SOLUTIONS for Homework #3

Size: px
Start display at page:

Download "SOLUTIONS for Homework #3"

Transcription

1 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical turning points x ± = ±x 0 (E) are the points where the classical oentu for otion with given E, vanishes, p(x; E) = [E U(x)], (1) p(x ± ; E) = 0 U(x ± ) = E. () The approxiate quantization rule reas x p(x; E) = πn h, (3) where the integral runs over the classical perio of otion, or, in our case of an even potential, U(x) = U( x), four ties fro x = 0 to the turning point x = x 0, 4 x0 x E U(x) = πn h. (4) 0 This equation eterines energy levels E n for large n 1, in the valiity region of the seiclassical quantization. For our potential U(x) it is convenient to change the coorinate variable introucing x = [(E/α)η] 1/s. Then the upper liit x 0 1, an the quantization conition (4) takes the for ( ) 4 1/s E 1 E I s = πn h, I s = η η (1 s)/s 1 η. (5) s α 0 The integral here is a nuber of the orer of 1 which epens on the potential power s. Therefore the energy spectru is given by E n = (C s n) s/(s+), (6) where the energy scaling is eterine by the constant paraeter C s = π hsα1/s I s, (7) The integral I s is the Euler integral of the first orer, or the Beta-function, an can be expresse via the Gaa-functions, I s = Γ(1/s)Γ(3/) Γ[(3/) + (1/s)]. (8) 1

2 For the haronic oscillator potential U(x) = (1/)ω x, we have s =, α = (1/)ω, Γ(1/) = π, Γ(3/) = 1 Γ(1/), Γ() = 1, (9) so that I = π E n = C n = hωn. (10) The ore precise quantization rule woul contain (n + 1/) instea of n in the right han sie of eq. (3); this woul lea to the exact result for the haronic oscillator E n = hω(n + 1/) an to better approxiations for other values of s.. Let the typical raii for the two electrons be r 1 an r. In the groun state their typical oenta are, accoring to the uncertainty relation, p 1 h/r 1 an p h/r. The iniu repulsion energy for the two electrons can be roughly estiate as e / r 1 r ax = e /(r 1 + r ). Then the energy of the groun state can be written as E(r 1, r ) = h ( 1 r r ) Ze ( 1r1 + 1r ) + e r 1 + r. (11) Obviously, the electrons are equivalent (they shoul have opposite spin projections but the sae orbital wave functions). Therefore, in the groun state it shoul be r 1 = r r. The energy becoes a function of r, E(r, r) = h Z (1/4) e. (1) r r The iniu of this function is reache at r = a B 1 Z (1/4), a B = h e, (13) as if each electron woul feel the Coulob fiel of the effective charge Z eff = Z 1 4. (14) The total two-electron energy (1) for this raius is equal to ouble energy of a single-electron orbit in a hyrogen-like fiel of the effective charge (13), E = e4 h Z eff = Z eff Ry; (15) recall that 1 Ry (Ryberg)=e 4 / h =13.6 ev. Now we preict bining energies (in Ry) 1.1 (H ), 6.1 (He), 15.1 (Li + ), 8.1 (Be ++ ), 45.1 (B +++ ), an 66.1 (C ++++ ), in agreeent with ata uch better than one woul expect for such a siple estiate.

3 3. a. Using the Schröinger equations for two wave functions with the sae Hailtonian Ĥ, i h Ψ 1 = Ĥ Ψ 1, i h Ψ an taking the ifference of these equations, we obtain = ĤΨ, (16) i h (Ψ 1Ψ ) = Ψ 1(ĤΨ ) (Ĥ Ψ 1)Ψ. (17) In the coorinate representation the potential ters in the Hailtonian Ĥ = ˆK + U cancel if the potential U(r) is real, U = U. The reaining kinetic ter ˆK = ˆp = h = ˆK (18) is real as well. Introucing the transition ensity an the transition current j 1 = we coe to the continuity equation ρ 1 Ψ 1Ψ (19) h i [Ψ 1 Ψ ( Ψ 1)Ψ ], (0) ρ 1 + iv j 1 = 0. (1) The stanar equation correspons to the iagonal case, Ψ 1 = Ψ. b. Two stationary wave functions Ψ 1 an Ψ escribe the states with certain energies E 1 an E, respectively. Their tie epenence is given by Ψ 1, (r, t) = ψ 1, (r)e (i/ h)e1.t. () The coorinate aplitues ψ 1, are the eigenfunctions of the sae Hailtonian, Ĥψ 1, = E 1, ψ 1,. (3) The continuity equation of point a can be written as i h ρ 1 = (E E 1)ψ 1ψ e (i/ h)(e E 1 )t. (4) Our first assuption shoul be that the energy values E 1 an E are real. Then eq. (4) eans that the transition ensity ρ 1 oscillates in tie with the transition frequency ω 1 = (E E 1 )/ h; the expectation value of the ensity ρ 11 is siply constant in tie for a stationary state Ψ 1. Now let 3

4 us integrate both parts of eq. (4) over the entire available volue V. The left han sie, accoring to the continuity equation, reuces to i h 3 r ρ 1 = i h 3 r ivj 1. (5) The volue integral in eq. (5) can be converte into the surface integral A j1, the flux of the transition current through the surface area A. Now we ake the secon assuption that this flux vanishes. This happens in particular if the wave functions ψ 1 an ψ, along with their graients, fall off at the reote bounaries of the volue sufficiently fast. If this is the case, eqs. (5) an (4) lea to the conclusion that (E 1 E ) 3 r ψ1ψ = 0. (6) If the energies E 1 an E o not coincie, the corresponing coorinate eigenfunctions are orthogonal, 3 r ψ 1ψ = 0. (7) For coinciing energies we only extract that the integral of ρ 1 oes not change in tie, 3 r ψ 1ψ = const. (8) If there is no egeneracy so that there exists only one function ψ corresponing to given energy, its noralization is tie-inepenent, 3 r ψ = const. (9) 4. The Ehrenfest equations of otion for the expectation value of a tie inepenent operator Ô in the syste with hailtonian Ĥ are For a free particle in one iension We nee the coutators ı h Ô = [Ô, Ĥ]. (30) t Ĥ = ˆp (ˆp = ˆp x, [ˆx, ˆp] = i h). (31) [ˆx, ˆp ] = i hˆp, (3) [ˆx, ˆp ] = ˆx[ˆx, ˆp ] + [ˆx, ˆp ]ˆx = i h(ˆxˆp + ˆpˆx). (33) 4

5 Using these rules, we obtain the equations of otion for the ean values: i h ˆx = [ˆx, Ĥ] = i h ˆp t (an analog of the velocity efinition v = p/); ˆx t = ˆp (34) t ˆx = 1 (ˆxˆp + ˆpˆx); (35) t ˆp = t ˆp = 0. (36) The last result, eq. (36), eans that the oentu istribution oes not change in free otion, in concorance with physical arguents. The conservation of ˆp is the sae as the conservation of ean energy. Finally, 1 ˆxˆp + ˆpˆx = t i h [ˆxˆp + ˆpˆx, Ĥ] = ˆp. (37) Now we can solve the equations of otion for the expectation values. Fro eq. (37) we obtain ˆxˆp + ˆpˆx = ˆp t + ˆxˆp + ˆpˆx 0, (38) where the last ite is eterine by the initial conitions. Eq. (35) now gives ˆx = ˆp t + ˆxˆp + ˆpˆx 0 t + ˆx 0, (39) whereas eq. (34) efines the analog of the unifor otion, ˆx = ˆp t + ˆx 0. (40) Cobining those results, we can calculate the uncertainty of the position as a function of tie: ( x) = ˆx ˆx (41) ( x) = ( x) [ ˆxˆp + ˆpˆx 0 ˆx 0 ˆp 0 ] t + ( p) t. (4) After a very long tie interval, one will see only ballistic spreaing, ( x) ( p) t, (43) the packet is broaening because of the sprea of velocities v p/ in the initial state. 5

6 5. a. The equations of otion for the expectation values of the position an oentu are linear an siilar to classical Newton equations: ˆp ˆx = t, (44) t ˆp = ω ˆx. (45) The general solution escribes oscillations with frequency ω, ˆx = A cos(ωt) + B sin(ωt), ˆp = C cos(ωt) + D sin(ωt). (46) Fro equations of otion we obtain an fro the initial conitions Thus, the solution is C = ωb, D = ωa, (47) ˆx 0 = A, ˆp 0 = C. (48) ˆx = ˆx 0 cos(ωt) + ˆp 0 sin(ωt), (49) ω ˆp = ˆp 0 cos(ωt) ω ˆx 0 sin(ωt). (50) b. The equations of otion for quaratic coponents of the Hailtonian, ˆK = ˆp, Û = 1 ωˆx, (51) can be easily erive with the help of the coutators, t ˆK = ω ˆxˆp + ˆpˆx, (5) ω Û = ˆxˆp + ˆpˆx. (53) t Of course, energy is conserve, t ˆK + Û = Ĥ = 0. (54) t For the operator in the right han sie parts of eqs. (53) an (54) we fin t ˆxˆp + ˆpˆx = 4 ˆK Û. (55) 6

7 Taking the secon tie erivative we coe to ( ) t + 4ω ˆK Û = 0. (56) The general solution correspons to the oscillation with a ouble frequency, ˆK Û = A cos(ωt) + B sin(ωt). (57) Reebering that Ĥ = ˆK + Û = ˆK + Û 0, (58) we fin separately the expectation values of kinetic an potential energy, ˆK = 1 [ ˆK ] + Û 0 + A cos(ωt) + B sin(ωt), (59) Û = 1 [ ˆK ] + Û 0 A cos(ωt) B sin(ωt), (60) To fin the constant coefficients A an B, we apply the initial conitions: A = ˆK Û 0, B = ω ˆxˆp + ˆpˆx 0, (61) where the last equation follows fro eqs. (5) an (59). With all these results, ˆx = 1 { ω Û 0[1 + cos(ωt)] + ˆK 0 [1 cos(ωt)] + ω } ˆxˆp + ˆpˆx 0 sin(ωt). (6) Siilarly, { ˆp = Û 0[1 cos(ωt)] + ˆK 0 [1 + cos(ωt)] ω } ˆxˆp + ˆpˆx 0 sin(ωt). (63) c. Collecting our previous calculations we fin the ean square eviation of the coorinate ( x) = ( x) 0 cos (ωt)+ ( p) 0 ω sin (ωt)+ ˆxˆp + ˆpˆx 0 ˆx 0 ˆp 0 sin(ωt), ω (64) as in the textbook. For ω 0 we arrive at the liit of free otion; using sin x/x 1 for x 0, eq. (64) becoes ( x) = ( x) 0 + ( p) 0 t + ˆxˆp + ˆpˆx 0 ˆx 0 ˆp 0 t. (65). With the use of eq. (50) we fin the ean square eviation of the oentu ( p) = ( p) 0 cos (ωt)+ ω ( x) 0 sin (ωt) ω [ ˆxˆp+ˆpˆx 0 ˆx 0 ˆp 0 ] sin(ωt). (66) 7

Problem Set II Solutions

Problem Set II Solutions Physics 31600 R. Wal Classical Mechanics Autun, 2002 Proble Set II Solutions 1) Let L(q, q; t) be a Lagrangian [where, as in class, q stans for (q 1,..., q n )]. Suppose we introuce new coorinates (Q 1

More information

Excited against the tide: A random walk with competing drifts

Excited against the tide: A random walk with competing drifts Excite against the tie: A rano walk with copeting rifts arxiv:0901.4393v1 [ath.pr] 28 Jan 2009 Mark Holes January 28, 2009 Abstract We stuy a rano walk that has a rift β to the right when locate at a previously

More information

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA

Multivariate Methods. Matlab Example. Principal Components Analysis -- PCA Multivariate Methos Xiaoun Qi Principal Coponents Analysis -- PCA he PCA etho generates a new set of variables, calle principal coponents Each principal coponent is a linear cobination of the original

More information

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j +

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j + G5.65: Statistical Mechanics Notes for Lecture 5 I. THE FUNCTIONAL INTEGRAL REPRESENTATION OF THE PATH INTEGRAL A. The continuous liit In taking the liit P!, it will prove useful to ene a paraeter h P

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are Teoretical Dynaics Septeber 16, 2010 Instructor: Dr. Toas Coen Hoework 2 Subitte by: Vivek Saxena 1 Golstein 1.22 Taking te point of support as te origin an te axes as sown, te coorinates are x 1, y 1

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

The Ehrenfest Theorems

The Ehrenfest Theorems The Ehrenfest Theorems Robert Gilmore Classical Preliminaries A classical system with n egrees of freeom is escribe by n secon orer orinary ifferential equations on the configuration space (n inepenent

More information

Ising Model on an Infinite Ladder Lattice

Ising Model on an Infinite Ladder Lattice Coun. Theor. Phys. (Beijing, China 48 (2007 pp. 553 562 c International Acaeic Publishers Vol. 48, No. 3, Septeber 15, 2007 Ising Moel on an Infinite Laer Lattice GAO Xing-Ru 2,3, an YANG Zhan-Ru 1,2 1

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

PHYS 414 Problem Set 2: Turtles all the way down

PHYS 414 Problem Set 2: Turtles all the way down PHYS 414 Problem Set 2: Turtles all the way own This problem set explores the common structure of ynamical theories in statistical physics as you pass from one length an time scale to another. Brownian

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical echanics topics-oents of inertia,

More information

CHAPTER 37. Answer to Checkpoint Questions

CHAPTER 37. Answer to Checkpoint Questions 1010 CHAPTER 37 DIFFRACTION CHAPTER 37 Answer to Checkpoint Questions 1. (a) expan; (b) expan. (a) secon sie axiu; (b) :5 3. (a) re; (b) violet 4. iinish 5. (a) increase; (b) sae 6. (a) left; (b) less

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page)

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page) PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 (aitions for Spring 005 on last page) Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Distributed Lossy Averaging

Distributed Lossy Averaging Distribute Lossy Averaging Han-I Su Departent of Electrical Engineering Stanfor University Stanfor, CA 94305, USA Eail: hanisu@stanforeu Abbas El Gaal Departent of Electrical Engineering Stanfor University

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

1. At time t = 0, the wave function of a free particle moving in a one-dimension is given by, ψ(x,0) = N

1. At time t = 0, the wave function of a free particle moving in a one-dimension is given by, ψ(x,0) = N Physics 15 Solution Set Winter 018 1. At time t = 0, the wave function of a free particle moving in a one-imension is given by, ψ(x,0) = N where N an k 0 are real positive constants. + e k /k 0 e ikx k,

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

UMPC mercredi 19 avril 2017

UMPC mercredi 19 avril 2017 UMPC ercrei 19 avril 017 M Mathéatiques & Applications UE ANEDP, COCV: Analyse et contrôle e systèes quantiques Contrôle es connaissances, urée heures. Sujet onné par M. Mirrahii et P. Rouchon Les ocuents

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Interference and Diffraction

Interference and Diffraction Topics: What we are going to learn Wave behaviour of EM wave (In the case of light) Interference an iffraction Huygens' principle Interference of light fro ouble slit Thin fil Interferoeter iffraction

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Problem Set 6: Workbook on Operators, and Dirac Notation Solution

Problem Set 6: Workbook on Operators, and Dirac Notation Solution Moern Physics: Home work 5 Due ate: 0 March. 014 Problem Set 6: Workbook on Operators, an Dirac Notation Solution 1. nswer 1: a The cat is being escribe by the state, ψ >= ea > If we try to observe it

More information

of conduction electrons

of conduction electrons Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: of 9 Hoework: See website. Table of Contents: Ch. 7 Electric Current an esistance, 7. Electric

More information

Eigenvalues of the Angular Momentum Operators

Eigenvalues of the Angular Momentum Operators Eigenvalues of the Angular Moentu Operators Toda, we are talking about the eigenvalues of the angular oentu operators. J is used to denote angular oentu in general, L is used specificall to denote orbital

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

Lecture 36: Polarization Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:27 PM) W.J. Dallas

Lecture 36: Polarization Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:27 PM) W.J. Dallas C:\Dallas\_Courses\_OpSci_33\ Lecture Notes\36 Polariation.oc: Page of 6 Lecture 36: Polariation Phsical Optics II (Optical Sciences 33 (Upate: Fria, April 29, 25, 8:27 PM W.J. Dallas Introuction Up to

More information

The Three-dimensional Schödinger Equation

The Three-dimensional Schödinger Equation The Three-imensional Schöinger Equation R. L. Herman November 7, 016 Schröinger Equation in Spherical Coorinates We seek to solve the Schröinger equation with spherical symmetry using the metho of separation

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ Department of Physics University of arylan College Park, arylan PHYSICS 4 Prof. S. J. Gates Fall 5 Final Exam Dec. 6, 5 This is a OPEN book examination. Rea the entire examination before you begin to work.

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

arxiv: v1 [cond-mat.supr-con] 12 Feb 2015

arxiv: v1 [cond-mat.supr-con] 12 Feb 2015 Moentu-energy tensor associate to the quasiparticles in anisotropic superconuctors L. A. Peña Arila, W. Herrera, an Virgilio niño Departaento e física, Universia Nacional e Colobia, Bogotá, Colobia arxiv:150.03577v1

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

(Received 2006 May 29; revised 2007 September 26; accepted 2007 September 26)

(Received 2006 May 29; revised 2007 September 26; accepted 2007 September 26) Estiation of the iniu integration tie for eterining the equialent continuous soun leel with a gien leel of uncertainty consiering soe statistical hypotheses for roa traffic S. R. e Donato a) (Receie 006

More information

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10.

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10. P Physics Multiple Choice Practice Oscillations. ass, attache to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu isplaceent fro its equilibriu position is. What

More information

Time Evolution of Matter States

Time Evolution of Matter States Tie Evolution of Matter States W. M. Hetherington February 15, 1 The Tie-Evolution Operat The tie-evolution of a wavefunction is deterined by the effect of a tie evolution operat through the relation Ψ

More information

First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),

First of all, because the base kets evolve according to the wrong sign Schrödinger equation (see pp ), HW7.nb HW #7. Free particle path integral a) Propagator To siplify the notation, we write t t t, x x x and work in D. Since x i, p j i i j, we can just construct the 3D solution. First of all, because

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

Maximum a Posteriori Decoding of Turbo Codes

Maximum a Posteriori Decoding of Turbo Codes Maxiu a Posteriori Decoing of Turbo Coes by Bernar Slar Introuction The process of turbo-coe ecoing starts with the foration of a posteriori probabilities (APPs) for each ata bit, which is followe by choosing

More information

Physics 115C Homework 4

Physics 115C Homework 4 Physics 115C Homework 4 Problem 1 a In the Heisenberg picture, the ynamical equation is the Heisenberg equation of motion: for any operator Q H, we have Q H = 1 t i [Q H,H]+ Q H t where the partial erivative

More information

Probabilistic micro-earthquake location for reservoir monitoring Ran Xuan and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Probabilistic micro-earthquake location for reservoir monitoring Ran Xuan and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Probabilistic icro-earthquake location for reservoir onitoring Ran Xuan an Paul Sava, Center for Wave Phenoena, Colorao School of Mines SUMMARY Micro-earthquake sources an onset ties are ientifie within

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II)

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II) Laplace s Equation in Cylinrical Coorinates an Bessel s Equation (II Qualitative properties of Bessel functions of first an secon kin In the last lecture we foun the expression for the general solution

More information

Physics 207 Lecture 24

Physics 207 Lecture 24 Physics 7 Lecture 4 Physics 7, Lecture 4, Nov. 7 gena: Mi-Ter 3 Review Elastic Properties of Matter, Mouli Pressure, Wor, rchiees Principle, Flui flow, Bernoulli Oscillatory otion, Linear oscillator, Penulus

More information

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like) Stockton Univeristy Chemistry Program, School of Natural Sciences an Mathematics 101 Vera King Farris Dr, Galloway, NJ CHEM 340: Physical Chemistry II Solving the Schröinger Equation for the 1 Electron

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f

Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f Physics 4B Solutions to hapter 1 HW hapter 1: Questions:, 8, 1 Exercises & Probles:,, 4,, 41, 44, 48, 60, 7, 8 Question 1- (a) less; (b) greater Question 1-8 (a) 1 an 4; (b) an Question 1-1 (a) lea; (b)

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

X-Ray Notes, Part II

X-Ray Notes, Part II Noll X-ra Notes : Page X-Ra Notes Part Source ssues The Parallel X-ra aging Sste Earlier we consiere a parallel ra sste with an incient intensit that passes through a 3D object having a istribution of

More information

Can we derive Newton s F = ma from the SE?

Can we derive Newton s F = ma from the SE? 8.04 Quantum Physics Lecture XIII p = pˆ (13-1) ( ( ) ) = xψ Ψ (13-) ( ) = xψ Ψ (13-3) [ ] = x (ΨΨ ) Ψ Ψ (13-4) ( ) = xψ Ψ (13-5) = p, (13-6) where again we have use integration by parts an the fact that

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Approximate Molecular Orbital Calculations for H 2. George M. Shalhoub

Approximate Molecular Orbital Calculations for H 2. George M. Shalhoub Approximate Molecular Orbital Calculations for H + LA SALLE UNIVESITY 9 West Olney Ave. Philaelphia, PA 94 shalhoub@lasalle.eu Copyright. All rights reserve. You are welcome to use this ocument in your

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

c h L 75 10

c h L 75 10 hapter 31 1. (a) All the energy in the circuit resies in the capacitor when it has its axiu charge. The current is then zero. f Q is the axiu charge on the capacitor, then the total energy is c c h h U

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

Sample Mean Deviation (d) Chart Under the Assumption of Moderateness and its Performance Analysis Under Normality Against Moderateness

Sample Mean Deviation (d) Chart Under the Assumption of Moderateness and its Performance Analysis Under Normality Against Moderateness Volue-7, Issue-4, July-August 217 International Journal of Engineering a Manageent Research Page Nuber: 292-296 Saple Mean Deviation () Chart Uer the Assuption of Moerateness a its Perforance Analysis

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade Lect- 0 1 Lect-0 In this lecture... Axial flow turbine Ipulse and reaction turbine stages Work and stage dynaics Turbine blade cascade Lect-0 Axial flow turbines Axial turbines like axial copressors usually

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions Calculus for the Life Sciences II c Functions Joseph M. Mahaffy, mahaffy@math.ssu.eu Department of Mathematics an Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State

More information

THE HYDROGEN ATOM -- WAVE MECHANICS BEYOND SCHROEDINGER; ORBITALS AS ALGEBRAIC FORMULAE DERIVED IN ALL FOUR COORDINATE SYSTEMS

THE HYDROGEN ATOM -- WAVE MECHANICS BEYOND SCHROEDINGER; ORBITALS AS ALGEBRAIC FORMULAE DERIVED IN ALL FOUR COORDINATE SYSTEMS Ciencia y Tecnología, 3(1): 1-4, 016 ISSN: 0378-054 THE HYDROGEN ATOM -- WAVE MECHANICS BEYOND SCHROEDINGER; ORBITALS AS ALGEBRAIC FORMULAE DERIVED IN ALL FOUR COORDINATE SYSTEMS J. F. Ogilvie Centre for

More information

Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 10 Notes, Electromagnetic Theory II Dr. Christopher S. Bair, faculty.uml.eu/cbair University of Massachusetts Lowell 1. Pre-Einstein Relativity - Einstein i not invent the concept of relativity,

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Kinetics of Rigid (Planar) Bodies

Kinetics of Rigid (Planar) Bodies Kinetics of Rigi (Planar) Boies Types of otion Rectilinear translation Curvilinear translation Rotation about a fixe point eneral planar otion Kinetics of a Syste of Particles The center of ass for a syste

More information

De Broglie s Pilot Waves

De Broglie s Pilot Waves De Broglie s Pilot Waves Bohr s Moel of the Hyrogen tom: One way to arrive at Bohr s hypothesis is to think of the electron not as a particle but as a staning wave at raius r aroun the proton. Thus, nλ

More information

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis The Kepler Problem For the Newtonian 1/r force law, a miracle occurs all of the solutions are perioic instea of just quasiperioic. To put it another way, the two-imensional tori are further ecompose into

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Mathematical Methods wks 5,6: PDEs

Mathematical Methods wks 5,6: PDEs Mathematical Methos wks 5,6: PDEs John Magorrian, magog@thphys.ox.ac.uk These are work-in-progress notes for the secon-year course on mathematical methos. The most up-to-ate version is available from http://www-thphys.physics.ox.ac.uk/people/johnmagorrian/mm.

More information

Analysis of Clock Jitter in Continuous-Time Sigma-Delta Modulators

Analysis of Clock Jitter in Continuous-Time Sigma-Delta Modulators Analysis of Clock Jitter in Continuous-Tie Siga-Delta Moulators V.Vasuevan, Meber, IEEE Abstract One of the factors liiting the perforance of continuous-tie siga-elta oulators CTSDM) is clock jitter. This

More information

arxiv: v1 [physics.flu-dyn] 8 May 2014

arxiv: v1 [physics.flu-dyn] 8 May 2014 Energetics of a flui uner the Boussinesq approximation arxiv:1405.1921v1 [physics.flu-yn] 8 May 2014 Kiyoshi Maruyama Department of Earth an Ocean Sciences, National Defense Acaemy, Yokosuka, Kanagawa

More information

Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom PHYSICAL REVIEW A 69, 063409 (2004) Semiclassical analysis of long-wavelength multiphoton processes: The Ryberg atom Luz V. Vela-Arevalo* an Ronal F. Fox Center for Nonlinear Sciences an School of Physics,

More information

All you need to know about QM for this course

All you need to know about QM for this course Introduction to Eleentary Particle Physics. Note 04 Page 1 of 9 All you need to know about QM for this course Ψ(q) State of particles is described by a coplex contiguous wave function Ψ(q) of soe coordinates

More information

Geometry. Selected problems on similar triangles (from last homework).

Geometry. Selected problems on similar triangles (from last homework). October 25, 2015 Geoetry. Selecte probles on siilar triangles (fro last hoework). Proble 1(5). Prove that altitues of any triangle are the bisectors in another triangle, whose vertices are the feet of

More information

fv = ikφ n (11.1) + fu n = y v n iσ iku n + gh n. (11.3) n

fv = ikφ n (11.1) + fu n = y v n iσ iku n + gh n. (11.3) n Chapter 11 Rossby waves Supplemental reaing: Pelosky 1 (1979), sections 3.1 3 11.1 Shallow water equations When consiering the general problem of linearize oscillations in a static, arbitrarily stratifie

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

ON WIND VELOCITY PROFILES OVER URBAN AREA. Portuguese Meteorological Institute, Lisboa, Portugal

ON WIND VELOCITY PROFILES OVER URBAN AREA. Portuguese Meteorological Institute, Lisboa, Portugal N WIND VELCIT PRFILES VER URBAN AREA lara Bezpalcova, bynek Janour, Viktor M. M. Prior 3, Cecilia Soriano 4 an Michal Strizik 5 Charles University, Dept. of Meteorology an Env. Protection, Prague, CR Institute

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information