First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),

Size: px
Start display at page:

Download "First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),"

Transcription

1 HW7.nb HW #7. Free particle path integral a) Propagator To siplify the notation, we write t t t, x x x and work in D. Since x i, p j i i j, we can just construct the 3D solution. First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ), Therefore, x, t e i H t ħ x, 0, x", t" x", 0 e i H t"ħ. x, t x, t x e i H t t ħ x d px pp e i H tħ x d p d p d p 2Π ħ 2 ei p x ħ 2Π ħ 2 ei p x ħ p e i p2 2 tħ x ei p x ħ e i p2 2 tħ ei p xħ 2Π ħ ei p2 t2 ħ d p 2Π ħ expi t 2 ħ 2Π ħ 2Π ħ e i x2 2ħ t i t e i x2 2ħ t 2 Π i ħ t 2Π ħ 2 x p t 2 i x2 2ħ t The analogous expression in three diensions is siply x, t x, t 2 Π i ħ t 32 e i x 2 2ħ t. b) Action in exponent For the classical trajectory, the velocity is siply v x, and hence the action is t S c dx 2 d t d t 2 x 2 t t 2 x, and so the exponent of the propagator is indeed i S 2 t c ħ.

2 HW7.nb 2 c) Partition function The partition function fro statistical echanics is Z n n e Β H n, where n can denote eleents of any basis. Obviously, the Hailtonian eigenstates theselves are generally ost useful for calculating the su directly; however, we can use the basis eleents x as well: Z d 3 x x e Β H x. We observe that Β H looks an awful lot like i H t, except that the latter is purely iaginary whereas the forer is purely real. Therefore, we define the "Euclidean" tie Τ by the analytic continuation t i Τ and get Z d 3 x x e H Τ x, in which we set Τ Β, the theral quantu tiescale. Noting that i H t x, 0 e the Heisenberg picture (see part (a)), we get Z d 3 x x, i Β x, 0. x, t with "Minkowski" tie in The conversion to Euclidean tie is already coplete, since x f x i x. This is because if the topology of Minkowski tie is an open line fro to, the topology of Euclidean tie ust be a circle. Periodic functions of tie becoe hyperbolic, and hyperbolic functions becoe periodic. Accordingly, in the exponent of the path integral, the action integral is now on a loop, and all trajectories return to their origin. Instead of coputing the path integral, we can just convert our result for part (a) to get Z d 3 x 2 Π 2 Β 32 e 0 22 Β 2 Π 2 Β 32 Z V where V is the volue of the syste. This is nothing but the single particle partition function for the classical ideal gas in three diensions, as expected. It is interesting that changing fro Minkowski tie to Euclidean tie would effect a change fro a propagator that obeys the Schrödinger equation to a diffusion kernel that obeys the heat equation, and oreso that substituting Β for the Euclidean tie yields the therodynaic partition function per unit volue.

3 HW7.nb 3 d) Superfluid transition teperature in He 4 In Euclidean tie, the action integral is S E 0 Β d Τ L 0 Β d Τ 2 d x 2 d Τ where all paths are periodic, including particle exchange operations. If one iagines Euclidean + spacetie as a cylinder, the trajectories of two uolested particles are just single loops around. However, if we switch the particles, the trajectories cross the trajectory starting at particle attaches to the start of the trajectory of particle 2 after wrapping around the cylinder, and vice versa. In order for this switching operation to be undone (i.e., for the trajectories to be closed), the trajectories have to ake one ore trip around, to connect to where they started originally. So, with a switching operation, each particle has an average of one extra loop in calculating the action. Naively, one ight siply ake the theral quantu substitutions Λ (the theral de Broglie wavelength) and Β for dx d x and d Τ respectively. While this akes sense for d Τ, one ust be careful with d x. Trying it, one would find the result S E N, where we define N to be the nuber of loops around the Euclidean spacetie cylinder, with all the other constants cancelling. That is, it would quantize "too far" we need to retain soe length scale that s relevant to the inter particle dynaics that changes the noral fluid to a superfluid. Generally, the relevant length scale is the "ean free path" l f, which is the average distance a particle travels between collisions. In the low teperature regie where the particles are evenly distributed in Boltzann fashion as in part (c), ultiple bosons would pile up as a condensate. That is, any particles would share the sae ground state wavefunction; oreover, the classical interactions between particles would be sphere like, with no "screening" effects (and ignoring ean field effects). In this case, l f 2 n Σ 2 n Π n Π n3 where n is the nuber density, and the factor of 2 coes fro the Maxwell like distribution of particle velocities. (If a particle of interest were uch faster than all the other particles, we would just use n Σ, which is easy to see geoetrically.) Note we just substituted n 3 for the cross sectional diaeter. Let us try d x l f : S E 0 Β d Τ 2 l f 2 l f Β 2 N Β Β Π 2 n 23 2 l f Β 2 Β d Τ 0 Β N 4 Π 2 n 23 Β N. Now, we want the teperature at which the change in S E is with each additional loop: S E 4 Π 2 n 23 Β T Λ Π2 2 n 23 4k B Π2 2 Ρ 23 4k B 53 where Ρ is the ass density at the superfluid transition T Λ. Let us copute it, with a figure of lb/ft^3 for the ass density of liquid He 4 K (fro the liquid heliu safety data sheet; 4.22 K is the boiling point according to Wikipedia):

4 HW7.nb 4 Π 2 2 Ρ 23. k B , , , Ρ k B This result is ebarrassingly close to the easured value of K (Wikipedia), for having used such hand wavy arguents! 2. Propagator of haronic oscillator a) Propagator with energy eigenvalues As in (a) above, K x f, t f x i, t i x f, t i e i H t f t i x i, t i. We can insert the unity operator, on the basis of Hailtonian eigenstates n : x f, t f x i, t i n 0 x f, t i e i H t f t i n n x i, t i n 0 x f, t i n n x i, t i e i E n t f t i n 0 Ψ n x f Ψ n x i e i E n t f t i. Making the usual substitution t f t i i Τ, we obtain the desired result K n 0 Ψ n x f Ψ n x i e E n Τ. b) Leading behavior We ipleent the haronic oscillator propagator and ake the substitution for t f t i i Τ i lnε Ω: Ω kho 2Π I SinΩt t0 Exp t t0 I LogΕ Ω; As Τ, Ε 0, so we can expand it around Ε 0: Serieskho, Ε, 0, x2 Ω 2 x02 Ω 2 Ω Ε OΕ 32 Π I Ω 2 SinΩt t0 x 2 x0 2 CosΩt t0 2 x x0. We see that the leading order is Ε 2 as expected.

5 HW7.nb 5 c) Expansion to arbitrary order Expand the propagator to order : khos Serieskho, Ε, 0, ; Extract the wavefunctions: khos0 SiplifySeriesCoefficientkhos,. x0 x 2, Assuptions 0, 0, Ω 0, x Reals khos5 SiplifySeriesCoefficientkhos,. x0 x 2, Assuptions 0, 0, Ω 0, x Reals khos0 SiplifySeriesCoefficientkhos, 2. x0 x 2, Assuptions 0, 0, Ω 0, x Reals x2 Ω 2 Ω 4 Π 4 x2 Ω 2 Ω 34 Abs5 2 x 20 x 3 Ω 4 2 x 5 Ω Π Π 4 x2 Ω 2 Ω 2 4 Abs x 2 Ω x 4 Ω x 6 Ω x 8 Ω x 0 Ω 5 So we find the wavefunctions: x 2 Ω Ψk0 4 ; Π 4 2 Ω x 2 Ω Ψk x 20 x 3 Ω 4 2 x 5 Ω 2 2 ; 5 2 Π 4 Ψk0 2 Ω Π 4 x2 Ω 2 Ω x 2 Ω x 4 Ω x 6 Ω x 8 Ω x 0 Ω 5 ; d) Graph and check noralization Let us plot our wavefunctions:

6 HW7.nb 6 nus,, Ω ; PlotΨx0. nus, x, 3, 3; PlotΨx5. nus, x, 6, 6; PlotΨx0. nus, x, 7, 7; And show that they re noralized to :

7 HW7.nb 7 IntegrateΨk0 2, x,,, Assuptions 0, 0, Ω 0 IntegrateΨk5 2, x,,, Assuptions 0, 0, Ω 0 IntegrateΨk0 2, x,,, Assuptions 0, 0, Ω 0 3. Discretized HO path integral [optional] See path integral notes pp. 5 9.

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6.

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6. â â x Ψn Hx Ε Ψn Hx 35 (6.7) he solutions of this equation are plane waves Ψn Hx A exphä n x (6.8) he eigen-energy Εn is n (6.9) Εn For a D syste with length and periodic boundary conditions, Ψn Hx Ψn

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j +

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j + G5.65: Statistical Mechanics Notes for Lecture 5 I. THE FUNCTIONAL INTEGRAL REPRESENTATION OF THE PATH INTEGRAL A. The continuous liit In taking the liit P!, it will prove useful to ene a paraeter h P

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Time Evolution of Matter States

Time Evolution of Matter States Tie Evolution of Matter States W. M. Hetherington February 15, 1 The Tie-Evolution Operat The tie-evolution of a wavefunction is deterined by the effect of a tie evolution operat through the relation Ψ

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

The path integral approach in the frame work of causal interpretation

The path integral approach in the frame work of causal interpretation Annales de la Fondation Louis de Broglie, Volue 28 no 1, 2003 1 The path integral approach in the frae work of causal interpretation M. Abolhasani 1,2 and M. Golshani 1,2 1 Institute for Studies in Theoretical

More information

Dimensions and Units

Dimensions and Units Civil Engineering Hydraulics Mechanics of Fluids and Modeling Diensions and Units You already know how iportant using the correct diensions can be in the analysis of a proble in fluid echanics If you don

More information

Classical systems in equilibrium

Classical systems in equilibrium 35 Classical systes in equilibriu Ideal gas Distinguishable particles Here we assue that every particle can be labeled by an index i... and distinguished fro any other particle by its label if not by any

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

Chapter 12. Quantum gases Microcanonical ensemble

Chapter 12. Quantum gases Microcanonical ensemble Chapter 2 Quantu gases In classical statistical echanics, we evaluated therodynaic relations often for an ideal gas, which approxiates a real gas in the highly diluted liit. An iportant difference between

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Chem/Biochem 471 Exam 3 12/18/08 Page 1 of 7 Name:

Chem/Biochem 471 Exam 3 12/18/08 Page 1 of 7 Name: Che/Bioche 47 Exa /8/08 Pae of 7 Please leave the exa paes stapled toether. The forulas are on a separate sheet. This exa has 5 questions. You ust answer at least 4 of the questions. You ay answer ore

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Current, Resistance Electric current and current density

Current, Resistance Electric current and current density General Physics Current, Resistance We will now look at the situation where charges are in otion - electrodynaics. The ajor difference between the static and dynaic cases is that E = 0 inside conductors

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules Kinetic Theory of Gases Connect icroscopic properties (kinetic energy and oentu) of olecules to acroscopic state properties of a gas (teperature and pressure). P v v 3 3 3 But K v and P kt K v kt Teperature

More information

(a) As a reminder, the classical definition of angular momentum is: l = r p

(a) As a reminder, the classical definition of angular momentum is: l = r p PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Srednicki Chapter 6. QFT Problems & Solutions. A. George. May 24, dp j 2π eip j(q j+1 q j ) e ihδt (6.1.1) dq k. j=0. k=1

Srednicki Chapter 6. QFT Problems & Solutions. A. George. May 24, dp j 2π eip j(q j+1 q j ) e ihδt (6.1.1) dq k. j=0. k=1 Srednicki Chapter 6 QFT Probles & Solutions A. George May 24, 202 Srednicki 6.. a) Find an explicit forula for Dq in equation 6.9. Your forula should be of the for Dq = C j= dq j, where C is a constant

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

I. Concepts and Definitions. I. Concepts and Definitions

I. Concepts and Definitions. I. Concepts and Definitions F. Properties of a syste (we use the to calculate changes in energy) 1. A property is a characteristic of a syste that can be given a nuerical value without considering the history of the syste. Exaples

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions Lecture 1 Motivation for course The title of this course is condensed atter physics which includes solids and liquids (and occasionally gases). There are also interediate fors of atter, e.g., glasses,

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundaental Question: What is atter, and how do we identify it? 1. What is the definition of atter? 2. What do you think the ter ass per unit volue eans? 3. Do you think that a

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields Finite fields I talked in class about the field with two eleents F 2 = {, } and we ve used it in various eaples and hoework probles. In these notes I will introduce ore finite fields F p = {,,...,p } for

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Chapter 4: Hypothesis of Diffusion-Limited Growth

Chapter 4: Hypothesis of Diffusion-Limited Growth Suary This section derives a useful equation to predict quantu dot size evolution under typical organoetallic synthesis conditions that are used to achieve narrow size distributions. Assuing diffusion-controlled

More information

Physics 221A: HW3 solutions

Physics 221A: HW3 solutions Physics 22A: HW3 solutions October 22, 202. a) It will help to start things off by doing soe gaussian integrals. Let x be a real vector of length, and let s copute dxe 2 xt Ax, where A is soe real atrix.

More information

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2)

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2) Lecture.5. Ideal gas law We have already discussed general rinciles of classical therodynaics. Classical therodynaics is a acroscoic science which describes hysical systes by eans of acroscoic variables,

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. IIT-JEE5-PH-1 FIITJEE Solutions to IITJEE 5 Mains Paper Tie: hours Physics Note: Question nuber 1 to 8 carries arks each, 9 to 16 carries 4 arks each and 17 to 18 carries 6 arks each. Q1. whistling train

More information

Molecular interactions in beams

Molecular interactions in beams Molecular interactions in beas notable advanceent in the experiental study of interolecular forces has coe fro the developent of olecular beas, which consist of a narrow bea of particles, all having the

More information

Causality and the Kramers Kronig relations

Causality and the Kramers Kronig relations Causality and the Kraers Kronig relations Causality describes the teporal relationship between cause and effect. A bell rings after you strike it, not before you strike it. This eans that the function

More information

On the Diffusion Coefficient: The Einstein Relation and Beyond 3

On the Diffusion Coefficient: The Einstein Relation and Beyond 3 Stoch. Models, Vol. 19, No. 3, 2003, (383-405) Research Report No. 424, 2001, Dept. Theoret. Statist. Aarhus On the Diffusion Coefficient: The Einstein Relation and Beyond 3 GORAN PESKIR 33 We present

More information

KINETIC THEORY. Contents

KINETIC THEORY. Contents KINETIC THEORY This brief paper on inetic theory deals with three topics: the hypotheses on which the theory is founded, the calculation of pressure and absolute teperature of an ideal gas and the principal

More information

We consider a gas of atoms or molecules at temperature T. In chapter 9 we defined the concept of the thermal wavelength λ T, h 2πmkB T,

We consider a gas of atoms or molecules at temperature T. In chapter 9 we defined the concept of the thermal wavelength λ T, h 2πmkB T, Chapter Quantu statistics. Theral wavelength We consider a gas of atos or olecules at teperature T. In chapter 9 we defined the concept of the theral wavelength λ T, λ T = h πkb T, as the wavelength of

More information

Scattering and bound states

Scattering and bound states Chapter Scattering and bound states In this chapter we give a review of quantu-echanical scattering theory. We focus on the relation between the scattering aplitude of a potential and its bound states

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

MOMENT OF INERTIA AND SUPERFLUIDITY

MOMENT OF INERTIA AND SUPERFLUIDITY 1 Chaire Européenne du College de France (004/005) Sandro Stringari Lecture 6 1 Mar 05 MOMENT OF INERTIA AND SUPERFLUIDITY Previous lecture: BEC in low diensions - Theores on long range order. Algebraic

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Hee = ~ dxdy\jj+ (x) 'IJ+ (y) u (x- y) \jj (y) \jj (x), V, = ~ dx 'IJ+ (x) \jj (x) V (x), Hii = Z 2 ~ dx dy cp+ (x) cp+ (y) u (x- y) cp (y) cp (x),

Hee = ~ dxdy\jj+ (x) 'IJ+ (y) u (x- y) \jj (y) \jj (x), V, = ~ dx 'IJ+ (x) \jj (x) V (x), Hii = Z 2 ~ dx dy cp+ (x) cp+ (y) u (x- y) cp (y) cp (x), SOVIET PHYSICS JETP VOLUME 14, NUMBER 4 APRIL, 1962 SHIFT OF ATOMIC ENERGY LEVELS IN A PLASMA L. E. PARGAMANIK Khar'kov State University Subitted to JETP editor February 16, 1961; resubitted June 19, 1961

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4 Massachusetts Institute of Technology Quantu Mechanics I (8.04) Spring 2005 Solutions to Proble Set 4 By Kit Matan 1. X-ray production. (5 points) Calculate the short-wavelength liit for X-rays produced

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

In this chapter we will study sound waves and concentrate on the following topics:

In this chapter we will study sound waves and concentrate on the following topics: Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

Stern-Gerlach Experiment

Stern-Gerlach Experiment Stern-Gerlach Experient HOE: The Physics of Bruce Harvey This is the experient that is said to prove that the electron has an intrinsic agnetic oent. Hydrogen like atos are projected in a bea through a

More information

7. Renormalization and universality in pionless EFT

7. Renormalization and universality in pionless EFT Renoralization and universality in pionless EFT (last revised: October 6, 04) 7 7. Renoralization and universality in pionless EFT Recall the scales of nuclear forces fro Section 5: Pionless EFT is applicable

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

On the approximation of Feynman-Kac path integrals

On the approximation of Feynman-Kac path integrals On the approxiation of Feynan-Kac path integrals Stephen D. Bond, Brian B. Laird, and Benedict J. Leikuhler University of California, San Diego, Departents of Matheatics and Cheistry, La Jolla, CA 993,

More information

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1 Coordinator: Wednesday, March 07, 01 Page: 1 Q1. A transverse sinusoidal wave, travelling in the positive x direction along a string, has an aplitude of 0 c. The transverse position of an eleent of the

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Simple and Compound Harmonic Motion

Simple and Compound Harmonic Motion Siple Copound Haronic Motion Prelab: visit this site: http://en.wiipedia.org/wii/noral_odes Purpose To deterine the noral ode frequencies of two systes:. a single ass - two springs syste (Figure );. two

More information

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

Chapter 1 Introduction and Kinetics of Particles

Chapter 1 Introduction and Kinetics of Particles Chapter 1 Introduction and Kinetics of Particles 1.1 Introduction There are two ain approaches in siulating the transport equations (heat, ass, and oentu), continuu and discrete. In continuu approach,

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

All you need to know about QM for this course

All you need to know about QM for this course Introduction to Eleentary Particle Physics. Note 04 Page 1 of 9 All you need to know about QM for this course Ψ(q) State of particles is described by a coplex contiguous wave function Ψ(q) of soe coordinates

More information

1 The properties of gases The perfect gas

1 The properties of gases The perfect gas 1 The properties of gases 1A The perfect gas Answers to discussion questions 1A. The partial pressure of a gas in a ixture of gases is the pressure the gas would exert if it occupied alone the sae container

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

Kinematics and dynamics, a computational approach

Kinematics and dynamics, a computational approach Kineatics and dynaics, a coputational approach We begin the discussion of nuerical approaches to echanics with the definition for the velocity r r ( t t) r ( t) v( t) li li or r( t t) r( t) v( t) t for

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

3 Thermodynamics and Statistical mechanics

3 Thermodynamics and Statistical mechanics Therodynaics and Statistical echanics. Syste and environent The syste is soe ortion of atter that we searate using real walls or only in our ine, fro the other art of the universe. Everything outside the

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

( θ ) appear in the angular part:

( θ ) appear in the angular part: lectroagnetic Theory (MT) Prof Ruiz, UNC Asheville, doctorphys on YouTue Chapter S Notes Lorentz Force Law S1 MT Other Physics Courses We have seen the figure elow with its triad of courses: Optics, lectroagnetic

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period An Approxiate Model for the Theoretical Prediction of the Velocity... 77 Central European Journal of Energetic Materials, 205, 2(), 77-88 ISSN 2353-843 An Approxiate Model for the Theoretical Prediction

More information

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1 Coordinator: xyz Sunday, June 28, 2015 Page: 1 Q1. A transverse sinusoidal wave propagating along a stretched string is described by the following equation: y (x,t) = 0.350 sin [1.25x + 99.6t], where x

More information