8.1 Force Laws Hooke s Law

Size: px
Start display at page:

Download "8.1 Force Laws Hooke s Law"

Transcription

1 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which we refer to as constant in space. The gravitational force on an object near the surface of the earth is an eaple of a force that is constant in space. There are forces that depend on the configuration of a syste. When a ass is attached to one end of a spring, the spring force acting on the object increases in strength whether the spring is etended or copressed. There are forces that spread out in space such that their influence becoes less with distance. Coon eaples are the gravitational and electrical forces. The gravitational force between two objects falls off as the inverse square of the distance separating the objects provided the objects are of a sall diension copared to the distance between the. More coplicated arrangeents of attracting and repelling interactions give rise to forces that fall off with other powers of r : constant, 1/ r, 1/ r 2, 1 / r 3,,. A force ay reain constant in agnitude but change direction; for eaple the gravitational force acting on a planet undergoing circular otion about a star is directed towards the center of the circle. This type of attractive central force is called a centripetal force. A force law describes the relationship between the force and soe easurable property of the objects involved. We shall see that soe interactions are describable by force laws and other interactions cannot be so siply described Hooke s Law In order to stretch or copress a spring fro its equilibriu length, a force ust be eerted on the spring. Consider an object of ass that is lying on a horizontal surface. Attach one end of a spring to the object and fi the other end of the spring to a wall. Let denote the equilibriu length of the spring (neither stretched or copressed). Assue 1

2 that the contact surface is sooth and hence frictionless in order to consider only the effect of the spring force. If the object is pulled to stretch the spring or pushed to copress the spring, then by Newton s Third Law the force of the spring on the object is equal and opposite to the force that the object eerts on the spring. We shall refer to the force of the spring on the object as the spring force and eperientally deterine a relationship between that force and the aount of stretch or copress of the spring. Choose a coordinate syste with the origin located at the point of contact of the spring and the object when the spring-object syste is in the equilibriu configuration. Choose the unit vector to point in the direction the object oves when the spring is being stretched. Choose the coordinate function to denote the position of the object with respect to the origin (Figure 8.1). wall equilibriu configuration+ frictionless surface = 0 stretched: > 0 = 0 copressed: < 0 = 0 Figure 8.1 Spring attached to a wall and an object Initially stretch the spring until the object is at position. Then release the object and easure the acceleration of the object the instant the object is released. The agnitude of the spring force acting on the object is F = a. Now repeat the eperient for a range of stretches (or copressions). Eperients show that for each spring, there is a range of aiu values a > 0 for stretching and iniu values in < 0 for copressing such that the agnitude of the easured force is proportional to the stretched or copressed length and is given by the forula! F = k, (8.1.1) 2

3 where the spring constant k has units N 1. The free-body force diagra is shown in Figure 8.2. F = F = k = 0 Figure 8.2 Spring force acting on object The constant k is equal to the negative of the slope of the graph of the force vs. the copression or stretch (Figure 8.3). slope = -k F in a. Figure 8.3 Plot of -coponent of the spring force F vs. The direction of the acceleration is always towards the equilibriu position whether the spring is stretched or copressed. This type of force is called a restoring force. Let F denote the -coponent of the spring force. Then F = k. (8.1.2) Now perfor siilar eperients on other springs. For a range of stretched lengths, each spring ehibits the sae proportionality between force and stretched length, although the spring constant ay differ for each spring. It would be etreely ipractical to eperientally deterine whether this proportionality holds for all springs, and because a odest sapling of springs has confired the relation, we shall infer that all ideal springs will produce a restoring force, which is linearly proportional to the stretched (or copressed) length. This eperiental relation regarding force and stretched (or copressed) lengths for a finite set of springs has now been inductively generalized into the above atheatical odel for ideal springs, a force law known as a Hooke s Law. This inductive step, referred to as Newtonian induction, is the critical step that akes physics a predictive science. Suppose a spring, attached to an object of ass, is 3

4 stretched by an aount Δ. Use the force law to predict the agnitude of the force between the rubber band and the object, F = k Δ, without having to eperientally easure the acceleration. Now use Newton s Second Law to predict the agnitude of the acceleration of the object F k Δ a = =. (8.1.3) Carry out the eperient, and easure the acceleration within soe error bounds. If the agnitude of the predicted acceleration disagrees with the easured result, then the odel for the force law needs odification. The ability to adjust, correct or even reject odels based on new eperiental results enables a description of forces between objects to cover larger and larger eperiental doains. Many real springs have been wound such that a force of agnitude F 0 ust be applied before the spring begins to stretch. The value of F is referred to as the pre-tension of the 0 spring. Under these circustances, Hooke s law ust be odified to account for this pretension, F = F 0 k, > 0. (8.1.4) F = +F 1 k, < 0 Note the value of the pre-tension F0 spring. and F 1 ay differ for copressing or stretching a 4

5 MIT OpenCourseWare Classical Mechanics Fall 2016 For Inforation about citing these aterials or our Ters of Use, visit:

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

The Lagrangian Method vs. other methods (COMPARATIVE EXAMPLE)

The Lagrangian Method vs. other methods (COMPARATIVE EXAMPLE) The Lagrangian ethod vs. other ethods () This aterial written by Jozef HANC, jozef.hanc@tuke.sk Technical University, Kosice, Slovakia For Edwin Taylor s website http://www.eftaylor.co/ 6 January 003 The

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Liited Edinburgh Gate Harlow Esse CM0 JE England and Associated Copanies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Liited 04 All rights

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

acceleration of 2.4 m/s. (b) Now, we have two rubber bands (force 2F) pulling two glued objects (mass 2m). Using F ma, 2.0 furlongs x 2.0 s 2 4.

acceleration of 2.4 m/s. (b) Now, we have two rubber bands (force 2F) pulling two glued objects (mass 2m). Using F ma, 2.0 furlongs x 2.0 s 2 4. 5.. 5.6. Model: An object s acceleration is linearl proportional to the net force. Solve: (a) One rubber band produces a force F, two rubber bands produce a force F, and so on. Because F a and two rubber

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams Chapter 15 ewton s Laws #2: inds of s, Creating ree Body Diagras 15 ewton s Laws #2: inds of s, Creating ree Body Diagras re is no force of otion acting on an object. Once you have the force or forces

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0 AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) 60 F 1 F g (b) F NE(Y) = 0 F1 F1 = g / cos(60) = g (c) When the string is cut it swings fro top to botto, siilar to the diagra for 1974B1

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

Chapter 11: Vibration Isolation of the Source [Part I]

Chapter 11: Vibration Isolation of the Source [Part I] Chapter : Vibration Isolation of the Source [Part I] Eaple 3.4 Consider the achine arrangeent illustrated in figure 3.. An electric otor is elastically ounted, by way of identical isolators, to a - thick

More information

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10.

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10. P Physics Multiple Choice Practice Oscillations. ass, attache to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu isplaceent fro its equilibriu position is. What

More information

For more Study Material and Latest Questions related to IIT-JEE visit

For more Study Material and Latest Questions related to IIT-JEE visit or ore Study Material and Latest Questions related to IIT-JEE visit www. ICTION Introduction If we slide or try to slide a body over a surface, the otion is resisted by a bonding between the body and the

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

HW 6 - Solutions Due November 20, 2017

HW 6 - Solutions Due November 20, 2017 Conteporary Physics I HW 6 HW 6 - Solutions Due Noveber 20, 2017 1. A 4 kg block is attached to a spring with a spring constant k 200N/, and is stretched an aount 0.2 [5 pts each]. (a) Sketch the potential

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011 Phsics 18 Spring 2011 Hoework 3 - s Wednesda Februar 2, 2011 Make sure our nae is on our hoework, and please bo our final answer. Because we will be giving partial credit, be sure to attept all the probles,

More information

= 1.49 m/s m. 2 kg. 2 kg

= 1.49 m/s m. 2 kg. 2 kg 5.6. Visualize: Please refer to Figure Ex5.6. Solve: For the diagra on the left, three of the vectors lie along the axes of the tilted coordinate sste. Notice that the angle between the 3 N force and the

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position Physics 3: ecture Today s genda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a spring Vertical spring Energy and siple haronic otion Energy o

More information

Simple Harmonic Motion of Spring

Simple Harmonic Motion of Spring Nae P Physics Date iple Haronic Motion and prings Hooean pring W x U ( x iple Haronic Motion of pring. What are the two criteria for siple haronic otion? - Only restoring forces cause siple haronic otion.

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

JOURNAL OF PHYSICAL AND CHEMICAL SCIENCES

JOURNAL OF PHYSICAL AND CHEMICAL SCIENCES JOURNAL OF PHYSIAL AND HEMIAL SIENES Journal hoepage: http://scienceq.org/journals/jps.php Review Open Access A Review of Siple Haronic Motion for Mass Spring Syste and Its Analogy to the Oscillations

More information

the static friction is replaced by kinetic friction. There is a net force F net = F push f k in the direction of F push.

the static friction is replaced by kinetic friction. There is a net force F net = F push f k in the direction of F push. the static friction is replaced by kinetic friction. There is a net force F net = F push f k in the direction of F push. Exaple of kinetic friction. Force diagra for kinetic friction. Again, we find that

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

Physics with Health Science Applications Ch. 3 pg. 56

Physics with Health Science Applications Ch. 3 pg. 56 Physics with Health Science Applications Ch. 3 pg. 56 Questions 3.4 The plane is accelerating forward. The seat is connected to the plane and is accelerated forward. The back of the seat applies a forward

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13 PHY 4Y FOUNDAIONS OF PHYSICS - utorial Questions #9 Solutions Noveber /3 Conservation of Ener and Sprins. One end of a assless sprin is placed on a flat surface, with the other end pointin upward, as shown

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Chapter VI: Motion in the 2-D Plane

Chapter VI: Motion in the 2-D Plane Chapter VI: Motion in the -D Plane Now that we have developed and refined our vector calculus concepts, we can ove on to specific application of otion in the plane. In this regard, we will deal with: projectile

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

Common Exam 2 Physics 111 Fall 2006 Name A

Common Exam 2 Physics 111 Fall 2006 Name A Coon Ea Physics Fall 006 Nae A Total Nuber of Points is 5 (Multiple Choice and Worout Probles). Multiple Choice Probles are Point per Question..) A toy car oving at constant speed copletes one lap around

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field THE OCKET EXPEIENT. «Hoogenous» gravitational field Let s assue, fig., that we have a body of ass Μ and radius. fig. As it is known, the gravitational field of ass Μ (both in ters of geoetry and dynaics)

More information

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV PHYSICS 3 Exa- NAME. In the figure shown, light travels fro aterial I, through three layers of other aterials with surfaces parallel to one another, and then back into another layer of aterial I. The refractions

More information

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Experient 9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Objectives 1. Verify Hoo s law,. Measure the force constant of a spring, and 3. Measure the period of oscillation of a spring-ass syste and copare it

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Student Book pages 440 443 Vocabulary. aplitude: axiu displaceent of an oscillation antinodes: points of

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω =

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω = Thur Oct 9 Assignent 10 Mass-Spring Kineatics (x, v, a, t) Dynaics (F,, a) Tie dependence Energy Pendulu Daping and Resonances x Acos( ωt) = v = Aω sin( ωt) a = Aω cos( ωt) ω = spring k f spring = 1 k

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and Vibrations Midter Exaination Tuesday March 8 16 School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You ay bring

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions Student Boo page 345 Exaple 7. Practice Probles. 60 s T 5.00 in in 300 s f T 300 s 3 3.33 0 Hz The frequency

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Effects of an Inhomogeneous Magnetic Field (E =0)

Effects of an Inhomogeneous Magnetic Field (E =0) Effects of an Inhoogeneous Magnetic Field (E =0 For soe purposes the otion of the guiding centers can be taken as a good approxiation of that of the particles. ut it ust be recognized that during the particle

More information

The full procedure for drawing a free-body diagram which isolates a body or system consists of the following steps. 8 Chapter 3 Equilibrium

The full procedure for drawing a free-body diagram which isolates a body or system consists of the following steps. 8 Chapter 3 Equilibrium 8 Chapter 3 Equilibriu all effect on a rigid bod as forces of equal agnitude and direction applied b direct eternal contact. Eaple 9 illustrates the action of a linear elastic spring and of a nonlinear

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz.

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. Chapter 5. (a) During siple haronic otion, the speed is (oentarily) zero when the object is at a turning point (that is, when x = +x or x = x ). Consider that it starts at x = +x and we are told that t

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy Springs and Conservation of Energy Most drivers try to avoid collisions, but not at a deolition derby like the one shown in Figure 1. The point of a deolition derby is to crash your car into as any other

More information

Physics 4A Winter 2016 Final Exam

Physics 4A Winter 2016 Final Exam Physics 4A Winter 016 Final Exa Nae: Mar, 016 Please show your work! Answers are not coplete without clear reasoning. When asked for an expression, you ust give your answer in ters of the variables given

More information

The concept that additionally depends on location in a gravitational field is [mass] [weight].

The concept that additionally depends on location in a gravitational field is [mass] [weight]. Nae Date CONCEPTUAL 'hys;, PRACTICE PAGE Mass and Weight..k Learning physics is learning the connections aong concepts in nature, and also learning to distinguish between closely-related concepts. Velocity

More information

Figure P8.63. Figure P8.70. Figure P8.72. Figure P8.67. Figure P8.65. Figure P8.68. Figure P8.66. Figure P8.71. Figure P8.74

Figure P8.63. Figure P8.70. Figure P8.72. Figure P8.67. Figure P8.65. Figure P8.68. Figure P8.66. Figure P8.71. Figure P8.74 248 CHAPTER 8 Potential Energy and Conservation of Energy Probles 249 R T v T v B B Figure P8.63 65. An object of ass is suspended fro a post on top of a cart by a string of length L as in Figure P8.65a.

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

Simple and Compound Harmonic Motion

Simple and Compound Harmonic Motion Siple Copound Haronic Motion Prelab: visit this site: http://en.wiipedia.org/wii/noral_odes Purpose To deterine the noral ode frequencies of two systes:. a single ass - two springs syste (Figure );. two

More information