In this chapter we will study sound waves and concentrate on the following topics:

Size: px
Start display at page:

Download "In this chapter we will study sound waves and concentrate on the following topics:"

Transcription

1 Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves Sound intensity and sound level Beats The Doppler effect (17 1)

2 (17 ) Sound waves are echanical longitudinal waves that propagate in solids liquids and gases. Seisic waves used by oil explorers propagate in the earth s crust. Sound waves generated by a sonar syste propagate in the sea. An orchestra creates sound waves that propagate in the air. The locus of the points of a sound wave that has the sae displaceent is called a wavefront. Lines perpendicular to the wavefronts are called rays and they point along the direction which the sound wave propagates. An exaple of a point source of sound waves is given in the figure. We assue that the surrounding ediu is isotropic i.e. sound propagates with the sae speed for all directions. In this case the sound wave spreads outwards uniforly and the wavefronts are spheres centered at the point source. The single arrows indicate the rays. The double arrows indicate the otion of the olecules of the ediu in which sound propagates.

3 v = p B ρ Bulk odulus (17 3) If we apply an overpressure p on an object of volue V, this results in a change of volue V as shown in the figure. The bulk odulus of the copressed aterial p is defined as: B = SI unit: the Pascal V / V Note : The negative sign denotes the decrease in volue when p is positive. The speed of sound Using the above definition of the bulk odulus and cobining it with Newton's second law one can show that the speed of sound in a hoogeneous isotropic ediu with bulk odulus B and density ρ B is given by the equation: v = ρ pv Note 1 : V = Bulk odulus is saller for ore copressible B edia. Such edia exhibit lower speed of sound. Note : Denser aterials (higher ρ ) have lower speed of sound

4 Traveling sound waves. (17 4) Consider the tube filled with air shown in the figure. We generate a haronic sound wave traveling to the right along the axis of the tube. One siple ethod is to place a speaker at the left end of the tube and drive it at a particular frequency. Consider an air eleent of thickness x which is located at position x before the sound wave is generated. This is known as the "equlibriu position" of the eleent. Under these conditions the pressure inside the tube is constant In the presence of the sound wave the eleent oscillates about the equlibriu position. At the sae tie the pressure at the location of the eleent oscillates about its static value. The sound wave in the tube can be described using one of two paraeters:

5 ( υω) p = v s (17 5) Traveling sound waves. (, ) = cos( ω ) ( ) One such paraeter is the distance s x, t of the eleent fro its equilibriu position s x t s kx t. The constant s is the displaceent aplitude of the wave. The angular wavenuber k and the angular frequency ω hase the sae eaning as in the case of the transverse waves studied in chapter 16. The second possibility is to use the pressure variation p fro the static value. p( x, t) = p sin ( kx ωt) The constant p is the wave's pressure aplitude. The two aplitudes are connected by the equation: ( υω) p = v s Note : The displaceent and the pressure variation have a phase difference of 90. As a result when one paraeter has a axiu the other has a iniu and vice versa.

6 π φ = L Interference Consider two point sources of sound waves S 1 and S shown in the figure. The two sources are in phase and eit sound waves of the sae frequency. Waves fro both sources arrive at point P whose distance fro S 1 and S is L1 and L respectively. The two waves interfere at point P. At tie t the phase of sound wave 1 arriving fro S at point P is φ = kl ωt At tie t the phase of sound wave arriving fro S at point P is φ = kl ωt In general the two waves at P have a phase difference 1 π φ = φ φ1 = kl ωt ( kl1 ωt) = k L L1 = L L1 The quantity L L is known as the " path length difference" L π between the two waves. Thus φ = L Here is the wavelength of the two waves. (17 6)

7 (17 7) Constructive intereference. The wave at P resulting fro the interference of the two waves that arrive fro S and S has a axiu 1 aplitude when the phase difference φ = π π = 0,1,,.... L= π L= L = 0,,,... Destructive intereference. The wave at P resulting fro the interference of the two waves that arrive fro S and S has a iniiu aplitude when the phase difference 1 π φ = π ( + 1 ) = 0,1,,.... L= π ( + 1 ) 1 L= + L = /, 3 /, 5 /,... L equal to an integral ultiple of L equal to a half-integral ultiple of constructive interference destructive interference

8 (17 8) Intensity of a sound wave Consider a wave that is incident norally on a surface of area A. The wave transports energy. As a result power P (energy per unit tie) passes through A. We define at the wave intensity I the ratio P/ A P I = A SI units: W/ The intensity of a haronic wave with displaceent aplitude ρω v 1. In ters of the pressure aplitude is given by: I = s I = p ρv Consider a point source S eitting a power P in the for of sound waves of a particular frequency. The surrounding ediu is isotropic so the waves spread uniforly. The corresponding wavefronts are spheres that have S as P their center. The sound intensity at a distance r fro S is: I = 4π r The intensity of a sound wave for a point sources is proportional to s 1 r

9 The decibel The auditory sensation in huans is proportional to the logarith of the sound intensity I. This allows the ear to percieve a wide range of sound intensities. The threshold of hearing I o is defined as the lowest sound intensity that can be detected by the huan ear. I = 10 W/ 0 1 The sound level β is defined in such a way as to iic the response I of the huan ear. β = 10log β is expressed in decibels (db) Io We can invert the equation above and express I in ters of β as: I = I 10 o Note 1 : ( β /10) For I = I we have: β = 10log1 = 0 o Note : β increases by 10 decibels every tie I increases by a factor of 10 4 For exaple β = 40 db corresponds to I = 10 I o (17 9)

10 (17 10) Sound standing waves in pipes Consider a pipe filled with air that is open at both ends. Sound waves that have walengths that satisfy a particular relation with the length L of the pipe setup standing waves that have sustained aplitudes. The siplest pattern can be set up in a pipe that is open at both ends as shown in fig.a. In such a pipe standing waves have a antinode (axiu) in the dispaceent aplitude The aplitude of the standing wave is plotted as function of distance in fig.b. The pattern has an node at the pipe center since two adjacent antinodes are separated by an anode (iniu). The distance between two adjacent antinodes is /. v v Thus L = / = L Its frequency f = = L The standing wave of fig.b is known as the " fundanetal ode" or " first haronic" of the tube. Note : Antinodes in the displaceent aplitude correspond to nodes in the pressure aplitude. This is because s and p are 90 out of phase.

11 L n = n Standing waves in tubes open at one end and closed at the other The first four standing wave patterns are shown in fig.a. They have an antinode at the open end and an node at the closed end. L The wavelength n = n + 1/ (17 11) Standing waves in tubes open at both ends The next three standing wave patterns are shown in fig.a. The wavelength = where n = 1,, 3,... The integer n is known as the haronic nuber The corresponding frequencies f n n L n = n + 1/ L n nv = L

12 Beats. If we listen to two sound waves of equal aplitude and frequencies ( > ) f and f f f and f f we perceive the as a sound of frequency f1+ f fav =. in addition we also perceive "beats" which are variations in the intensity of the sound with frequency f = f f. The displaceents of the beat 1 two sound waves are given by the equations: s = s cos ωt, and s = s cos ω t. 1 1 These are plotted in fig.a and fig.b. Using the principle of superposition we can deterine the resultant displaceent as: ω1 ω ω1+ ω s = s1+ s = s( cosω1t+ cosωt) = scos t cos t ω1 ω ω1+ ω s = [ s cosω t] cos ωt where ω = and ω = Since ω1 ω ω? ω (17 1)

13 T beat (17 13) f = f f beat [ cosω ] cos ω where ω and ω T' ω ω ω + ω s = s t t = = The displaceent s is plotted as function of tie in the figure. We can regard it as a cosine function whose aplitude is equal to s cos ω t. The aplitude is tie dependent but varies slowly with tie. The aplitude exhibits a axiu whenever cos ω t is equal to either +1 or -1 which happens twice within one period of the cos ω t function. ω1 ω Thus the angual frequancy of the beats ωbeat = ω = = ω1 ω The frequancy of the beats f = πω = πω πω = f f beat beat 1 1

14 The Doppler effect (17 14) Consider the source and the detector of sound waves shown in the figure. We assue that the frequency of the source is equal to f. We take as the reference frae that surrounding air through which the sound waves propagate. If there is relative otion between the source and the detector then the detector perceives the frequancy of the sound as f f. If the source or the detector ove towards to each other f > f. if on the other hand the source or the detector ove away fro each other f < f. This is known as the " Doppler " v± vd effect. The frequecy f is given by the equation: f = f. Here vs and vd v ± vs are the speeds of the source and detector with respect to air, respsctively. When the otion of the detector or source is towards each other the sign of the speed ust give an upward shift in frequency. If on the other hand the otoion is away fro each other the sign of the speed ust give a downward shift in frequency. The four possible cobinantions are illustrated in the next page.

15 v S v D v+ v v v D f = f f > f S (17 15) v S v D v v v+ v D f = f f < f S v S v D v v f = f v v D S v S v D v+ v f = f v + v D S v± v f = f v ± v D S

PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 221-3A Fall 2010 Waves - II Lectures 27-28 Chapter 17 (Halliday/Resnick/Walker, Fundaentals of Physics 8 th edition) 1 Chapter 17 Waves II In this chapter we will study sound waves and concentrate on

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ]

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ] L 1 Vibration and Waves [ ] Vibrations (oscillations) resonance pendulu springs haronic otion Waves echanical waves sound waves usical instruents VIBRATING SYSTEMS Mass and spring on air trac Mass hanging

More information

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1 Coordinator: Wednesday, March 07, 01 Page: 1 Q1. A transverse sinusoidal wave, travelling in the positive x direction along a string, has an aplitude of 0 c. The transverse position of an eleent of the

More information

Phys102 First Major-123 Zero Version Coordinator: xyz Sunday, June 30, 2013 Page: 1

Phys102 First Major-123 Zero Version Coordinator: xyz Sunday, June 30, 2013 Page: 1 Coordinator: xyz Sunday, June 30, 013 Page: 1 Q1. A string has a ass of 0.0 g and a length of 1.6. A sinusoidal wave is travelling on this string, and is given by: y (x,t) = 0.030 sin (0.30 x 80 t + 3π/)

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1 Coordinator: xyz Sunday, June 28, 2015 Page: 1 Q1. A transverse sinusoidal wave propagating along a stretched string is described by the following equation: y (x,t) = 0.350 sin [1.25x + 99.6t], where x

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Discussion Examples Chapter 13: Oscillations About Equilibrium

Discussion Examples Chapter 13: Oscillations About Equilibrium Discussion Exaples Chapter 13: Oscillations About Equilibriu 17. he position of a ass on a spring is given by x 6.5 c cos t 0.88 s. (a) What is the period,, of this otion? (b) Where is the ass at t 0.5

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Student Book pages 440 443 Vocabulary. aplitude: axiu displaceent of an oscillation antinodes: points of

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

Phys102 First Major-131 Zero Version Coordinator: xyz Saturday, October 26, 2013 Page: 1

Phys102 First Major-131 Zero Version Coordinator: xyz Saturday, October 26, 2013 Page: 1 Phys10 First Major-131 Zero Version Coordinator: xyz Saturday, October 6, 013 Page: 1 Q1. Under a tension τ, it takes s for a pulse to travel the length of a stretched wire. What tension is required for

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

PHY 101 General Physics I (Oscillations, Waves I and II) 2017/18 academic session

PHY 101 General Physics I (Oscillations, Waves I and II) 2017/18 academic session PHY 101 General Physics I (Oscillations, Waves I and II) 017/18 acadeic session Segun Fawole PhD (AMInstP) Dept. of Physics & Engr. Physics Obafei Awolowo University, Ile-Ife, Nigeria. eail: gofawole@oauife.edu.ng

More information

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV PHYSICS 3 Exa- NAME. In the figure shown, light travels fro aterial I, through three layers of other aterials with surfaces parallel to one another, and then back into another layer of aterial I. The refractions

More information

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys 114 20 multiple choice problems (15 points each 300 total) 75% will be from Chapters 10-16 25% from Chapters 1-9 Students

More information

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1 Nae: Class: Date: ID: A Quiz 5 PRACTICE--Ch2., 3., 4. Multiple Choice Identify the choice that best copletes the stateent or answers the question.. A bea of light in air is incident at an angle of 35 to

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Q1. For a given medium, the wavelength of a wave is:

Q1. For a given medium, the wavelength of a wave is: Phys10 First Major-091 Zero Version Coordinator: M Sunday, Noveber 15, 009 Page: 1 Q1. For a given ediu, the wavelength of a wave is: A) inversely proportional to the frequency B) independent of the frequency

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

Lecture 12: Waves in periodic structures

Lecture 12: Waves in periodic structures Lecture : Waves in periodic structures Phonons: quantised lattice vibrations of a crystalline solid is: To approach the general topic of waves in periodic structures fro a specific standpoint: Lattice

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

Q1. The displacement of a string carrying a traveling sinusoidal wave is given by:

Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: Coordinator: A. Mekki Saturday, Noveber, 008 Page: 1 Q1. The displaceent of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At tie t = 0 the point at x = 0 has

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a FIRS MAJOR -041 1 Figure 1 shows the snap shot of part of a transverse wave 17 traveling along a string. Which stateent about the otion 7 of eleents of the string is correct? For the eleent at A1 S, the

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Marketed and Distributed By FaaDoOEngineers.com

Marketed and Distributed By FaaDoOEngineers.com WAVES GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Waves Wave motion A wave motion is a kind of disturbance which is transferred from one

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Transverse waves. Waves. Wave motion. Electromagnetic Spectrum EM waves are transverse.

Transverse waves. Waves. Wave motion. Electromagnetic Spectrum EM waves are transverse. Transerse waes Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and, HKBU Waes. Mechanical waes e.g. water waes, sound waes, seisic waes, strings in usical instruents.

More information

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page 5/09/06 PHYSICS 13 Exa #1 NAME FEYNMAN Please write down your nae also on the back side of the last page 1 he figure shows a horizontal planks of length =50 c, and ass M= 1 Kg, pivoted at one end. he planks

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

COUPLED OSCILLATORS. Two identical pendulums

COUPLED OSCILLATORS. Two identical pendulums COUPED OSCIATORS A real physical object can be rearded as a lare nuber of siple oscillators coupled toether (atos and olecules in solids. The question is: how does the couplin affect the behavior of each

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13 PHY 4Y FOUNDAIONS OF PHYSICS - utorial Questions #9 Solutions Noveber /3 Conservation of Ener and Sprins. One end of a assless sprin is placed on a flat surface, with the other end pointin upward, as shown

More information

Physics 202 Homework 7

Physics 202 Homework 7 Physics 202 Homework 7 May 15, 2013 1. On a cello, the string with the largest linear density (0.0156 kg/m) is the C 171 newtons string. This string produces a fundamental frequency of 65.4 Hz and has

More information

Design and Experimental Research of Atomizer Based on Micro Abrasive Ultrasonic Polishing Bang-fu WANG, Yin ZHEN, Juan SONG and A-chun ZHU

Design and Experimental Research of Atomizer Based on Micro Abrasive Ultrasonic Polishing Bang-fu WANG, Yin ZHEN, Juan SONG and A-chun ZHU 217 3rd International Conference on Applied Mechanics and Mechanical Autoation (AMMA 217) ISBN: 978-1-6595-479- Design and Experiental Research of Atoizer Based on Micro Abrasive Ultrasonic Polishing Bang-fu

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

Waves & Normal Modes. Matt Jarvis

Waves & Normal Modes. Matt Jarvis Waves & Noral Modes Matt Jarvis January 19, 016 Contents 1 Oscillations 1.0.1 Siple Haronic Motion - revision................... Noral Modes 5.1 The coupled pendulu.............................. 6.1.1

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

1. Types of Waves. There are three main types of waves:

1. Types of Waves. There are three main types of waves: Chapter 16 WAVES I 1. Types of Waves There are three main types of waves: https://youtu.be/kvc7obkzq9u?t=3m49s 1. Mechanical waves: These are the most familiar waves. Examples include water waves, sound

More information

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds)

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds) 05/07/03 HYSICS 3 Exa #1 Use g 10 /s in your calculations. NAME Feynan lease write your nae also on the back side of this exa 1. 1A A unifor thin stick of ass M 0. Kg and length 60 c is pivoted at one

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 3: 30 Sep. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Sound Sound = longitudinal wave in a medium. The medium can be anything:

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Chapter 16 Sound and Hearing by C.-R. Hu

Chapter 16 Sound and Hearing by C.-R. Hu 1. What is sound? Chapter 16 Sound and Hearing by C.-R. Hu Sound is a longitudinal wave carried by a gas liquid or solid. When a sound wave passes through a point in space the molecule at that point will

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Problem Score 1 /25 2 /16 3 /20 4 /24 5 /15 Total /100

Problem Score 1 /25 2 /16 3 /20 4 /24 5 /15 Total /100 PHYS 4 Exa 3 Noveber 8, 6 Tie o Discussion Section: Nae: Instructions Clear your desk o everything but pens/pencils and erasers. Take o all caps, hats, visors, etc., and place the on the loor under your

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. IIT-JEE5-PH-1 FIITJEE Solutions to IITJEE 5 Mains Paper Tie: hours Physics Note: Question nuber 1 to 8 carries arks each, 9 to 16 carries 4 arks each and 17 to 18 carries 6 arks each. Q1. whistling train

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Standing Waves Fixed Endpoints Fundamental n=1 (2 nodes) l n = 2L/n f n = n v / (2L)

More information

Wave Motion Wave and Wave motion Wave is a carrier of energy Wave is a form of disturbance which travels through a material medium due to the repeated periodic motion of the particles of the medium about

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011 EN40: ynaics and Vibrations Final Exaination Tuesday May 15, 011 School of Engineering rown University NME: General Instructions No collaboration of any ind is peritted on this exaination. You ay use double

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position Physics 3: ecture Today s genda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a spring Vertical spring Energy and siple haronic otion Energy o

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 05 Saskatchewan High School Physics Scholarship Copetition May, 05 Tie allowed: 90 inutes This copetition is based on the Saskatchewan

More information

Simple Schemes of Multi anchored Flexible Walls Dynamic Behavior

Simple Schemes of Multi anchored Flexible Walls Dynamic Behavior 6 th International Conference on Earthquake Geotechnical Engineering -4 Noveber 05 Christchurch, New Zealand Siple Schees of Multi anchored Flexible Walls Dynaic Behavior A. D. Garini ABSTRACT Siple schees

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Experient 9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Objectives 1. Verify Hoo s law,. Measure the force constant of a spring, and 3. Measure the period of oscillation of a spring-ass syste and copare it

More information

Chapter 17. Waves-II Sound Waves

Chapter 17. Waves-II Sound Waves Chapter 17 Waves-II 17.2 Sound Waves Wavefronts are surfaces over which the oscillations due to the sound wave have the same value; such surfaces are represented by whole or partial circles in a twodimensional

More information