The full procedure for drawing a free-body diagram which isolates a body or system consists of the following steps. 8 Chapter 3 Equilibrium

Size: px
Start display at page:

Download "The full procedure for drawing a free-body diagram which isolates a body or system consists of the following steps. 8 Chapter 3 Equilibrium"

Transcription

1 8 Chapter 3 Equilibriu all effect on a rigid bod as forces of equal agnitude and direction applied b direct eternal contact. Eaple 9 illustrates the action of a linear elastic spring and of a nonlinear spring with either hardening or softening characteristics. The force eerted b a linear spring, in tension or copression, is given b F k, where k is the stiffness of the spring and is its deforation easured fro the neutral or undefored position. The representations in Fig. 3/1 are not free-bod diagras, but are erel eleents used to construct free-bod diagras. Stud these nine conditions and identif the in the proble work so that ou can draw the correct free-bod diagras. Construction of Free-od Diagras The full procedure for drawing a free-bod diagra which isolates a bod or sste consists of the following steps. Step 1. Decide which sste to isolate. The sste chosen should usuall involve one or ore of the desired unknown quantities. Step 2. Net isolate the chosen sste b drawing a diagra which represents its coplete eternal boundar. This boundar defines the isolation of the sste fro all other attracting or contacting bodies, which are considered reoved. This step is often the ost crucial of all. ake certain that ou have copletel isolated the sste before proceeding with the net step. Step 3. Identif all forces which act on the isolated sste as applied b the reoved contacting and attracting bodies, and represent the in their proper positions on the diagra of the isolated sste. ake a ssteatic traverse of the entire boundar to identif all contact forces. Include bod forces such as weights, where appreciable. Represent all known forces b vector arrows, each with its proper agnitude, direction, and sense indicated. Each unknown force should be represented b a vector arrow with the unknown agnitude or direction indicated b sbol. If the sense of the vector is also unknown, ou ust arbitraril assign a sense. The subsequent calculations with the equilibriu equations will ield a positive quantit if the correct sense was assued and a negative quantit if the incorrect sense was assued. It is necessar to be consistent with the assigned characteristics of unknown forces throughout all of the calculations. If ou are consistent, the solution of the equilibriu equations will reveal the correct senses. Step 4. Show the choice of coordinate aes directl on the diagra. ertinent diensions a also be represented for convenience. Note, however, that the free-bod diagra serves the purpose of focusing attention on the action of the eternal forces, and therefore the diagra should not be cluttered with ecessive p a_ch03 d_8 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

2 rticle 3/2 Sste Isolation and the Free-od Diagra 9 etraneous inforation. Clearl distinguish force arrows fro arrows representing quantities other than forces. For this purpose a colored pencil a be used. Copletion of the foregoing four steps will produce a correct free-bod diagra to use in appling the governing equations, both in statics and in dnaics. e careful not to oit fro the free-bod diagra certain forces which a not appear at first glance to be needed in the calculations. It is onl through coplete isolation and a ssteatic representation of all eternal forces that a reliable accounting of the effects of all applied and reactive forces can be ade. Ver often a force which at first glance a not appear to influence a desired result does indeed have an influence. Thus, the onl safe procedure is to include on the freebod diagra all forces whose agnitudes are not obviousl negligible. The free-bod ethod is etreel iportant in echanics because it ensures an accurate definition of a echanical sste and focuses attention on the eact eaning and application of the force laws of statics and dnaics. Review the foregoing four steps for constructing a free-bod diagra while studing the saple free-bod diagras shown in Fig. 3/2 and the Saple robles which appear at the end of the net article. Eaples of Free-od Diagras Figure 3/2 gives four eaples of echaniss and structures together with their correct free-bod diagras. Diensions and agnitudes are oitted for clarit. In each case we treat the entire sste as a single bod, so that the internal forces are not shown. The characteristics of the various tpes of contact forces illustrated in Fig. 3/1 are used in the four eaples as the appl. In Eaple 1 the truss is coposed of structural eleents which, taken all together, constitute a rigid fraework. Thus, we a reove the entire truss fro its supporting foundation and treat it as a single rigid bod. In addition to the applied eternal load, the free-bod diagra ust include the reactions on the truss at and. The rocker at can support a vertical force onl, and this force is transitted to the structure at (Eaple 4 of Fig. 3/1). The pin connection at (Eaple 6 of Fig. 3/1) is capable of suppling both a horizontal and a vertical force coponent to the truss. If the total weight of the truss ebers is appreciable copared with and the forces at and, then the weights of the ebers ust be included on the free-bod diagra as eternal forces. In this relativel siple eaple it is clear that the vertical coponent ust be directed down to prevent the truss fro rotating clockwise about. lso, the horizontal coponent will be to the left to keep the truss fro oving to the right under the influence of the horizontal coponent of. Thus,incon- p a_ch03 d_9 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

3 10 Chapter 3 Equilibriu SLE FREE ODY DIGRS echanical Sste Free od Diagra of Isolated od 1. lane truss Weight of truss assued negligible copared with 2. Cantilever bea F 3 F 2 F 1 V F 3 F 2 F 1 3. ea ass F W = g Sooth surface contact at. ass N W = g 4. Rigid sste of interconnected bodies analzed as a single unit Weight of echanis neglected W = g Figure 3/2 structing the free-bod diagra for this siple truss, we can easil perceive the correct sense of each of the coponents of force eerted on the truss b the foundation at and can, therefore, represent its correct phsical sense on the diagra. When the correct phsical sense of a force or its coponent is not easil recognized b direct observation, it ust be assigned arbitraril, and the correctness of or error in the assignent is deterined b the algebraic sign of its calculated value. In Eaple 2 the cantilever bea is secured to the wall and subjected to three applied loads. When we isolate that part of the bea to the right of the section at, we ust include the reactive forces applied to the bea b the wall. The resultants of these reactive forces are shown acting on the section of the bea (E- p a_ch03 d_10 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

4 rticle 3/2 Sste Isolation and the Free-od Diagra 11 aple 7 of Fig. 3/1). vertical force V to counteract the ecess of downward applied force is shown, and a tension F to balance the ecess of applied force to the right ust also be included. Then, to prevent the bea fro rotating about, a counterclockwise couple is also required. The weight g of the bea ust be represented through the ass center (Eaple 8 of Fig. 3/1). In the free-bod diagra of Eaple 2, we have represented the soewhat cople sste of forces which actuall act on the cut section of the bea b the equivalent force couple sste in which the force is broken down into its vertical coponent V (shear force) and its horizontal coponent F (tensile force). The couple is the bending oent in the bea. The free-bod diagra is now coplete and shows the bea in equilibriu under the action of si forces and one couple. In Eaple 3 the weight W g is shown acting through the center of ass of the bea, whose location is assued known (Eaple 8 of Fig. 3/1). The force eerted b the corner on the bea is noral to the sooth surface of the bea (Eaple 2 of Fig. 3/1). To perceive this action ore clearl, visualize an enlargeent of the contact point, which would appear soewhat rounded, and consider the force eerted b this rounded corner on the straight surface of the bea, which is assued to be sooth. If the contacting surfaces at the corner were not sooth, a tangential frictional coponent of force could eist. In addition to the applied force and couple, there is the pin connection at, which eerts both an - and a -coponent of force on the bea. The positive senses of these coponents are assigned arbitraril. In Eaple 4 the free-bod diagra of the entire isolated echanis contains three unknown forces if the loads g and are known. n one of an internal configurations for securing the cable leading fro the ass would be possible without affecting the eternal response of the echanis as a whole, and this fact is brought out b the free-bod diagra. This hpothetical eaple is used to show that the forces internal to a rigid assebl of ebers do not influence the values of the eternal reactions. We use the free-bod diagra in writing the equilibriu equations, which are discussed in the net article. When these equations are solved, soe of the calculated force agnitudes a be zero. This would indicate that the assued force does not eist. In Eaple 1 of Fig. 3/2, an of the reactions,,or can be zero for specific values of the truss geoetr and of the agnitude, direction, and sense of the applied load. zero reaction force is often difficult to identif b inspection, but can be deterined b solving the equilibriu equations. Siilar coents appl to calculated force agnitudes which are negative. Such a result indicates that the actual sense is the opposite of the assued sense. The assued positive senses of and in Eaple 3 and in Eaple 4 are shown on the free-bod diagras. The correctness of these assuptions is p a_ch03 d_11 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

5 12 Chapter 3 Equilibriu proved or disproved according to whether the algebraic signs of the coputed forces are plus or inus when the calculations are carried out in an actual proble. The isolation of the echanical sste under consideration is a crucial step in the forulation of the atheatical odel. The ost iportant aspect to the correct construction of the alliportant free-bod diagra is the clear-cut and unabiguous decision as to what is included and what is ecluded. This decision becoes unabiguous onl when the boundar of the freebod diagra represents a coplete traverse of the bod or sste of bodies to be isolated, starting at soe arbitrar point on the boundar and returning to that sae point. The sste within this closed boundar is the isolated free bod, and all contact forces and all bod forces transitted to the sste across the boundar ust be accounted for. The following eercises provide practice with drawing freebod diagras. This practice is helpful before using such diagras in the application of the principles of force equilibriu in the net article. p a_ch03 d_12 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

6 rticle 3/2 Free-od Diagra Eercises 13 FREE-ODY DIGR EXERCISES 3/ In each of the five following eaples, the bod to be isolated is shown in the left-hand diagra, and an incoplete free-bod diagra (FD) of the isolated bod is shown on the right. dd whatever forces are nec- essar in each case to for a coplete free-bod diagra. The weights of the bodies are negligible unless otherwise indicated. Diensions and nuerical values are oitted for siplicit. od Incoplete FD 1. ell crank supporting ass with pin support at. Fleible cable T g ull 2. Control lever appling torque to shaft at O. O F O 3. oo O, of negligible ass copared with ass. oo hinged at O and supported b hoisting cable at. O T O g 4. Unifor crate of ass leaning against sooth vertical wall and supported on a rough horizontal surface. g 5. Loaded bracket supported b pin connection at and fied pin in sooth slot at. Load L L Figure 3/ p a_ch03 d_13 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

7 14 Chapter 3 Equilibriu 3/ In each of the five following eaples, the bod to be isolated is shown in the left-hand diagra, and either a wrong or an incoplete free-bod diagra (FD) is shown on the right. ake whatever changes or addi- tions are necessar in each case to for a correct and coplete free-bod diagra. The weights of the bodies are negligible unless otherwise indicated. Diensions and nuerical values are oitted for siplicit. od Wrong or Incoplete FD 1. Lawn roller of ass being pushed up incline θ. 2. r bar lifting bod having sooth horizontal surface. ar rests on horizontal rough surface. θ R N g N 3. Unifor pole of ass being hoisted into position b winch. Horizontal supporting surface notched to prevent slipping of pole. Notch T R g F 4. Supporting angle bracket for frae. in joints F F 5. ent rod welded to support at and subjected to two forces and couple. Figure 3/ p a_ch03 d_14 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

8 rticle 3/2 Free-od Diagra Eercises 15 3/C Draw a coplete and correct free-bod diagra of each of the bodies designated in the stateents. The weights of the bodies are significant onl if the ass is stated. ll forces, known and unknown, should be labeled. (Note: The sense of soe reaction coponents cannot alwas be deterined without nuerical calculation.) 1. Unifor horizontal bar of ass suspended b vertical cable at and supported b rough inclined surface at. 5. Unifor grooved wheel of ass supported b a rough surface and b action of horizontal cable. 2. Wheel of ass on verge of being rolled over curb b pull. 6. ar, initiall horizontal but deflected under load L. inned to rigid support at each end. L 3. Loaded truss supported b pin joint at and b cable at. 7. Unifor heav plate of ass supported in vertical plane b cable C and hinge. C L 4. Unifor bar of ass and roller of ass 0 taken together. Subjected to couple and supported as shown. Roller is free to turn Entire frae, pulles, and contacting cable to be isolated as a single unit. L Figure 3/C p a_ch03 d_15 Tuesda ar :21 UG Job nuber: 6191a ublisher: Wile uthor: eria Title: Engineering Statics, 5/e t

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture Chapter 8 Deflection Structural echanics Dept of rchitecture Outline Deflection diagras and the elastic curve Elastic-bea theory The double integration ethod oent-area theores Conjugate-bea ethod 8- Deflection

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Physics 207: Lecture 26. Announcements. Make-up labs are this week Final hwk assigned this week, final quiz next week.

Physics 207: Lecture 26. Announcements. Make-up labs are this week Final hwk assigned this week, final quiz next week. Torque due to gravit Rotation Recap Phsics 07: ecture 6 Announceents Make-up labs are this week Final hwk assigned this week, final quiz net week Toda s Agenda Statics Car on a Hill Static Equilibriu Equations

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

= 1.49 m/s m. 2 kg. 2 kg

= 1.49 m/s m. 2 kg. 2 kg 5.6. Visualize: Please refer to Figure Ex5.6. Solve: For the diagra on the left, three of the vectors lie along the axes of the tilted coordinate sste. Notice that the angle between the 3 N force and the

More information

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision I

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS Revision I EFFECTIVE MODA MASS & MODA PARTICIPATION FACTORS Revision I B To Irvine Eail: to@vibrationdata.co Deceber, 5 Introduction The effective odal ass provides a ethod for judging the significance of a vibration

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

acceleration of 2.4 m/s. (b) Now, we have two rubber bands (force 2F) pulling two glued objects (mass 2m). Using F ma, 2.0 furlongs x 2.0 s 2 4.

acceleration of 2.4 m/s. (b) Now, we have two rubber bands (force 2F) pulling two glued objects (mass 2m). Using F ma, 2.0 furlongs x 2.0 s 2 4. 5.. 5.6. Model: An object s acceleration is linearl proportional to the net force. Solve: (a) One rubber band produces a force F, two rubber bands produce a force F, and so on. Because F a and two rubber

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Influence lines for statically indeterminate structures. I. Basic concepts about the application of method of forces.

Influence lines for statically indeterminate structures. I. Basic concepts about the application of method of forces. Influence lines for statically indeterinate structures I. Basic concepts about the application of ethod of forces. The plane frae structure given in Fig. is statically indeterinate or redundant with degree

More information

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams Chapter 15 ewton s Laws #2: inds of s, Creating ree Body Diagras 15 ewton s Laws #2: inds of s, Creating ree Body Diagras re is no force of otion acting on an object. Once you have the force or forces

More information

Particle Kinetics Homework

Particle Kinetics Homework Chapter 4: article Kinetics Hoework Chapter 4 article Kinetics Hoework Freefor c 2018 4-1 Chapter 4: article Kinetics Hoework 4-2 Freefor c 2018 Chapter 4: article Kinetics Hoework Hoework H.4. Given:

More information

Monitoring and system identification of suspension bridges: An alternative approach

Monitoring and system identification of suspension bridges: An alternative approach Monitoring and syste identification of suspension bridges: An alternative approach Erdal Şafak Boğaziçi University, Kandilli Observatory and Earthquake Reseach Institute, Istanbul, Turkey Abstract This

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL (Del I, teori; 1 p.) 1. In fracture echanics, the concept of energy release rate is iportant. Fro the fundaental energy balance of a case with possible crack growth, one usually derives the equation where

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Common Exam 2 Physics 111 Fall 2006 Name A

Common Exam 2 Physics 111 Fall 2006 Name A Coon Ea Physics Fall 006 Nae A Total Nuber of Points is 5 (Multiple Choice and Worout Probles). Multiple Choice Probles are Point per Question..) A toy car oving at constant speed copletes one lap around

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

MEM202 Engineering Mechanics - Statics MEM

MEM202 Engineering Mechanics - Statics MEM E Engineering echanics - Statics E hapter 6 Equilibrium of Rigid odies k j i k j i R z z r r r r r r r r z z E Engineering echanics - Statics Equilibrium of Rigid odies E Pin Support N w N/m 5 N m 6 m

More information

CE573 Structural Dynamics [Fall 2008]

CE573 Structural Dynamics [Fall 2008] CE573 Structural Dynaics [Fall 2008] 1) A rigid vehicle weighing 2000 lb, oving horizontally at a velocity of 12 ft/sec, is stopped by a barrier consisting of wire ropes stretched between two rigid anchors

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT

NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT PACS REFERENCE: 43.5.LJ Krister Larsson Departent of Applied Acoustics Chalers University of Technology SE-412 96 Sweden Tel: +46 ()31 772 22 Fax: +46 ()31

More information

Physics 201 Lecture 29

Physics 201 Lecture 29 Phsics 1 ecture 9 Goals ecture 9 v Describe oscillator otion in a siple pendulu v Describe oscillator otion with torques v Introduce daping in SHM v Discuss resonance v Final Ea Details l Sunda, Ma 13th

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATER MECHANICS OF MATERIAS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf Energy Methods ecture Notes: J. Walt Oler Teas Tech niversity 6 The McGraw-Hill Copanies, Inc. All rights reserved.

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

TOPIC E: OSCILLATIONS SPRING 2018

TOPIC E: OSCILLATIONS SPRING 2018 TOPIC E: OSCILLATIONS SPRING 018 1. Introduction 1.1 Overview 1. Degrees of freedo 1.3 Siple haronic otion. Undaped free oscillation.1 Generalised ass-spring syste: siple haronic otion. Natural frequency

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems ASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent of echanical Engineering 2.010: Systes odeling and Dynaics III Final Eaination Review Probles Fall 2000 Good Luck And have a great winter break! page 1 Proble

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

Oscillatory Hydromagnetic Couette Flow in a Rotating System with Induced Magnetic Field *

Oscillatory Hydromagnetic Couette Flow in a Rotating System with Induced Magnetic Field * CHAPTER-4 Oscillator Hdroagnetic Couette Flow in a Rotating Sste with Induced Magnetic Field * 4. Introduction Lainar flow within a channel or duct in the absence of agnetic field is a phenoenon which

More information

Journal bearing can have a significant effect on a machine s vibration characteristics. The

Journal bearing can have a significant effect on a machine s vibration characteristics. The 6. Hdrodnaic Oil-Lubricated Journal Bearings Journal bearings consist of a circular section length of shaft (journal) rotating inside a bearing bush that is norall circular. The journal diaeter is usuall

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that?

Module #1: Units and Vectors Revisited. Introduction. Units Revisited EXAMPLE 1.1. A sample of iron has a mass of mg. How many kg is that? Module #1: Units and Vectors Revisited Introduction There are probably no concepts ore iportant in physics than the two listed in the title of this odule. In your first-year physics course, I a sure that

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance.

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance. Chapter 9 1. Put F 1 along the x axis. Add the three y-coponents (which total 0) and solve for the y- coponent of F 3. Now add the x-coponents of all three vectors (which total 0) and solve for the x-coponent

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis. Instructor(s): Acosta, inzler PHYSICS DEPATMENT PHY 048, Spring 04 Final Exa March 4, 04 Nae (print, last first): Signature: On y honor, I have neither given nor received unauthorized aid on this exaination.

More information

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011 Phsics 18 Spring 2011 Hoework 3 - s Wednesda Februar 2, 2011 Make sure our nae is on our hoework, and please bo our final answer. Because we will be giving partial credit, be sure to attept all the probles,

More information

PHYSICS 2010 Final Exam Review Session

PHYSICS 2010 Final Exam Review Session 1/9/011 PHYSICS 010 Final Ea Review Session Note that this review is not covering everthing. Rather it is highlighting ke points and concepts. Inforation on Course Web Page The final ea will cover aterial

More information

Chapter 8. Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia

Chapter 8. Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Chapter 8 Screw, Fasteners and the Design of Nonperanent Joint Lecture Notes Dr. Rakhad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Mechanical Engineering Design Sixth Metric Edition J.E.

More information

DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS *

DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M1, pp 89-100 Printed in The Islaic Republic of Iran, 2015 Shira University DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS

More information

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy AP Physics Multiple Choice Practice Wor-Energy 1. A ass attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

These lecture notes cover 1.8, 1.9, 1.11, 1.12, and most of

These lecture notes cover 1.8, 1.9, 1.11, 1.12, and most of Part I: Introduction Reading assignent: Chapters 1 and 2 These lecture notes cover 1.8, 1.9, 1.11, 1.12, and ost of 2.1 2.4. 1.1 Change of Coordinates A k k j Let A be a vector with coponents (relative

More information

Physics 4A Winter 2016 Final Exam

Physics 4A Winter 2016 Final Exam Physics 4A Winter 016 Final Exa Nae: Mar, 016 Please show your work! Answers are not coplete without clear reasoning. When asked for an expression, you ust give your answer in ters of the variables given

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

c03.qxd 11/6/07 3:26 PM Page 108

c03.qxd 11/6/07 3:26 PM Page 108 c03.qd 11/6/07 3:26 M age 108 eter ialobreski/laif/redu In man applications of mechanics, the sum of the forces acting on a bod is ero, and a state of equilibrium eists. This apparatus is designed to hold

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Liited Edinburgh Gate Harlow Esse CM0 JE England and Associated Copanies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Liited 04 All rights

More information

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes SPH4U/SPH3UW Unit.3 Appling Newton Law of Motion Page 1 of 7 Note Phic Tool Bo Solving Newton Law of Motion Proble o Read quetion to enure full undertanding o Draw and label a ree Bod Diagra o Separate

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

For more Study Material and Latest Questions related to IIT-JEE visit

For more Study Material and Latest Questions related to IIT-JEE visit or ore Study Material and Latest Questions related to IIT-JEE visit www. ICTION Introduction If we slide or try to slide a body over a surface, the otion is resisted by a bonding between the body and the

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

Computability and Complexity Random Sources. Computability and Complexity Andrei Bulatov

Computability and Complexity Random Sources. Computability and Complexity Andrei Bulatov Coputabilit and Copleit 29- Rando Sources Coputabilit and Copleit Andrei Bulatov Coputabilit and Copleit 29-2 Rando Choices We have seen several probabilistic algoriths, that is algoriths that ake soe

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

Kinetics of Rigid (Planar) Bodies

Kinetics of Rigid (Planar) Bodies Kinetics of Rigi (Planar) Boies Types of otion Rectilinear translation Curvilinear translation Rotation about a fixe point eneral planar otion Kinetics of a Syste of Particles The center of ass for a syste

More information

Chapter 11: Vibration Isolation of the Source [Part I]

Chapter 11: Vibration Isolation of the Source [Part I] Chapter : Vibration Isolation of the Source [Part I] Eaple 3.4 Consider the achine arrangeent illustrated in figure 3.. An electric otor is elastically ounted, by way of identical isolators, to a - thick

More information

Simple and Compound Harmonic Motion

Simple and Compound Harmonic Motion Siple Copound Haronic Motion Prelab: visit this site: http://en.wiipedia.org/wii/noral_odes Purpose To deterine the noral ode frequencies of two systes:. a single ass - two springs syste (Figure );. two

More information

A STUDY OF THE DESIGN OF A CANTILEVER TYPE MULTI-D.O.F. DYNAMIC VIBRATION ABSORBER FOR MICRO MACHINE TOOLS

A STUDY OF THE DESIGN OF A CANTILEVER TYPE MULTI-D.O.F. DYNAMIC VIBRATION ABSORBER FOR MICRO MACHINE TOOLS ICSV4 Cairns Australia 9- Jul, 7 A STUDY OF THE DESIGN OF A CANTILEVER TYPE MULTI-D.O.F. DYNAMIC VIBRATION ABSORBER FOR MICRO MACHINE TOOLS Sung-Hun Jang, Sung-Min Ki, Shil-Geun Ki,Young-Hu Choi and Jong-Kwon

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

Phys101 Lectures 13, 14 Momentum and Collisions

Phys101 Lectures 13, 14 Momentum and Collisions Phs0 Lectures 3, 4 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 7-,,3,4,5,6,7,8,9,0. Page Moentu is a vector:

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Point Equilibrium & Truss Analysis

Point Equilibrium & Truss Analysis oint Equilibrium & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, T, and F = name of a truss force between joints named and,

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS 446.201 (Solid echanics) Professor Youn, eng Dong CH. 1 FUNDENTL PRINCIPLES OF ECHNICS Ch. 1 Fundamental Principles of echanics 1 / 14 446.201 (Solid echanics) Professor Youn, eng Dong 1.2 Generalied Procedure

More information

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011 EN40: ynaics and Vibrations Final Exaination Tuesday May 15, 011 School of Engineering rown University NME: General Instructions No collaboration of any ind is peritted on this exaination. You ay use double

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

FEM-Design. Verification Examples. version Motto: ,,There is singularity between linear and nonlinear world. (Dr.

FEM-Design. Verification Examples. version Motto: ,,There is singularity between linear and nonlinear world. (Dr. FEM-Design version.3 8 Motto:,,There is singularity between linear and nonlinear world. (Dr. Ire Bojtár) StruSoft AB Visit the StruSoft website for copany and FEM-Design inforation at www.strusoft.co Copyright

More information

PHYS 107 Practice Final Test Fall 2018

PHYS 107 Practice Final Test Fall 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise, this practice test includes 20 questions and 5 probles. Questions: N.B. Make sure that you justify your

More information

PHYS 154 Practice Final Test Spring 2018

PHYS 154 Practice Final Test Spring 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise and enjoyent, this practice test includes18 questions and 4 probles. Questions: N.. ake sure that you justify

More information

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields Finite fields I talked in class about the field with two eleents F 2 = {, } and we ve used it in various eaples and hoework probles. In these notes I will introduce ore finite fields F p = {,,...,p } for

More information

Numerical solution of Boundary Value Problems by Piecewise Analysis Method

Numerical solution of Boundary Value Problems by Piecewise Analysis Method ISSN 4-86 (Paper) ISSN 5-9 (Online) Vol., No.4, Nuerical solution of Boundar Value Probles b Piecewise Analsis Method + O. A. TAIWO; A.O ADEWUMI and R. A. RAJI * Departent of Matheatics, Universit of Ilorin,

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13 PHY 4Y FOUNDAIONS OF PHYSICS - utorial Questions #9 Solutions Noveber /3 Conservation of Ener and Sprins. One end of a assless sprin is placed on a flat surface, with the other end pointin upward, as shown

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

Supervised assessment: Modelling and problem-solving task

Supervised assessment: Modelling and problem-solving task Matheatics C 2008 Saple assessent instruent and indicative student response Supervised assessent: Modelling and proble-solving tas This saple is intended to infor the design of assessent instruents in

More information