13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

Size: px
Start display at page:

Download "13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization"

Transcription

1 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The reason we want to study this approach is because this, in fact, gives an alternative approach to quantu echanics and this is known as second quantization. The whole field of quantu field theory is a generalization of the concepts introduced by Dirac in the late 920s. Second quantization also fors an iportant portion of odern day research in quantu theory since atheatics generally becoes sipler in second quantization notation. 2. We define a new operatoraas a linear cobination of the position and oentu operators: a = ı ( ) 2 hω /2ˆp ık/2ˆx (3.) The dual space analogue of this operator is given by: a = ı 2 hω ( ) /2ˆp+ık/2ˆx (3.2) Therefore, a a = [ = hω ı 2 hω ( ) ][ ( /2ˆp+ık/2ˆx ı 2 hω ˆp kˆx2 + ı 2 ) ] /2ˆp ık/2ˆx ( ) /2 k [ˆx, ˆp] (3.3) ˆp Now, [ˆx, ˆp] = ı h, kˆx2 = H, the haronic oscillator Hailtonian and we defined earlier that k = ω 2 as the relation between the force constant and the angular velocity. Therefore, a a = H hω 2 (3.4) Siilarly, [ ( ) aa ı ][ ( ) = 2 hω /2ˆp ık/2ˆx ] ı 2 hω /2ˆp+ık/2ˆx = ˆp2 hω kˆx2 ı ( ) /2 k [ˆx, ˆp] 2 = H hω + 2 (3.5) Cheistry, Indiana University 67 c 2003, Srinivasan S. Iyengar (instructor)

2 Therefore the haronic oscillator Hailtonian can be written as H = 2 hω[ a a+aa ] (3.6) and the coutator [ a,a ] = aa a a = (3.7) 3. Lets also derive a couple of ore coutators[a,h] and [ a,h ] that will be useful later. [a,h] = 2 hω[ aa a+aaa a aa aa a ] = 2 hω[( aa a a ) a+a ( aa a a )] = hωa (3.8) Siilarly, [ a,h ] = 2 hω[ a a a+a aa a aa aa a ] = 2 hω[ a ( a a aa ) + ( a a aa ) a ] = hωa (3.9) 4. Now, let E be an eigenstate ofh with eigenvalue E. Therefore, H E = E E (3.0) Let a E = Q, another ket vector. Therefore, E a a E = Q Q 0 (3.) This iplies E a a E = E H hω 2 E = Ē hω 2 0 (3.2) Therefore, E 2 hω!!! This eans the energy of the quantu Haronic oscillator cannot be lower than 2 hω, hence that is the zero-point energy of the oscillator. (Recall that we got the exact sae result last tie but by solving the differential equation. This tie we have done none of that, we have introduced a new algebraic technique, and we have used that to obtain this result in a uch easier fashion.) Now it reains to see what the operators a and a really ean. 5. For this lets consider the following: ah E = Ea E (3.3) Cheistry, Indiana University 68 c 2003, Srinivasan S. Iyengar (instructor)

3 Using the coutation relations: (Ha+ hωa) E = Ea E (H + hω)[a E ] = E[a E ] H[a E ] = (E hω)[a E ] (3.4) Therefore the ket vector[a E ] is an eigenket ofh with eigenvalue(e hω). 6. Siilarly consider And using the coutation relations: a H E = Ea E (3.5) ( Ha hωa ) E = Ea E (H hω) [ a E ] = E [ a E ] H [ a E ] = (E + hω) [ a E ] (3.6) and the ket vector [ a E ] is an eigenket ofh with eigenvalue(e + hω). 7. We obtained the relatione 2 hω as a result of Eq. (3.2). This eans that the energy can have values only greater than (but including) 2 hω. Lets say: H E 0 = 2 hω E 0 (3.7) where we represent the ket vector corresponding to the energy 2 hω by E Now, using Eq. (3.6) since 2 hω is the energy eigenvalue for the ket E 0. H [ a E 0 ] = ( 2 hω + hω ) [a E 0 ] (3.8) 9. Lets now denote the new eigenvector: E = a E 0. Then we can use Eq. (3.6) again on E to obtain: H [ a E ] = ( 2 hω +2 hω ) [a E ] (3.9) and we could call the new eigenvector: E 2 = a E. We could keep doing this and we will obtain the following for then-th ket vector: H E n = ( 2 hω +n hω ) E n (3.20) Cheistry, Indiana University 69 c 2003, Srinivasan S. Iyengar (instructor)

4 which leads us to the haronic oscillator energy expression: E = ( n+ 2) hω (which we got earlier by solving soe tedious differential equation. This new approach that we have introduced involves a lot less ath (as copared to the differential equation we solved to obtain the Herite polynoials) and we obtain the sae result. 0. However, what does a do when it acts on the eigenket E 0? Lets see if we can answer this question. Lets assue: a E n = β n E n (3.2) where theβ n are to be deterined. This equation also eans: E n a = E n β n (3.22) where we have written the dual space analogue of Eq. (3.2). Fro Eq. (3.2) and Eq. (3.22) we obtain: E n a a E n = β n 2 E n E n = β n 2 (3.23) Using Eq. (3.4) we see that E n a a E n = E n H hω 2 E n = n+ 2 2 = n (3.24) (For this reason a a is called the nuber operator.) Therefore β n = n and a E n = n E n (3.25) This leads to a E 0 = 0. That is the operator a annihilates the state E 0. For this reason a is also called the annihilation operator. For siilar reasons the operator a is called the creation operator. Creation and annihilation operators are extreely iportant in quantu cheistry, since any advanced techniques to solve the tie independent Schrödinger Equation are based on the use of these techniques. The interested reader should look at the following two references for further reading in this subject: (a) H. C. Longuet-Higgins, in Quantu Theory of Atos and Molecules, A TRIBUTE TO JOHN C. SLATER, Ed. P.-O- Löwdin, Acadeic Press 966. p. 05. (b) Sions and Jorgensen, Second Quantization ethods in quantu cheistry.. Now the question: and what is α n. We follow the sae approach as before: a E n = α n E n+ (3.26) E n a = E n+ α n (3.27) and ultiplying the two equations: E n aa E n = α n 2 E n+ E n+ = α n 2 (3.28) Cheistry, Indiana University 70 c 2003, Srinivasan S. Iyengar (instructor)

5 Now using Eq. (3.5) we have E n aa E n = n+ and thereforeα n = n+. Therefore, a E n = n+ E n+ (3.29) 2. Hoework: Use Eqs. (3.29) and (3.25) in Eq. (3.6) to confir the eigenvalues and eigenvectors of the Haronic oscillator. 3. In the next few pages we will see an iportant application of the haronic oscillator proble, that is infra-red spectroscopy. In particular we will see that second quantization can be used to obtain selection rules for IR spectra with little effort. 4. One very iportant reason for studying the haronic oscillator proble is vibrational spectroscopy. To a first approxiation one could assue that the cheical bond is haronic. That is when perturbed fro its equilibriu position the bond tends to relax back to its original equilibriu position. As a result we could assue that a carbon-carbon bond (for exaple) has a spring that connects the two carbon atos as seen in the figure below. (Note this approxiation is only true at low energies. As we approach the dissociation liit the potential energy in the bond deviates substantially fro the haronic potential, as seen in the figure below.) 5. Hence for lower vibrational states, the haronic potential should be a valid approxiation and what we have derived in the previous section could be used to get the properties that one ight see in vibrational spectroscopy. Lets see what we can do here. 6. We have seen before that electroagnetic radiation is a set of perpendicular electric and agnetic field vectors. The frequency of oscillation of these field vectors is proportional to the aount of energy. 7. Can this energy fro the photon be absorbed by a given olecule? Which transitions (otions of the olecule) absorb energy, and which ones dont? 8. Consider a diatoic olecule: Cheistry, Indiana University 7 c 2003, Srinivasan S. Iyengar (instructor)

6 9. Only when a given transition gives rise to a change in dipole oent, will the corresponding frequency be absorbed. 20. Hence the change in dipole oent with respect to a given transition is significant here. 2. In IR spectroscopy, radiation of a certain frequency is incident on the syste, and response is studied and this is what leads to the spectru of the olecule. In ost cases, when the applied radiation is weak, one quantity that is very useful to calculate is the transition dipole bracket (which we will define below), since the response of the syste is proportional to the transition dipole bracket. What this essentially eans is the probability of the transition fro state to state n in the presence of an electroagnetic field (or light) is given by the quantity: P(t) ˆx n 2 (3.30) Eq. (3.30) will not be derived in this class. It can be derived using tie-dependent perturbation theory which we ay not have tie to cover. The interested reader ay look at Chapter 2 of Fayer. 22. However, we note the following. The incident radiation coprises electric and agnetic fields. (We saw earlier, during the SG experients, that light consists of utually orthogonal electric and agnetic field vectors.) The electric field vector interacts with the dipole operator. In fact, the quantity ˆx n is called the transition dipole bracket. Why? It has the units of a dipole (position ties a charge density). And that is why its called the transition dipole bracket. The agnitude of this eleents tells us the probability of transition between states and n in the presence of an external field. 23. Now the probability of transition fro state to state n in the presence of radiation is proportional to the dipole bracket. Lets see if we can evaluate this for the haronic oscillator and get soe results for IR spectroscopy. 24. Using the definition of the creation and annihilation operators in Eqs. (3.) and (3.2) we can write the position operator as: Therefore, ˆx = hω ( a +a ) (3.3) P(t) ˆx n 2 = hω ( a +a ) n 2 = hω ( a +a ) ( n n a +a ) = hω [ a a n n + a n n a + a a ] n n a + a n n (3.32) Cheistry, Indiana University 72 c 2003, Srinivasan S. Iyengar (instructor)

7 Now since [a = ] and [ a = + + ], the first and second ter in the last equation above ust be zero. Therefore: P(t) hω = hω = hω [ a n n a + a n n a ] [ a n 2 + a n 2] [ (n+) n+ 2 +n n 2] (3.33) which can only be non-zero when = n+ or = n. 25. This eans the transition in IR spectroscopy is allowed only between eigenvalues that differ by, if the haronic approxiation is valid. This a vibrational spectru selection rule. Now we have seen earlier that the haronic approxiation is valid for the lower vibrational states, but not for the higher vibrational states (close to dissociation). Hence these selection rules are not valid at higher vibrational states. However, it turns out in practice that even at higher states the ajor contribution does coe fro the lines that differ by one quanta!! 26. Hoework: Using the approach due to Dirac (ie the creation and annihilation operators), derive expressions for x, x 2, p and p 2 for the haronic oscillator. Use this to obtain the uncertainty product x p. Coent on your result. 27. Hoework on Frank-Condon Factors: By solving the electronic Schrödinger Equation, ground and excited electronic states can be obtained at various nuclear configuration like the figure presented in class. In addition, the figure also shows the vibrational levels. Solving for vibrational levels using the nuclear Schrödinger Equation after solving the electronic Schrödinger Equation can get very coplicated but for the sallest of systes. Due to this reason, the vibrational states are assued to exist on a Haronic oscillator potential located at the iniu of the corresponding electronic state as in the figure below. The force constant for the haronic oscillator assues a value such that the curvature of the original surface is identical at the botto of the potential (as you can see fro the figure). This is only an approxiation as you can see, and will work well for the low-lying vibrational levels of each electronic state. While doing optical spectroscopy what happens is the electrons are excited fro the ground electronic state to the excited electronic state as represented by the arrow in the figure. Clearly the vibrational level in the excited electronic state where the electron gets into is iportant. Here s where the Frank-Condon Factors coe in. These represent the probability of such transitions. The transition fro the i-th vibrational level in the ground electronic state to the j-th vibrational level in the first excited electronic state is given by the inner product of the vibrational states ψ0 i ψ j, where ψ i 0 represents thei-th vibrational level in Cheistry, Indiana University 73 c 2003, Srinivasan S. Iyengar (instructor)

8 the ground electronic state, and ψ j represents the j-th vibrational level in the first excited electronic state. (a) Using the definition of the creation operator and the for of the lowest eigenstate of the Haronic oscillator: { [ ]} k exp 2 h (x x 0) 2, (3.34) show that then-th vibrational state of a Haronic oscillator is: ψ0 n ( = ) ] a n k0 exp [ n! 2 h (x x 0) 2 = ( ) ( ω0 n/2 x h ) n exp[ n! 2 h ω 0 x ] k0 2 h (x x 0) 2 (3.35) x 0 is the equilibriu distance and k 0 = ω 2 0 is the force constant of the Haronic oscillator. Note: Using the creation operator will significantly reduce your effort. (b) Using Eq. (3.35) write down an expression for the Frank-Condon factor ψ0 i ψ j, assuing that the equilibriu positions and force constants are different in the ground and excited states, that is {x 0,ω 0,k 0 } for the ground electronic state and {x,ω,k } for the excited electronic state. You do not need to go through the whole integration, just write down the starting expression and explain in words how you would intergrate it, if you were asked to integrate it by hand. (c) Coent on how your derivation would siplify (greatly) if the equilibriu positions and force constants were the sae in the ground and excited states. Cheistry, Indiana University 74 c 2003, Srinivasan S. Iyengar (instructor)

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

Time Evolution of Matter States

Time Evolution of Matter States Tie Evolution of Matter States W. M. Hetherington February 15, 1 The Tie-Evolution Operat The tie-evolution of a wavefunction is deterined by the effect of a tie evolution operat through the relation Ψ

More information

Eigenvalues of the Angular Momentum Operators

Eigenvalues of the Angular Momentum Operators Eigenvalues of the Angular Moentu Operators Toda, we are talking about the eigenvalues of the angular oentu operators. J is used to denote angular oentu in general, L is used specificall to denote orbital

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Stern-Gerlach Experiment

Stern-Gerlach Experiment Stern-Gerlach Experient HOE: The Physics of Bruce Harvey This is the experient that is said to prove that the electron has an intrinsic agnetic oent. Hydrogen like atos are projected in a bea through a

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

Optical Properties of Plasmas of High-Z Elements

Optical Properties of Plasmas of High-Z Elements Forschungszentru Karlsruhe Techni und Uwelt Wissenschaftlishe Berichte FZK Optical Properties of Plasas of High-Z Eleents V.Tolach 1, G.Miloshevsy 1, H.Würz Project Kernfusion 1 Heat and Mass Transfer

More information

Angular Momentum Properties

Angular Momentum Properties Cheistry 460 Fall 017 Dr. Jean M. Standard October 30, 017 Angular Moentu Properties Classical Definition of Angular Moentu In classical echanics, the angular oentu vector L is defined as L = r p, (1)

More information

V(R) = D e (1 e a(r R e) ) 2, (9.1)

V(R) = D e (1 e a(r R e) ) 2, (9.1) Cheistry 6 Spectroscopy Ch 6 Week #3 Vibration-Rotation Spectra of Diatoic Molecules What happens to the rotation and vibration spectra of diatoic olecules if ore realistic potentials are used to describe

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Classical systems in equilibrium

Classical systems in equilibrium 35 Classical systes in equilibriu Ideal gas Distinguishable particles Here we assue that every particle can be labeled by an index i... and distinguished fro any other particle by its label if not by any

More information

Scattering and bound states

Scattering and bound states Chapter Scattering and bound states In this chapter we give a review of quantu-echanical scattering theory. We focus on the relation between the scattering aplitude of a potential and its bound states

More information

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6.

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6. â â x Ψn Hx Ε Ψn Hx 35 (6.7) he solutions of this equation are plane waves Ψn Hx A exphä n x (6.8) he eigen-energy Εn is n (6.9) Εn For a D syste with length and periodic boundary conditions, Ψn Hx Ψn

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators

Physics 221B: Solution to HW # 6. 1) Born-Oppenheimer for Coupled Harmonic Oscillators Physics B: Solution to HW # 6 ) Born-Oppenheier for Coupled Haronic Oscillators This proble is eant to convince you of the validity of the Born-Oppenheier BO) Approxiation through a toy odel of coupled

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

Chapter 12. Quantum gases Microcanonical ensemble

Chapter 12. Quantum gases Microcanonical ensemble Chapter 2 Quantu gases In classical statistical echanics, we evaluated therodynaic relations often for an ideal gas, which approxiates a real gas in the highly diluted liit. An iportant difference between

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Quantum Ground States as Equilibrium Particle Vacuum Interaction States

Quantum Ground States as Equilibrium Particle Vacuum Interaction States Quantu Ground States as Euilibriu article Vacuu Interaction States Harold E uthoff Abstract A rearkable feature of atoic ground states is that they are observed to be radiationless in nature despite (fro

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

THE RIGID ROTOR. mrmr= + m K = I. r 2 2. I = m 1. m + m K = Diatomic molecule. m 1 r 1. r 2 m 2. I moment of inertia. (center of mass) COM K.E.

THE RIGID ROTOR. mrmr= + m K = I. r 2 2. I = m 1. m + m K = Diatomic molecule. m 1 r 1. r 2 m 2. I moment of inertia. (center of mass) COM K.E. 5.6 Fall 4 Lecture #7-9 page Diatoic olecule THE RIGID ROTOR r r r r rr= (center of ass) COM r K.E. K = r r K = I ( = r r ) I oent of inertia I = r r = µ r µ = (reduced ass) K = µ r = µv z Prob l e reduced

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

An Exactly Soluble Multiatom-Multiphoton Coupling Model

An Exactly Soluble Multiatom-Multiphoton Coupling Model Brazilian Journal of Physics vol no 4 Deceber 87 An Exactly Soluble Multiato-Multiphoton Coupling Model A N F Aleixo Instituto de Física Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

(a) As a reminder, the classical definition of angular momentum is: l = r p

(a) As a reminder, the classical definition of angular momentum is: l = r p PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield:

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield: PHYSICS 75: The Standard Model Midter Exa Solution Key. [3 points] Short Answer (6 points each (a In words, explain how to deterine the nuber of ediator particles are generated by a particular local gauge

More information

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that?

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that? Module #1: Units and Vectors Revisited Introduction There are probably no concepts ore iportant in physics than the two listed in the title of this odule. In your first-year physics course, I a sure that

More information

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13 Physics 0H - Introctory Quantu Physics I Hoework # - Solutions Fall 004 Due 5:0 PM, Monday 004//3 [70 points total] Journal questions. Briefly share your thoughts on the following questions: What aspects

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4 Massachusetts Institute of Technology Quantu Mechanics I (8.04) Spring 2005 Solutions to Proble Set 4 By Kit Matan 1. X-ray production. (5 points) Calculate the short-wavelength liit for X-rays produced

More information

General Properties of Radiation Detectors Supplements

General Properties of Radiation Detectors Supplements Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat Overview Phys. 649: Nuclear Techniques Physics Departent

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields

Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2 Quasistationary distributions of dissipative nonlinear quantu oscillators in strong periodic driving fields Heinz-Peter Breuer, 1 Wolfgang Huber, 2 and Francesco

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

Hee = ~ dxdy\jj+ (x) 'IJ+ (y) u (x- y) \jj (y) \jj (x), V, = ~ dx 'IJ+ (x) \jj (x) V (x), Hii = Z 2 ~ dx dy cp+ (x) cp+ (y) u (x- y) cp (y) cp (x),

Hee = ~ dxdy\jj+ (x) 'IJ+ (y) u (x- y) \jj (y) \jj (x), V, = ~ dx 'IJ+ (x) \jj (x) V (x), Hii = Z 2 ~ dx dy cp+ (x) cp+ (y) u (x- y) cp (y) cp (x), SOVIET PHYSICS JETP VOLUME 14, NUMBER 4 APRIL, 1962 SHIFT OF ATOMIC ENERGY LEVELS IN A PLASMA L. E. PARGAMANIK Khar'kov State University Subitted to JETP editor February 16, 1961; resubitted June 19, 1961

More information

III.H Zeroth Order Hydrodynamics

III.H Zeroth Order Hydrodynamics III.H Zeroth Order Hydrodynaics As a first approxiation, we shall assue that in local equilibriu, the density f 1 at each point in space can be represented as in eq.iii.56, i.e. f 0 1 p, q, t = n q, t

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Chapter VI: Motion in the 2-D Plane

Chapter VI: Motion in the 2-D Plane Chapter VI: Motion in the -D Plane Now that we have developed and refined our vector calculus concepts, we can ove on to specific application of otion in the plane. In this regard, we will deal with: projectile

More information

First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),

First of all, because the base kets evolve according to the wrong sign Schrödinger equation (see pp ), HW7.nb HW #7. Free particle path integral a) Propagator To siplify the notation, we write t t t, x x x and work in D. Since x i, p j i i j, we can just construct the 3D solution. First of all, because

More information

On the summations involving Wigner rotation matrix elements

On the summations involving Wigner rotation matrix elements Journal of Matheatical Cheistry 24 (1998 123 132 123 On the suations involving Wigner rotation atrix eleents Shan-Tao Lai a, Pancracio Palting b, Ying-Nan Chiu b and Harris J. Silverstone c a Vitreous

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

A GENERAL FORM FOR THE ELECTRIC FIELD LINES EQUATION CONCERNING AN AXIALLY SYMMETRIC CONTINUOUS CHARGE DISTRIBUTION

A GENERAL FORM FOR THE ELECTRIC FIELD LINES EQUATION CONCERNING AN AXIALLY SYMMETRIC CONTINUOUS CHARGE DISTRIBUTION A GENEAL FOM FO THE ELECTIC FIELD LINES EQUATION CONCENING AN AXIALLY SYMMETIC CONTINUOUS CHAGE DISTIBUTION BY MUGU B. ăuţ Abstract..By using an unexpected approach it results a general for for the electric

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Chapter 2 General Properties of Radiation Detectors

Chapter 2 General Properties of Radiation Detectors Med Phys 4RA3, 4RB3/6R3 Radioisotopes and Radiation Methodology -1 Chapter General Properties of Radiation Detectors Ionizing radiation is ost coonly detected by the charge created when radiation interacts

More information

Nuclear Physics (10 th lecture)

Nuclear Physics (10 th lecture) ~Theta Nuclear Physics ( th lecture) Content Nuclear Collective Model: Rainwater approx. (reinder) Consequences of nuclear deforation o Rotational states High spin states and back bending o Vibrational

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

This exam is formed of three exercises in three pages numbered from 1 to 3 The use of non-programmable calculators is recommended.

This exam is formed of three exercises in three pages numbered from 1 to 3 The use of non-programmable calculators is recommended. 009 وزارة التربية والتعلين العالي الوديرية العاهة للتربية دائرة االهتحانات اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان االسن: الرقن: الدورة العادية للعام This

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

All you need to know about QM for this course

All you need to know about QM for this course Introduction to Eleentary Particle Physics. Note 04 Page 1 of 9 All you need to know about QM for this course Ψ(q) State of particles is described by a coplex contiguous wave function Ψ(q) of soe coordinates

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Course Information. Physics 1C Waves, optics and modern physics. Grades. Class Schedule. Clickers. Homework

Course Information. Physics 1C Waves, optics and modern physics. Grades. Class Schedule. Clickers. Homework Course Inforation Physics 1C Waves, optics and odern physics Instructor: Melvin Oaura eail: oaura@physics.ucsd.edu Course Syllabus on the web page http://physics.ucsd.edu/ students/courses/fall2009/physics1c

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

We consider a gas of atoms or molecules at temperature T. In chapter 9 we defined the concept of the thermal wavelength λ T, h 2πmkB T,

We consider a gas of atoms or molecules at temperature T. In chapter 9 we defined the concept of the thermal wavelength λ T, h 2πmkB T, Chapter Quantu statistics. Theral wavelength We consider a gas of atos or olecules at teperature T. In chapter 9 we defined the concept of the theral wavelength λ T, λ T = h πkb T, as the wavelength of

More information

Molecular interactions in beams

Molecular interactions in beams Molecular interactions in beas notable advanceent in the experiental study of interolecular forces has coe fro the developent of olecular beas, which consist of a narrow bea of particles, all having the

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Anisotropic reference media and the possible linearized approximations for phase velocities of qs waves in weakly anisotropic media

Anisotropic reference media and the possible linearized approximations for phase velocities of qs waves in weakly anisotropic media INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 5 00 007 04 PII: S00-770867-6 Anisotropic reference edia and the possible linearized approxiations for phase

More information

A toy model of quantum electrodynamics in (1 + 1) dimensions

A toy model of quantum electrodynamics in (1 + 1) dimensions IOP PUBLISHING Eur. J. Phys. 29 (2008) 815 830 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/29/4/014 A toy odel of quantu electrodynaics in (1 + 1) diensions ADBoozer Departent of Physics, California

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Nov 2005

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Nov 2005 Molecular transport junctions: Current fro electronic excitations in the leads arxiv:cond-at/05438v cond-at.es-hall] 7 Nov 005 Michael Galperin, Abraha Nitzan, and Mark A. Ratner Departent of Cheistry

More information

14. ENERGY AND CHARGE TRANSFER Electronic Interactions

14. ENERGY AND CHARGE TRANSFER Electronic Interactions 14. ENERGY ND CHRGE TRNSFER 14.1. Electronic Interactions In this section we will describe processes that result fro the interaction between two or ore olecular electronic states, such as the transport

More information

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz.

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. Chapter 5. (a) During siple haronic otion, the speed is (oentarily) zero when the object is at a turning point (that is, when x = +x or x = x ). Consider that it starts at x = +x and we are told that t

More information

Astro 7B Midterm 1 Practice Worksheet

Astro 7B Midterm 1 Practice Worksheet Astro 7B Midter 1 Practice Worksheet For all the questions below, ake sure you can derive all the relevant questions that s not on the forula sheet by heart (i.e. without referring to your lecture notes).

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information