator particles are generated by a particular local gauge

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

All you need to know about QM for this course

All you need to know about QM for this course Introduction to Eleentary Particle Physics. Note 04 Page 1 of 9 All you need to know about QM for this course Ψ(q) State of particles is described by a coplex contiguous wave function Ψ(q) of soe coordinates

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Scattering and bound states

Scattering and bound states Chapter Scattering and bound states In this chapter we give a review of quantu-echanical scattering theory. We focus on the relation between the scattering aplitude of a potential and its bound states

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Physics 57 Proble Set 8 Solutions Proble The decays in question will be given by soe Hadronic atric eleent: Γ i V f where i is the initial state, V is an interaction ter, f is the final state. The strong

More information

Time Evolution of Matter States

Time Evolution of Matter States Tie Evolution of Matter States W. M. Hetherington February 15, 1 The Tie-Evolution Operat The tie-evolution of a wavefunction is deterined by the effect of a tie evolution operat through the relation Ψ

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

arxiv: v2 [hep-th] 16 Mar 2017

arxiv: v2 [hep-th] 16 Mar 2017 SLAC-PUB-6904 Angular Moentu Conservation Law in Light-Front Quantu Field Theory arxiv:70.07v [hep-th] 6 Mar 07 Kelly Yu-Ju Chiu and Stanley J. Brodsky SLAC National Accelerator Laboratory, Stanford University,

More information

First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),

First of all, because the base kets evolve according to the wrong sign Schrödinger equation (see pp ), HW7.nb HW #7. Free particle path integral a) Propagator To siplify the notation, we write t t t, x x x and work in D. Since x i, p j i i j, we can just construct the 3D solution. First of all, because

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

An Exactly Soluble Multiatom-Multiphoton Coupling Model

An Exactly Soluble Multiatom-Multiphoton Coupling Model Brazilian Journal of Physics vol no 4 Deceber 87 An Exactly Soluble Multiato-Multiphoton Coupling Model A N F Aleixo Instituto de Física Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil

More information

A toy model of quantum electrodynamics in (1 + 1) dimensions

A toy model of quantum electrodynamics in (1 + 1) dimensions IOP PUBLISHING Eur. J. Phys. 29 (2008) 815 830 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/29/4/014 A toy odel of quantu electrodynaics in (1 + 1) diensions ADBoozer Departent of Physics, California

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

7. Renormalization and universality in pionless EFT

7. Renormalization and universality in pionless EFT Renoralization and universality in pionless EFT (last revised: October 6, 04) 7 7. Renoralization and universality in pionless EFT Recall the scales of nuclear forces fro Section 5: Pionless EFT is applicable

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Anisotropic reference media and the possible linearized approximations for phase velocities of qs waves in weakly anisotropic media

Anisotropic reference media and the possible linearized approximations for phase velocities of qs waves in weakly anisotropic media INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 5 00 007 04 PII: S00-770867-6 Anisotropic reference edia and the possible linearized approxiations for phase

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

Chapter 12. Quantum gases Microcanonical ensemble

Chapter 12. Quantum gases Microcanonical ensemble Chapter 2 Quantu gases In classical statistical echanics, we evaluated therodynaic relations often for an ideal gas, which approxiates a real gas in the highly diluted liit. An iportant difference between

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6.

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6. â â x Ψn Hx Ε Ψn Hx 35 (6.7) he solutions of this equation are plane waves Ψn Hx A exphä n x (6.8) he eigen-energy Εn is n (6.9) Εn For a D syste with length and periodic boundary conditions, Ψn Hx Ψn

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

Physics 221A: HW3 solutions

Physics 221A: HW3 solutions Physics 22A: HW3 solutions October 22, 202. a) It will help to start things off by doing soe gaussian integrals. Let x be a real vector of length, and let s copute dxe 2 xt Ax, where A is soe real atrix.

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2 1 I iediately have 1 q 1 = f( q )q/ q and q = f( q )q/ q. Multiplying these equations by and 1 (respectively) and then subtracting, I get 1 ( q 1 q ) = ( + 1 )f( q )q/ q. The desired equation follows after

More information

Supporting Information for Supression of Auger Processes in Confined Structures

Supporting Information for Supression of Auger Processes in Confined Structures Supporting Inforation for Supression of Auger Processes in Confined Structures George E. Cragg and Alexander. Efros Naval Research aboratory, Washington, DC 20375, USA 1 Solution of the Coupled, Two-band

More information

3.8 Three Types of Convergence

3.8 Three Types of Convergence 3.8 Three Types of Convergence 3.8 Three Types of Convergence 93 Suppose that we are given a sequence functions {f k } k N on a set X and another function f on X. What does it ean for f k to converge to

More information

Nuclear Physics (10 th lecture)

Nuclear Physics (10 th lecture) ~Theta Nuclear Physics ( th lecture) Content Nuclear Collective Model: Rainwater approx. (reinder) Consequences of nuclear deforation o Rotational states High spin states and back bending o Vibrational

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Frame with 6 DOFs. v m. determining stiffness, k k = F / water tower deflected water tower dynamic response model

Frame with 6 DOFs. v m. determining stiffness, k k = F / water tower deflected water tower dynamic response model CE 533, Fall 2014 Undaped SDOF Oscillator 1 / 6 What is a Single Degree of Freedo Oscillator? The siplest representation of the dynaic response of a civil engineering structure is the single degree of

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade Lect- 0 1 Lect-0 In this lecture... Axial flow turbine Ipulse and reaction turbine stages Work and stage dynaics Turbine blade cascade Lect-0 Axial flow turbines Axial turbines like axial copressors usually

More information

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j +

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j + G5.65: Statistical Mechanics Notes for Lecture 5 I. THE FUNCTIONAL INTEGRAL REPRESENTATION OF THE PATH INTEGRAL A. The continuous liit In taking the liit P!, it will prove useful to ene a paraeter h P

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Astro 7B Midterm 1 Practice Worksheet

Astro 7B Midterm 1 Practice Worksheet Astro 7B Midter 1 Practice Worksheet For all the questions below, ake sure you can derive all the relevant questions that s not on the forula sheet by heart (i.e. without referring to your lecture notes).

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Multi-Scale/Multi-Resolution: Wavelet Transform

Multi-Scale/Multi-Resolution: Wavelet Transform Multi-Scale/Multi-Resolution: Wavelet Transfor Proble with Fourier Fourier analysis -- breaks down a signal into constituent sinusoids of different frequencies. A serious drawback in transforing to the

More information

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that?

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that? Module #1: Units and Vectors Revisited Introduction There are probably no concepts ore iportant in physics than the two listed in the title of this odule. In your first-year physics course, I a sure that

More information

Final Exam Classical Mechanics

Final Exam Classical Mechanics Final Ea Classical Mechanics. Consider the otion in one diension of a article subjected to otential V= (where =constant). Use action-angle variables to find the eriod of the otion as a function of energ.

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Modern Physics Letters A Vol. 24, Nos (2009) c World Scientific Publishing Company

Modern Physics Letters A Vol. 24, Nos (2009) c World Scientific Publishing Company Modern Physics Letters A Vol. 24, Nos. 11 13 (2009) 816 822 c World cientific Publishing Copany TOWARD A THREE-DIMENIONAL OLUTION FOR 3N BOUND TATE WITH 3NFs M. R. HADIZADEH and. BAYEGAN Departent of Physics,

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

Geometrical approach in atomic physics: Atoms of hydrogen and helium

Geometrical approach in atomic physics: Atoms of hydrogen and helium Aerican Journal of Physics and Applications 014; (5): 108-11 Published online October 0, 014 (http://www.sciencepublishinggroup.co/j/ajpa) doi: 10.11648/j.ajpa.014005.1 ISSN: 0-486 (Print); ISSN: 0-408

More information

SUSY Summary. Maximal SUGRA

SUSY Summary. Maximal SUGRA SUSY Suary This suary covers all interesting supersyetries which exist in spacetie diensions 11 d 3. In y notations,, n,... are Lorentz indices (in d diensions), a, b,... are Dirac or Majorana indices,

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

UMPC mercredi 19 avril 2017

UMPC mercredi 19 avril 2017 UMPC ercrei 19 avril 017 M Mathéatiques & Applications UE ANEDP, COCV: Analyse et contrôle e systèes quantiques Contrôle es connaissances, urée heures. Sujet onné par M. Mirrahii et P. Rouchon Les ocuents

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

( ). One set of terms has a ω in

( ). One set of terms has a ω in Laptag Class Notes W. Gekelan Cold Plasa Dispersion relation Suer Let us go back to a single particle and see how it behaves in a high frequency electric field. We will use the force equation and Maxwell

More information

The Transactional Nature of Quantum Information

The Transactional Nature of Quantum Information The Transactional Nature of Quantu Inforation Subhash Kak Departent of Coputer Science Oklahoa State University Stillwater, OK 7478 ABSTRACT Inforation, in its counications sense, is a transactional property.

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

NEUTRINO PHYSICS. Anatoly V. Borisov. Department of Theoretical Physics, Faculty of Physics, M. V. Lomonosov Moscow State University,

NEUTRINO PHYSICS. Anatoly V. Borisov. Department of Theoretical Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, NEUTINO PHYSICS Anatoly V Borisov Departent of Theoretical Physics Faculty of Physics M V oonosov Moscow State University Moscow ussia ecture AB-I Properties of neutrinos ecture AB-II are eson decays ediated

More information

Generalized r-modes of the Maclaurin spheroids

Generalized r-modes of the Maclaurin spheroids PHYSICAL REVIEW D, VOLUME 59, 044009 Generalized r-odes of the Maclaurin spheroids Lee Lindblo Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 9115 Jaes R. Ipser

More information

arxiv:gr-qc/ v3 9 Feb 2005

arxiv:gr-qc/ v3 9 Feb 2005 Proceedings of the II International Conference on Fundaental Interactions Pedra Azul, Brazil, June 2004 arxiv:gr-qc/0409061v3 9 Feb 2005 INTRODUCTION TO LOOP QUANTUM GRAVITY AND SPIN FOAMS ALEJANDRO PEREZ

More information

can be cast into an integral equation, the Lippann-Schwinger equation (LSE): (H E) = V (.6) j i = j i + V j E + i H i (.7) Let us consider the congura

can be cast into an integral equation, the Lippann-Schwinger equation (LSE): (H E) = V (.6) j i = j i + V j E + i H i (.7) Let us consider the congura Chapter The Nucleon-Nucleon Syste. The Lippann-Schwinger Equation for the Scattering Process Let us consider two-nucleon scattering and dene ~ k and ~ k to be the individual nucleon oenta. The relative

More information

Optical Properties of Plasmas of High-Z Elements

Optical Properties of Plasmas of High-Z Elements Forschungszentru Karlsruhe Techni und Uwelt Wissenschaftlishe Berichte FZK Optical Properties of Plasas of High-Z Eleents V.Tolach 1, G.Miloshevsy 1, H.Würz Project Kernfusion 1 Heat and Mass Transfer

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are Teoretical Dynaics Septeber 16, 2010 Instructor: Dr. Toas Coen Hoework 2 Subitte by: Vivek Saxena 1 Golstein 1.22 Taking te point of support as te origin an te axes as sown, te coorinates are x 1, y 1

More information

Effects of an Inhomogeneous Magnetic Field (E =0)

Effects of an Inhomogeneous Magnetic Field (E =0) Effects of an Inhoogeneous Magnetic Field (E =0 For soe purposes the otion of the guiding centers can be taken as a good approxiation of that of the particles. ut it ust be recognized that during the particle

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Waves & Normal Modes. Matt Jarvis

Waves & Normal Modes. Matt Jarvis Waves & Noral Modes Matt Jarvis January 19, 016 Contents 1 Oscillations 1.0.1 Siple Haronic Motion - revision................... Noral Modes 5.1 The coupled pendulu.............................. 6.1.1

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period An Approxiate Model for the Theoretical Prediction of the Velocity... 77 Central European Journal of Energetic Materials, 205, 2(), 77-88 ISSN 2353-843 An Approxiate Model for the Theoretical Prediction

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information