PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Size: px
Start display at page:

Download "PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)"

Transcription

1 PH 221-3A Fall 2010 Waves - II Lectures Chapter 17 (Halliday/Resnick/Walker, Fundaentals of Physics 8 th edition) 1

2 Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves Sound intensity and sound level Beats The Doppler effect 2

3 Sound waves are echanical longitudinal waves that propagate in solids liquids and gases. Si Seisic i waves used dby oil explorers propagate in the earth s crust. Sound waves generated by a sonar syste propagate in the sea. An orchestra creates sound waves that propagate in the air. The locus of the points of a sound wave that has the sae displaceent is called a wavefront. Lines perpendicular to the wavefronts are called rays and they point along the direction which the sound wave propagates. An exaple of a point source of sound waves is given in the figure. We assue that the surrounding ediu is isotropic i.e. sound propagates with the sae speed for all directions. In this case the sound wave spreads outwards uniforly and the wavefronts are spheres centered e ed at the point source. The single arrows indicate the rays. The double arrows indicate the otion of the olecules of the ediu in 3 which sound propagates.

4 v Δp B Bulk odulus If we apply an overpressure p on an object of volue V, this results in a change of volue V as shown in the figure. The bulk odulus of the copressed aterial p is defined as: B SI unit: the Pascal V / V Note : The negative sign denotes the decrease in volue when p is positive. The speed of sound Using the above definition of the bulk odulus and cobining it with Newton's second law one can show that the speed of sound in a hoogeneous isotropic ediu with bulk odulus B and density is given by the equation: v B pv Note 1 : V Bulk odulus is saller for ore copressible B edia. Such edia exhibit lower speed of sound. Note 2 : Denser aterials (higher ) have lower speed of sound 4

5 The Speed of Sound 5

6 6

7 Exaple: Thunder, lightning and a rule of thub There is a rule of thub for estiating how far away a thunderstor is. You can estiate your distance fro a bolt of lightning i by counting the seconds between seeing the flash and hearing the thunder and then dividing by 3 to obtain the distance in k. Why does this rule work? 7

8 The Speed of Sound Proble : Both krypton (Kr) and neon (Ne) can be approxiated at onatoic ideal gases. The atoic ass of krypton is 83.8 u, while that of neon is 20.2 u. A loudspeaker produces a sound whose wavelength in krypton is If the loudspeaker were used to produce sound of the sae frequency in neon at the sae teperature, what would be the wavelength? 8

9 Traveling sound waves. Consider the tube filled with air shown in the figure. We generate a haronic sound wave traveling to the right along the axis of the tube. One siple ethod is to place a speaker at the left end of the tube and drive it at a particular frequency. Consider an air eleent of thickness x which is located at position x before the sound wave is generated. This is known as the "equlibriu position" of the eleent. Under these conditions the pressure inside the tube is constant In the presence of the sound wave the eleent oscillates about the equlibriu position. At the sae tie the pressure at the location of the eleent oscillates about its static value. The sound wave in the tube can be described using one of two paraeters: 9

10 p v s Traveling sound waves. One such paraeter is the distance s x, t of the eleent fro its equilibriu i position i, cos s x t s kx t. The constant s is the displaceent aplitude of the wave. The angular wavenuber k and the angular frequency have the sae eaning as in the case of the transverse waves studied tdidin chapter 16. The second possibility is to use the pressure variation p fro the static value. p x, t p sinkxt The constant p is the wave's pressure aplitude. The two aplitudes are connected by the equation: p v s Note : The displaceent and the pressure variation have a phase difference of 90. As a result when one paraeter has a axiu the other has a iniu and vice versa. 10

11 2 L Interference Consider two point sources of sound waves S 1 and S2 shown in the figure. The two sources are in phase and eit sound waves of the sae frequency. Waves fro both sources arrive at point P whose distance fro S 1 and S 2 is L1 and L2 respectively. The two waves interfere at point P. At tie t the phase of sound wave 1 arriving fro S at point P is kl t At tie t the phase of sound wave 2 arriving fro S at point P is kl t In general the two waves at P have a phase difference kl2 t kl1t k L2 L1 L2 L1 The quantity L L is known as the " path hlength hdifference" L between the two waves. Thus L Here is the wavelength of the two waves. 11

12 Constructive intereference. The wave at P resulting fro the interference of the two waves that t arrive fro S and ds has a axiu 1 2 aplitude when the phase difference ,1, 2,.... L 2 L L 0,, 2,... Destructive intereference. The wave at P resulting fro the interference of the two waves that arrive fro S and S has a iniiu aplitude when the phase difference ,1, 2,.... L 21 1 L L /2, 3 /2, 5 /2,... 2 Δ L equal to an integral ultiple of λ constructive L equal to a half-integral ultiple of λ interference Δ destructive interference 12

13 At an open-air concert on a hot day (T c = 25 C, V s = /s), a person sits at a location that 7.0 and 9.1 respectively fro speakers at each side of the stage. A usician, waring up, plays a single 494 Hz tone. What does the spectator hear? 13

14 Constructive and Destructive Interference of Sound Waves Assue that two loudspeakers in the figure are vibrating out of phase instead of in phase. (see exaple 2 fro the text) The speed of sound is 343 /s. What is the sallest frequency that will produce destructive interference at point C? 14

15 Constructive and Destructive Interference of Sound Waves Speakers A and B are vibrating in phase. They are directly facing each other, are 7.80 apart, and are each playing a 73.0 Hz tone. The speed of sound is 343 /s. On the line between the speakers there are three points where constructive interference occurs. What are the distances of these three points fro speaker A? 15

16 Intensity of a sound wave Consider a wave that is incident norally on a surface of area A. The wave transports energy. As a result power P (energy per unit tie) passes through A. We define the wave i ntensity I as the rat i o P/ A I P A SI units: W/ The intensity of a haronic wave with displaceent aplitude 2 v In ters of the pressure aplitude 2 s is given by: I s I p 2 2v v Consider a point source S eitting a power P in the for of sound waves of a particular frequency. The surrounding ediu is isotropic so the waves spread uniforly. The corresponding wavefronts are spheres that have S as P their center. The sound intensity at a distance r fro S is: I 2 4 r 1 The intensity of a sound wave for a point sources is proportional to r 2 16

17 The decibel The auditory sensation in huans is proportional to the logarith of the sound intensity I. This allows the ear to percieve a wide range of sound intensities. The threshold of hearing I is defined as the lowest sound intensity that can be detected by the huan ear. I 10 W/ o The sound level is defined in such a way as to iic the response I of the huan ear. 10log is expressed in decibels (db) Io We can invert the equation above and express I in ters of as: I I o Note 1 : 10 /10 For I I we have: 10log1 0 o Note2 : increases by 10 decibels every tie I increases by a factor of 10 4 For exaple 40 db corresponds to I 10 I o 17

18 Exaple 1: Express the threshold of hearing (2.5 x W/ 2 ) and the threshold of pain (1 W/ 2 ) in decibels. Exaple 2: At a distance of 60 fro a jet airline the intensity is 1 W/ 2. I 180 =? 18

19 The intensity of sound near a loud rock band is 120dB. What is the intensity of sound near two such rock bands playing together? 19

20 Proble (Decibels): Two identical rifles are shot at the sae tie and the sound intensity level is 800dB. What would be the sound intensity level if only one rifle were shot? (hint: the answer is not 400db) 20

21 Proble : Two sound sources each eit sound power uniforly in all directions. There are no reflections. Both sources are located on the x axis, one at the origin and the other at x = The source of the origin eits four ties ore power than the other source. Where on the x axis is the intensity of each sound equal? Note there are 2 answers. 21

22 Sound standing waves in pipes Consider a pipe filled with air that is open at both ends. Sound waves that have walengths that satisfy a particular relation with the length L of the pipe setup standing waves that have sustained aplitudes. The siplest pattern can be set up in a pipe that is open at both ends as shown in fig.a. In such a pipe standing waves have a antinode (axiu) in the dispaceent aplitude The aplitude of the standing wave is plotted as function of distance in fig.b. The pattern has an node at the pipe center since two adjacent antinodes are separated by a node (iniu). The distance between two adjacent antinodes is /2. v v Thus L /2 2 L Its frequency f 2L The standing wave of fig.b is known as the " fundaental ode" or " first haronic" of the tube. Note : Antinodes in the displaceent aplitude correspond to nodes in the pressure aplitude. This is because s and p are 90 out of phase. 22

23 2L n n Standing waves in tubes open at both ends The next three standing wave patterns are 2 shown in fig.a. The wavelength where known as the Standing waves in tubes open at one end and closed at the other The first four standing wave patterns are shown in fig.a. They have an antinode at the open end and a node at the closed end. 4L L The wavelengt h n n n 1, 2, 3,... The integer n is haronic nuber The corresponding frequencies 4L n n f n n L n nv 2L L for n=1,3,5,7,... 23

24 Longitudinal Standing Waves Proble A person hus into the top of a well and finds that standing waves are established at frequencies of 42, 70.0 and 98 Hz. The frequency of 42 Hz is not necessarily the fundaental frequency. The speed of sound is 343 /s. How deep is the well? 24

25 Beats. If we listen to two sound waves of equal aplitude and frequencies f and f f f and f f we perceive the as a sound of frequency f1 f2 fav. in addition we also perceive "beats" which are variations in the 2 intensity of the sound with frequency f f f. The displaceents of the beat 1 2 two sound waves are given by the equations: s s cos t, and s s cos t These are plotted in fig.a and fig.b. Using the principle of superposition we can deterine the resultant displaceent as: s s1s2 scos1tcos2t2scos t cos t s 2 s costcos t where and 2 2 Since

26 T beat f f f beat 1 2 T' s 2 s cost cos t where and 2 2 The displaceent s is plotted as function of tie in the figure. We can regard it as a cosine function whose aplitude is equal to 2 s cos t. The aplitude is tie dependent but varies slowly with tie. The aplitude exhibits a axiu whenever cos t is equal to either +1 or -1 which happens twice within one period of the cos t function. Thus the angual frequency of the beats The frequency of the beats f f f beat beat 1 2 beat

27 The Doppler effect Consider the source and the detector of sound waves shown in the figure. We assue that the frequency of the source is equal to f. We take as the reference frae that surrounding air through which the sound waves propagate. If there is relative otion between the source and the detector then the detector perceives the frequency of the sound as f f. If the source or the detector ove towards to each other f f. if on the other hand the source or the detector ove away fro each other f f. This is known as the " Doppler " v vd effect. The frequecy f is given by the equation: f f. Here vs and v v vs are the speeds of the source and detector with respect to air, respsctively. When the otion of the detector or source is towards each other the sign of the speed ust give an upward shift in frequency. If on the other hand the otion is away fro each other the sign of the speed ust give a downward shift in frequency. The four possible cobinantions are illustrated in the next page. D 27

28 v S v D D v v f f f f v v S v S v D v v f f D f f v v S v S v D v v f f D v v v v f f v v v S v D D S v v f f v v 28 S D S

29 A train approaching a siren. The train encounters ore wave fronts per unit tie than when stationary. f = f + additional # of condensations additional # of condensations in a tie t= (V r t)/λ The Doppler Effect A train receding fro the siren. The train encounters fewer wave fronts per unit tie than when stationary. in 1 sec additional # = V r /λ -> f = f + V r /λ = f(1 + V r /fλ) = f(1 + V r /V) A receiver on the train will detect a higher frequency when approaching a siren, and a lower frequency when receding. 29

30 The source (train) is in otion, the receiver is stationary A stationary receiver will detect a higher frequency when it is front of the train and a lower frequency when behind the train. The wavelength ahead of the train is shorter λ = λ V E /f and behind the train is longer λ = λ + V E /f when the train is stationary. 30

31 Proble: The trucks travel at the sae speed. They are far apart on adjacent lanes and approach each other essentially head-on. One driver hears the horn of the other truck at a frequency that is 1.20 ties the frequency he hears when the truck is stationary. The speed of sound is 343 /s. At what speed dis each htruck oving? 31

In this chapter we will study sound waves and concentrate on the following topics:

In this chapter we will study sound waves and concentrate on the following topics: Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

Discussion Examples Chapter 13: Oscillations About Equilibrium

Discussion Examples Chapter 13: Oscillations About Equilibrium Discussion Exaples Chapter 13: Oscillations About Equilibriu 17. he position of a ass on a spring is given by x 6.5 c cos t 0.88 s. (a) What is the period,, of this otion? (b) Where is the ass at t 0.5

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Waves and Sound Lectures 26-27 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated

More information

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ]

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ] L 1 Vibration and Waves [ ] Vibrations (oscillations) resonance pendulu springs haronic otion Waves echanical waves sound waves usical instruents VIBRATING SYSTEMS Mass and spring on air trac Mass hanging

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total) Lecture 14 1/38 Phys 220 Final Exam Wednesday, August 6 th 10:30 am 12:30 pm Phys 114 20 multiple choice problems (15 points each 300 total) 75% will be from Chapters 10-16 25% from Chapters 1-9 Students

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

Physics 231 Lecture 25

Physics 231 Lecture 25 Physics 231 Lecture 25 Spherical waves P Main points of today s I = lecture: 2 4πr Wave Dopper speed shift for a string v + v o ƒ' = ƒ F v = v vs µ Interference of sound waves L Here F is the string tension

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Student Book pages 440 443 Vocabulary. aplitude: axiu displaceent of an oscillation antinodes: points of

More information

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork Physics 103: Lecture 6 Sound Producing a Sound Wave Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave A tuning fork will produce

More information

Phys102 First Major-123 Zero Version Coordinator: xyz Sunday, June 30, 2013 Page: 1

Phys102 First Major-123 Zero Version Coordinator: xyz Sunday, June 30, 2013 Page: 1 Coordinator: xyz Sunday, June 30, 013 Page: 1 Q1. A string has a ass of 0.0 g and a length of 1.6. A sinusoidal wave is travelling on this string, and is given by: y (x,t) = 0.030 sin (0.30 x 80 t + 3π/)

More information

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1 Coordinator: xyz Sunday, June 28, 2015 Page: 1 Q1. A transverse sinusoidal wave propagating along a stretched string is described by the following equation: y (x,t) = 0.350 sin [1.25x + 99.6t], where x

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1 Nae: Class: Date: ID: A Quiz 5 PRACTICE--Ch2., 3., 4. Multiple Choice Identify the choice that best copletes the stateent or answers the question.. A bea of light in air is incident at an angle of 35 to

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

PHY 101 General Physics I (Oscillations, Waves I and II) 2017/18 academic session

PHY 101 General Physics I (Oscillations, Waves I and II) 2017/18 academic session PHY 101 General Physics I (Oscillations, Waves I and II) 017/18 acadeic session Segun Fawole PhD (AMInstP) Dept. of Physics & Engr. Physics Obafei Awolowo University, Ile-Ife, Nigeria. eail: gofawole@oauife.edu.ng

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Physics 202 Homework 7

Physics 202 Homework 7 Physics 202 Homework 7 May 15, 2013 1. On a cello, the string with the largest linear density (0.0156 kg/m) is the C 171 newtons string. This string produces a fundamental frequency of 65.4 Hz and has

More information

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1 Coordinator: Wednesday, March 07, 01 Page: 1 Q1. A transverse sinusoidal wave, travelling in the positive x direction along a string, has an aplitude of 0 c. The transverse position of an eleent of the

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

PHYS-2020: General Physics II Course Lecture Notes Section VIII

PHYS-2020: General Physics II Course Lecture Notes Section VIII PHYS-2020: General Physics II Course Lecture Notes Section VIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

CLASS 2 CLASS 2. Section 13.5

CLASS 2 CLASS 2. Section 13.5 CLASS 2 CLASS 2 Section 13.5 Simple Pendulum The simple pendulum is another example of a system that exhibits simple harmonic motion The force is the component of the weight tangent to the path of motion

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Standing Waves Fixed Endpoints Fundamental n=1 (2 nodes) l n = 2L/n f n = n v / (2L)

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV PHYSICS 3 Exa- NAME. In the figure shown, light travels fro aterial I, through three layers of other aterials with surfaces parallel to one another, and then back into another layer of aterial I. The refractions

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

Q1. The displacement of a string carrying a traveling sinusoidal wave is given by:

Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: Coordinator: A. Mekki Saturday, Noveber, 008 Page: 1 Q1. The displaceent of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At tie t = 0 the point at x = 0 has

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

Chapters 11 and 12. Sound and Standing Waves

Chapters 11 and 12. Sound and Standing Waves Chapters 11 and 12 Sound and Standing Waves The Nature of Sound Waves LONGITUDINAL SOUND WAVES Speaker making sound waves in a tube The Nature of Sound Waves The distance between adjacent condensations

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

Phys102 First Major-131 Zero Version Coordinator: xyz Saturday, October 26, 2013 Page: 1

Phys102 First Major-131 Zero Version Coordinator: xyz Saturday, October 26, 2013 Page: 1 Phys10 First Major-131 Zero Version Coordinator: xyz Saturday, October 6, 013 Page: 1 Q1. Under a tension τ, it takes s for a pulse to travel the length of a stretched wire. What tension is required for

More information

Q1. For a given medium, the wavelength of a wave is:

Q1. For a given medium, the wavelength of a wave is: Phys10 First Major-091 Zero Version Coordinator: M Sunday, Noveber 15, 009 Page: 1 Q1. For a given ediu, the wavelength of a wave is: A) inversely proportional to the frequency B) independent of the frequency

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a FIRS MAJOR -041 1 Figure 1 shows the snap shot of part of a transverse wave 17 traveling along a string. Which stateent about the otion 7 of eleents of the string is correct? For the eleent at A1 S, the

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 05 Saskatchewan High School Physics Scholarship Copetition May, 05 Tie allowed: 90 inutes This copetition is based on the Saskatchewan

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Physics 101: Lecture 22 Sound

Physics 101: Lecture 22 Sound EXAM III Physics 101: Lecture 22 Sound Today s lecture will cover Textbook Chapter 12 Physics 101: Lecture 22, Pg 1 Speed of Sound Recall for pulse on string: v = sqrt(t / m) For fluids: v = sqrt(b/r)

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

Lecture 18. Waves and Sound

Lecture 18. Waves and Sound Lecture 18 Waves and Sound Today s Topics: Nature o Waves Periodic Waves Wave Speed The Nature o Sound Speed o Sound Sound ntensity The Doppler Eect Disturbance Wave Motion DEMO: Rope A wave is a traveling

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Marketed and Distributed By FaaDoOEngineers.com

Marketed and Distributed By FaaDoOEngineers.com WAVES GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Waves Wave motion A wave motion is a kind of disturbance which is transferred from one

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Chapter 20: Mechanical Waves

Chapter 20: Mechanical Waves Chapter 20: Mechanical Waves Section 20.1: Observations: Pulses and Wave Motion Oscillation Plus Propagation Oscillation (or vibration): Periodic motion (back-and-forth, upand-down) The motion repeats

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

PHYSICS 231 Sound PHY 231

PHYSICS 231 Sound PHY 231 PHYSICS 231 Sound 1 Travelling (transverse) waves The wave moves to the right, but each point makes a simple harmonic vertical motion oscillation position y position x wave Since the oscillation is in

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

Lecture 12: Waves in periodic structures

Lecture 12: Waves in periodic structures Lecture : Waves in periodic structures Phonons: quantised lattice vibrations of a crystalline solid is: To approach the general topic of waves in periodic structures fro a specific standpoint: Lattice

More information

chapter 17 Sound Intensity of sound (Section 17.2) 1. Number of speakers 2. Point source

chapter 17 Sound Intensity of sound (Section 17.2) 1. Number of speakers 2. Point source chapter 17 Sound Intensity of sound (Section 17.2) 1. Number of speakers 2. Point source Standing waves (Section 17.3) 3. Standing waves in air columns Doppler effect (Section 17.4) 4. Doppler shift I

More information

Physics 140. Sound. Chapter 12

Physics 140. Sound. Chapter 12 Physics 140 Sound Chapter 12 Sound waves Sound is composed of longitudinal pressure waves. wave propagabon Compression Compression Compression è when parbcles come together RarefacBon RarefacBon RarefacBon

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S Syllabus : Wave motion. Longitudinal and transverse waves, speed of wave. Dplacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife SoundWaves Lecture (2) Special topics Dr.khitam Y, Elwasife VGTU EF ESK stanislovas.staras@el.vgtu.lt 2 Mode Shapes and Boundary Conditions, VGTU EF ESK stanislovas.staras@el.vgtu.lt ELEKTRONIKOS ĮTAISAI

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Physics Mechanics. Lecture 34 Waves and sound II

Physics Mechanics. Lecture 34 Waves and sound II 1 Physics 170 - Mechanics Lecture 34 Waves and sound II 2 Sound Waves Sound waves are pressure waves in solids, liquids, and gases. They are longitudinal in liquids and gases, and may have transverse components

More information

University Physics Volume I Unit 2: Waves and Acoustics Chapter 17: Sound Conceptual Questions

University Physics Volume I Unit 2: Waves and Acoustics Chapter 17: Sound Conceptual Questions Unit : Waes and Acoustics Uniersity Physics Volue I Unit : Waes and Acoustics Conceptual Questions 1. What is the difference between sound and hearing? Sound is a disturbance of atter (a pressure wae)

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string =

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string = Chap 12. Sound Sec. 12.1 - Characteristics of Sound Sound is produced due to source(vibrating object and travels in a medium (londitudinal sound waves and can be heard by a ear (vibrations. Sound waves

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S PW CONCEPTS C C Equation of a Travelling Wave The equation of a wave traveling along the positive x-ax given by y = f(x vt) If the wave travelling along the negative x-ax, the wave funcion

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

Transverse waves. Waves. Wave motion. Electromagnetic Spectrum EM waves are transverse.

Transverse waves. Waves. Wave motion. Electromagnetic Spectrum EM waves are transverse. Transerse waes Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and, HKBU Waes. Mechanical waes e.g. water waes, sound waes, seisic waes, strings in usical instruents.

More information

Chapter 2: Introduction to Damping in Free and Forced Vibrations

Chapter 2: Introduction to Damping in Free and Forced Vibrations Chapter 2: Introduction to Daping in Free and Forced Vibrations This chapter ainly deals with the effect of daping in two conditions like free and forced excitation of echanical systes. Daping plays an

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds)

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds) 05/07/03 HYSICS 3 Exa #1 Use g 10 /s in your calculations. NAME Feynan lease write your nae also on the back side of this exa 1. 1A A unifor thin stick of ass M 0. Kg and length 60 c is pivoted at one

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

Physics 1C. Lecture 13B

Physics 1C. Lecture 13B Physics 1C Lecture 13B Speed of Sound! Example values (m/s): Description of a Sound Wave! A sound wave may be considered either a displacement wave or a pressure wave! The displacement of a small element

More information

What does the speed of a wave depend on?

What does the speed of a wave depend on? Today s experiment Goal answer the question What does the speed of a wave depend on? Materials: Wave on a String PHeT Simulation (link in schedule) and Wave Machine Write a CER in pairs. Think about the

More information

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class: Homework Book Wave Properties Huijia Physics Homework Book 1 Semester 2 Name: Homeroom: Physics Class: Week 1 Reflection, Refraction, wave equations 1. If the wavelength of an incident wave is 1.5cm and

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. IIT-JEE5-PH-1 FIITJEE Solutions to IITJEE 5 Mains Paper Tie: hours Physics Note: Question nuber 1 to 8 carries arks each, 9 to 16 carries 4 arks each and 17 to 18 carries 6 arks each. Q1. whistling train

More information

Simple and Compound Harmonic Motion

Simple and Compound Harmonic Motion Siple Copound Haronic Motion Prelab: visit this site: http://en.wiipedia.org/wii/noral_odes Purpose To deterine the noral ode frequencies of two systes:. a single ass - two springs syste (Figure );. two

More information