List Scheduling and LPT Oliver Braun (09/05/2017)

Size: px
Start display at page:

Download "List Scheduling and LPT Oliver Braun (09/05/2017)"

Transcription

1 List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines) such that the akespan ax is iniized. If n then any schedule that just assigns each job to a different achine would be optial. Therefore we assue that n. We denote the iniu akespan across any schedule by ax. Lower Bounds Let A be any algorith that solves P ax with akespan A ax. Let J k, with processing tie p k and copletion tie k, be the job that deterines the akespan. Lea (Lower Bound): A ax ax ax { k, j= p } j Proof. j= p j is the total aount of processing that ust be done across all achines. Then for achines, j= p j would be the average processing that needs to be done. By properties of the average, at least one achine ust then process at least this average. Hence, there will be always at least one job J k with copletion tie k j= p j. Lea 2 (Lower Bound): A ax ax p ax p j (for any j =,..., n). Proof. A processor can process only one job at a tie. This eans, a job can be copleted no faster than it s given processing tie. If p ax = ax{p j }, then at least one achine ust have p ax processing load. As a result, j= p j/ and p ax for lower bounds for the akespan of any algorith solving P ax and clearly ax A ax ax {( j= p j)/, p ax }.

2 2 List Scheduling Let LS be the List Scheduling algorith: Always take the next job of the list and process it on that processor that has done the least aount of work so far (if there is ore than one processor with the sallest load use that with the sallest index). Lea 3 (Upper Bound): LS ax j= p j. Proof. This bound is obviously true as List Scheduling would never use just one processor (actually at least processors as we assue that n ). Lea (Upper Bound): LS ax ( 2 ) ax. Proof. Let J k denote the job that copletes last across all achines, say on achine P i. This job was assigned according to the List Scheduling procedure when achine P i had the least load, so that ax LS = k = s k +p k, where s k is the starting tie of job J k. This starting tie s k is equal to the aount of load on achine P i when J k was assigned to it. We now use relations: s k, the starting tie of the job J k, cannot be larger than the su of the processing ties of all of the other jobs divided by the nuber of achines,. So we coe to s k = = j= p j, j k ( n j= p j ) p k n j= p j p k. LS ax = k = s k + p k j= p j p k + p k j= p ( j + p k ) Using the Lower Bounds (Lea and Lea 2), it follows that ) ax LS ax + ax ( 2 ) ax ( 2

3 Lea 5 (Tightness of the Upper Bound): There are proble instances for arbitrary values of where the upper bound ( 2 ) ax derived in the previous Lea is tight. Proof. To achieve a tight worst-case for the akespan by List Scheduling with processors, we choose n = ( ) + jobs as follows: One job ( Type A ) has processing tie, ( ) jobs ( Type B ) have processing ties. List Schedule: Type B -jobs followed by Type A -job. Optiu Schedule: Type A -job followed by Type B -jobs. Exaple: The tight worst-case exaple for = 3 processors is dispayed in Figure. Figure : Tight worst-case exaple for = 3 processors 3 LPT Let LP T be the Longest Processing Tie first algorith: Start sorting the jobs in nonincreasing order. Apply then List Scheduling on this sorted set of jobs. Lea 6 (Upper Bound): LP T ax j= p j. Proof. This bound is obviously true as LPT would never use just one processor (actually at least processors as we assue that n ). In order to prove the tight upper bound ax LP T (/3 /(3))ax, we start to prove four orollaries. Let J k (with processing tie p k ) be again that job that deterines the akespan (in this case of the LPT-schedule), i.e. k = ax LP T. Let T be the original job set and T 2 be the truncated job set where all jobs that coe after job J k in the LPT-order are deleted fro the original job set. Doing this, we assure that J k is actually not only the last job that is scheduled (in the LPT-order) but also that it is the sallest job. orollary ax LP T (T ) ax(t ) LP T ax (T 2 ) ax(t 2 ) 3

4 Proof. The akespans of the original LPT list and the truncated list are the sae (note that we just take out those jobs that coe after J k and have no influence on the akespan). The optiu akespan can definitely not get larger when we have to schedule less jobs. As the nuerators reain the sae and the denoinator of the T 2 -schedule is not larger than the denoinator of the T -schedule, the result follows iediately. orollary 2 ( ax LP T ax + p k ) Proof. In a siilar way as in the List Scheduling prove above, we coe to: LP T ax = k = s k + p k j= p j p k + p k j= p ( j + p k ) ( ax + p k ) orollary 3 If ax < 3 p k, then each processor has at ost two jobs. Proof. We show: If there is a processor that has at least three jobs, then ax 3 p k. This is obviously true as all other jobs have processing ties that are greater than or equal to p k. orollary If each processor has at ost two jobs, then LPT is always optial. Proof. It is obvious that for n + LPT ust be optial (if n = +, then the two sallest jobs are scheduled on P, and in all other cases there is only one job scheduled on each processor). Let s look at the case n = 2. In that case, each processor ust have exactly two jobs (as the current finishing ties of the processors are non-increasing, we would never let one of the processors that have less load than P just schedule one job). We assue w.l.o.g. that on processor P there is the largest job J with length p scheduled. Then it is clear that in an optial schedule J has to be cobined with J k (reeber: J k is the sallest job that is scheduled and it deterines the akespan, i.e. k = ax LP T ). If we would interchange J k with another job, then the akespan would only get larger and will not reain optial. The sae is true if we have n < 2 jobs. In this case, we cobine J k always with J 2 n+. And again, interchanging would only increase the akespan.

5 Exaple: The Exaple in Figure 2 shows = 3 processors with n = 2 = 6 and n = 2 = 5 jobs. Figure 2: Exaple for = 3 processors with n = 2 = 6 and n = 2 = 5 jobs Lea 7 (Upper Bound): LP T ax ( 3 3) ax. Proof (by contradiction). Assue that there exists a job set T = {J,..., J n } that contradicts Lea 7, i.e. ax LP T (T ) > ( 3 3) ax (T ). Let T 2 be the truncated job set where all jobs that coe after job J k in the LPT-order are deleted fro the original job set. onclusion : It follows fro ( ax LP T (T ) > 3 ) 3 ax(t ) that (because of 3 < 3 ) LP T ax (T ) > ax(t ). As the optiu akespan of the truncated job set cannot be larger than the optial akespan of the original job set, i.e. we coe to onclusion 2: It follows fro that ax(t 2 ) ax(t ), LP T ax (T ) > ax(t 2 ). LP T ax (T ) > ( 3 ) 3 ax(t ) 3 3 < LP T ax (T ) ax(t ) 5

6 and so (by orollary (a)) 3 3 < LP T ax (T 2 ) ax(t 2 ) and (by orollary (b)) or This yields to or 3 3 < ax(t 2 ) + p k ax(t 2 ) ( ) 3 3 < + p ( ) k ax(t 2 ). 3 3 < p ( ) k ax(t 2 ) 3 < p k ax(t 2 ) and so to ax(t 2 ) < 3 p k. It follows fro orollary (c) that in this case each processor ust have at ost two jobs, and fro olorollary (d) it follows that if each processor has at ost two jobs, then LPT is always optial, i.e. LP T ax (T ) = ax(t 2 ). But this is a contradiction to onclusion and therefore the assuption that there exists a job set T = {J,..., J n } that contradicts Lea 7, i.e. ax LP T (T ) > ( 3 3) ax (T ), cannot be true. Lea 8 (Tightness of the Upper Bound): There are proble instances for arbitrary values of where the upper bound ( 3 3) ax derived in the previous Lea is tight. Proof. To achieve a tight worst-case for the akespan by LPT Scheduling with processors, we choose n = 2 + jobs as follows: 2 jobs of size 2, 2 jobs of size 2 2,..., 2 jobs of size +, 3 jobs of size. Exaple: The Exaple in Figure 3 shows a tight worst-case exaple for = 3 processors. 6

7 Figure 3: Tight worst-case exaple for = 3 processors oplexity Lea (oplexity): P 2 ax is NP-hard. Proof. (Fro this result it follows that also P ax for an arbitrary 2 ust be NPhard.) We prove this by reducing PARTITION to the decision version of the SHEDULING proble P 2 ax. j= PARTITION: Given a list of n positive integers s, s 2,..., s n and a value b = s j, does 2 there exist a subset J I = {,..., n} such that s j = b = j J Reark: Partition is NP-hard in the ordinary sense, i.e. the proble cannot be optially solved by an ( algorith with polynoial tie coplexity but with an algorith of tie coplexity O (n ax s j ) k). SHEDULING: Given n jobs with processing ties p j where j {, 2,..., n} and a nuber k, the decision version of the scheduling proble P 2 ax is to check if there is a schedule with akespan not ore than k. Step : P 2 ax is in NP j k p j s k If the schedule of the jobs for each of the 2 achines is given, it can be verified in polynoial tie that the copletion ties,..., n of all jobs J,..., J n are less than or equal to T. Thus, P 2 ax belongs to NP. Reark : learly, any k has a binary encoding which is bounded by a polynoial in the input length of the proble. Reark 2: Every decision proble solvable in polynoial tie belongs to NP. If we have such a proble P and an algorith which calculates for each input x the answer h(x) {yes, no} in a polynoial nuber of steps, then this answer h(x) ay be used as a certificate. This certificate can be verified by the algorith. Thus P is also in NP which iplies P NP. Step 2: PARTITION reduces to SHEDULING: PARTITION SHEDULING Reark 3: For two decision probles P and Q, we say that P reduces to Q (denoted P Q) if there exists a polynoial-tie coputable function g that transfors inputs for P into inputs for Q such that x is a yes-input for P if and only if g(x) is a yes-input for Q. A yes-answer for a decision proble can be verified in polynoial tie (this is not the case for the no-answer. 7 j I/J s j

8 We are going to show that the PARTITION is reducible to SHEDULING:. The input of the SHEDULING proble can be coputed in polynoial tie given the input of the PARTITION proble: We ust transfor in polynoial tie the input for PARTITION into an instance of SHEDULING such that there is a solution for PARTITION if and only if there is a schedule with ax k for a suitable value k. This is easy: We just set k = b and define the SHEDULING proble as follows: onsider the jobs J j with p j = s j for j =,..., n. We choose k = b as the threshold for the corresponding decision proble. 2. a. If PARTITION has a solution, then the decision version of SHEDULING has a solution: If PARTITION has a solution, then there exists an index set J {,..., n} such that i J s i = b. In this case the schedule p i J on P and p i/ J on P 2 solves the decision version of proble P 2 ax. 2. b. If the decision version of SHEDULING has a solution, then PARTITION has a solution: If the decision version of SHEDULING has a solution, then the jobs with processing ties p,..., p n are scheduled on P (all p i J and P 2 (all p i/ J ) such that the akespan is less than or equal to k. In this case the PARTITION j J s j = b = k = j I/ J s j solves the PARTITION proble. Since SHEDULING is in NP, and since we can reduce the NP-coplete proble PARTI- TION to SHEDULING in polynoial tie, SHEDULING ust also be NP-coplete. 8

Homework 3 Solutions CSE 101 Summer 2017

Homework 3 Solutions CSE 101 Summer 2017 Hoework 3 Solutions CSE 0 Suer 207. Scheduling algoriths The following n = 2 jobs with given processing ties have to be scheduled on = 3 parallel and identical processors with the objective of iniizing

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

A Note on Online Scheduling for Jobs with Arbitrary Release Times

A Note on Online Scheduling for Jobs with Arbitrary Release Times A Note on Online Scheduling for Jobs with Arbitrary Release Ties Jihuan Ding, and Guochuan Zhang College of Operations Research and Manageent Science, Qufu Noral University, Rizhao 7686, China dingjihuan@hotail.co

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approxiation in Stochastic Scheduling: The Power of -Based Priority Policies Rolf Möhring, Andreas Schulz, Marc Uetz Setting (A P p stoch, r E( w and (B P p stoch E( w We will assue that the processing

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Worst-case performance of critical path type algorithms

Worst-case performance of critical path type algorithms Intl. Trans. in Op. Res. 7 (2000) 383±399 www.elsevier.co/locate/ors Worst-case perforance of critical path type algoriths G. Singh, Y. Zinder* University of Technology, P.O. Box 123, Broadway, NSW 2007,

More information

Convex Programming for Scheduling Unrelated Parallel Machines

Convex Programming for Scheduling Unrelated Parallel Machines Convex Prograing for Scheduling Unrelated Parallel Machines Yossi Azar Air Epstein Abstract We consider the classical proble of scheduling parallel unrelated achines. Each job is to be processed by exactly

More information

time time δ jobs jobs

time time δ jobs jobs Approxiating Total Flow Tie on Parallel Machines Stefano Leonardi Danny Raz y Abstract We consider the proble of optiizing the total ow tie of a strea of jobs that are released over tie in a ultiprocessor

More information

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science A Better Algorith For an Ancient Scheduling Proble David R. Karger Steven J. Phillips Eric Torng Departent of Coputer Science Stanford University Stanford, CA 9435-4 Abstract One of the oldest and siplest

More information

Longest Processing Time rule for identical parallel machines revisited

Longest Processing Time rule for identical parallel machines revisited Longest Processing Tie rule for identical parallel achines revisited Federico Della Croce a,b,, Rosario Scataacchia a arxiv:1801.05489v1 [cs.ds] 16 Jan 2018 a Dipartiento di Ingegneria Gestionale e della

More information

On the Inapproximability of Vertex Cover on k-partite k-uniform Hypergraphs

On the Inapproximability of Vertex Cover on k-partite k-uniform Hypergraphs On the Inapproxiability of Vertex Cover on k-partite k-unifor Hypergraphs Venkatesan Guruswai and Rishi Saket Coputer Science Departent Carnegie Mellon University Pittsburgh, PA 1513. Abstract. Coputing

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

arxiv: v1 [math.nt] 14 Sep 2014

arxiv: v1 [math.nt] 14 Sep 2014 ROTATION REMAINDERS P. JAMESON GRABER, WASHINGTON AND LEE UNIVERSITY 08 arxiv:1409.411v1 [ath.nt] 14 Sep 014 Abstract. We study properties of an array of nubers, called the triangle, in which each row

More information

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe PROPERTIES OF MULTIVARIATE HOMOGENEOUS ORTHOGONAL POLYNOMIALS Brahi Benouahane y Annie Cuyt? Keywords Abstract It is well-known that the denoinators of Pade approxiants can be considered as orthogonal

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

Support Vector Machines. Maximizing the Margin

Support Vector Machines. Maximizing the Margin Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words) 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME 04469 Tel (07) 866-3540 Eail: farlow@ath.uaine.edu

More information

On Poset Merging. 1 Introduction. Peter Chen Guoli Ding Steve Seiden. Keywords: Merging, Partial Order, Lower Bounds. AMS Classification: 68W40

On Poset Merging. 1 Introduction. Peter Chen Guoli Ding Steve Seiden. Keywords: Merging, Partial Order, Lower Bounds. AMS Classification: 68W40 On Poset Merging Peter Chen Guoli Ding Steve Seiden Abstract We consider the follow poset erging proble: Let X and Y be two subsets of a partially ordered set S. Given coplete inforation about the ordering

More information

Scheduling Contract Algorithms on Multiple Processors

Scheduling Contract Algorithms on Multiple Processors Fro: AAAI Technical Report FS-0-04. Copilation copyright 200, AAAI (www.aaai.org). All rights reserved. Scheduling Contract Algoriths on Multiple Processors Daniel S. Bernstein, Theodore. Perkins, Shloo

More information

VC Dimension and Sauer s Lemma

VC Dimension and Sauer s Lemma CMSC 35900 (Spring 2008) Learning Theory Lecture: VC Diension and Sauer s Lea Instructors: Sha Kakade and Abuj Tewari Radeacher Averages and Growth Function Theore Let F be a class of ±-valued functions

More information

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate The Siplex Method is Strongly Polynoial for the Markov Decision Proble with a Fixed Discount Rate Yinyu Ye April 20, 2010 Abstract In this note we prove that the classic siplex ethod with the ost-negativereduced-cost

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3 A. Find all ordered pairs a, b) of positive integers for which a + b = 3 08. Answer. The six ordered pairs are 009, 08), 08, 009), 009 337, 674) = 35043, 674), 009 346, 673) = 3584, 673), 674, 009 337)

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.it.edu 16.323 Principles of Optial Control Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 16.323 Lecture 10 Singular

More information

FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP TIMES

FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP TIMES Journal of the Operations Research Society of Japan Vo!. 29, No. 3, Septeber 1986 1986 The Operations Research Society of Japan FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP TIMES Jatinder N. D. Gupta

More information

The Inferential Complexity of Bayesian and Credal Networks

The Inferential Complexity of Bayesian and Credal Networks The Inferential Coplexity of Bayesian and Credal Networks Cassio Polpo de Capos,2 Fabio Gagliardi Cozan Universidade de São Paulo - Escola Politécnica 2 Pontifícia Universidade Católica de São Paulo cassio@pucsp.br,

More information

Understanding Machine Learning Solution Manual

Understanding Machine Learning Solution Manual Understanding Machine Learning Solution Manual Written by Alon Gonen Edited by Dana Rubinstein Noveber 17, 2014 2 Gentle Start 1. Given S = ((x i, y i )), define the ultivariate polynoial p S (x) = i []:y

More information

Bipartite subgraphs and the smallest eigenvalue

Bipartite subgraphs and the smallest eigenvalue Bipartite subgraphs and the sallest eigenvalue Noga Alon Benny Sudaov Abstract Two results dealing with the relation between the sallest eigenvalue of a graph and its bipartite subgraphs are obtained.

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on Multiprocessors

New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on Multiprocessors New Slack-Monotonic Schedulability Analysis of Real-Tie Tasks on Multiprocessors Risat Mahud Pathan and Jan Jonsson Chalers University of Technology SE-41 96, Göteborg, Sweden {risat, janjo}@chalers.se

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Tight Information-Theoretic Lower Bounds for Welfare Maximization in Combinatorial Auctions

Tight Information-Theoretic Lower Bounds for Welfare Maximization in Combinatorial Auctions Tight Inforation-Theoretic Lower Bounds for Welfare Maxiization in Cobinatorial Auctions Vahab Mirrokni Jan Vondrák Theory Group, Microsoft Dept of Matheatics Research Princeton University Redond, WA 9805

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation journal of coplexity 6, 459473 (2000) doi:0.006jco.2000.0544, available online at http:www.idealibrary.co on On the Counication Coplexity of Lipschitzian Optiization for the Coordinated Model of Coputation

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

On Constant Power Water-filling

On Constant Power Water-filling On Constant Power Water-filling Wei Yu and John M. Cioffi Electrical Engineering Departent Stanford University, Stanford, CA94305, U.S.A. eails: {weiyu,cioffi}@stanford.edu Abstract This paper derives

More information

A New Model for Selfish Routing

A New Model for Selfish Routing A New Model for Selfish Routing Thoas Lücking Marios Mavronicolas Burkhard Monien Manuel Rode Abstract In this work, we introduce and study a new, potentially rich odel for selfish routing over non-cooperative

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

arxiv: v1 [math.co] 19 Apr 2017

arxiv: v1 [math.co] 19 Apr 2017 PROOF OF CHAPOTON S CONJECTURE ON NEWTON POLYTOPES OF q-ehrhart POLYNOMIALS arxiv:1704.0561v1 [ath.co] 19 Apr 017 JANG SOO KIM AND U-KEUN SONG Abstract. Recently, Chapoton found a q-analog of Ehrhart polynoials,

More information

Stochastic Machine Scheduling with Precedence Constraints

Stochastic Machine Scheduling with Precedence Constraints Stochastic Machine Scheduling with Precedence Constraints Martin Skutella Fakultät II, Institut für Matheatik, Sekr. MA 6-, Technische Universität Berlin, 0623 Berlin, Gerany skutella@ath.tu-berlin.de

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Midterm 1 Sample Solution

Midterm 1 Sample Solution Midter 1 Saple Solution NOTE: Throughout the exa a siple graph is an undirected, unweighted graph with no ultiple edges (i.e., no exact repeats of the sae edge) and no self-loops (i.e., no edges fro a

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension

FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension Matheatical Prograing anuscript No. (will be inserted by the editor) Jesús A. De Loera Rayond Heecke Matthias Köppe Robert Weisantel FPTAS for optiizing polynoials over the ixed-integer points of polytopes

More information

Exact tensor completion with sum-of-squares

Exact tensor completion with sum-of-squares Proceedings of Machine Learning Research vol 65:1 54, 2017 30th Annual Conference on Learning Theory Exact tensor copletion with su-of-squares Aaron Potechin Institute for Advanced Study, Princeton David

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS Jochen Till, Sebastian Engell, Sebastian Panek, and Olaf Stursberg Process Control Lab (CT-AST), University of Dortund,

More information

Divisibility of Polynomials over Finite Fields and Combinatorial Applications

Divisibility of Polynomials over Finite Fields and Combinatorial Applications Designs, Codes and Cryptography anuscript No. (will be inserted by the editor) Divisibility of Polynoials over Finite Fields and Cobinatorial Applications Daniel Panario Olga Sosnovski Brett Stevens Qiang

More information

Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations

Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations Randoized Accuracy-Aware Progra Transforations For Efficient Approxiate Coputations Zeyuan Allen Zhu Sasa Misailovic Jonathan A. Kelner Martin Rinard MIT CSAIL zeyuan@csail.it.edu isailo@it.edu kelner@it.edu

More information

INTEGRATIVE COOPERATIVE APPROACH FOR SOLVING PERMUTATION FLOWSHOP SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT FAMILY SETUP TIMES

INTEGRATIVE COOPERATIVE APPROACH FOR SOLVING PERMUTATION FLOWSHOP SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT FAMILY SETUP TIMES 8 th International Conference of Modeling and Siulation - MOSIM 10 - May 10-12, 2010 - Haaet - Tunisia Evaluation and optiization of innovative production systes of goods and services INTEGRATIVE COOPERATIVE

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

An FPTAS for the minimum total weighted tardiness problem with a fixed number of distinct due dates

An FPTAS for the minimum total weighted tardiness problem with a fixed number of distinct due dates An FPTAS for the iniu total weighted tardiness proble with a fixed nuber of distinct due dates George Karaostas Stavros G. Kolliopoulos Jing Wang February 3, 2009 Abstract Given a sequencing of jobs on

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool Constant-Space String-Matching in Sublinear Average Tie (Extended Abstract) Maxie Crocheore Universite de Marne-la-Vallee Leszek Gasieniec y Max-Planck Institut fur Inforatik Wojciech Rytter z Warsaw University

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: Volume: 5 Issue:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: Volume: 5 Issue: Optial Specially Structured N X 2 Flow Shop Scheduling To Miniize Total Waiting Tie of Jobs ncluding Job Block Concept with Processing Tie Separated Fro Set up Tie Dr Deepak Gupta Professor & Head Departent

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information

Mathematical Model and Algorithm for the Task Allocation Problem of Robots in the Smart Warehouse

Mathematical Model and Algorithm for the Task Allocation Problem of Robots in the Smart Warehouse Aerican Journal of Operations Research, 205, 5, 493-502 Published Online Noveber 205 in SciRes. http://www.scirp.org/journal/ajor http://dx.doi.org/0.4236/ajor.205.56038 Matheatical Model and Algorith

More information

On the Existence of Pure Nash Equilibria in Weighted Congestion Games

On the Existence of Pure Nash Equilibria in Weighted Congestion Games MATHEMATICS OF OPERATIONS RESEARCH Vol. 37, No. 3, August 2012, pp. 419 436 ISSN 0364-765X (print) ISSN 1526-5471 (online) http://dx.doi.org/10.1287/oor.1120.0543 2012 INFORMS On the Existence of Pure

More information

Multiprocessor scheduling with rejection

Multiprocessor scheduling with rejection Multiprocessor scheduling with rejection Bartal, Y.; Leonardi, S.; Marchetti Spaccaela, A.; Sgall, J.; Stougie, L. Published in: SIAM Journal on Discrete Matheatics DOI: 10.1137/S0895480196300522 Published:

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

Nonclairvoyant Scheduling to Minimize the Total Flow Time on Single and Parallel Machines

Nonclairvoyant Scheduling to Minimize the Total Flow Time on Single and Parallel Machines Nonclairvoyant Scheduling to Miniize the Total Flow Tie on Single and Parallel Machines LUCA BECCHETTI AND STEFANO LEONARDI University of Roe La Sapienza, Roe, Italy Abstract. Scheduling a sequence of

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

arxiv: v1 [cs.ds] 29 Jan 2012

arxiv: v1 [cs.ds] 29 Jan 2012 A parallel approxiation algorith for ixed packing covering seidefinite progras arxiv:1201.6090v1 [cs.ds] 29 Jan 2012 Rahul Jain National U. Singapore January 28, 2012 Abstract Penghui Yao National U. Singapore

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a ournal published by Elsevier. The attached copy is furnished to the author for internal non-coercial research and education use, including for instruction at the authors institution

More information

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval Unifor Approxiation and Bernstein Polynoials with Coefficients in the Unit Interval Weiang Qian and Marc D. Riedel Electrical and Coputer Engineering, University of Minnesota 200 Union St. S.E. Minneapolis,

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE

ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE CHRISTOPHER J. HILLAR Abstract. A long-standing conjecture asserts that the polynoial p(t = Tr(A + tb ] has nonnegative coefficients whenever is

More information

Handout 6 Solutions to Problems from Homework 2

Handout 6 Solutions to Problems from Homework 2 CS 85/185 Fall 2003 Lower Bounds Handout 6 Solutions to Probles fro Hoewor 2 Ait Charabarti Couter Science Dartouth College Solution to Proble 1 1.2: Let f n stand for A 111 n. To decide the roerty f 3

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

A Bernstein-Markov Theorem for Normed Spaces

A Bernstein-Markov Theorem for Normed Spaces A Bernstein-Markov Theore for Nored Spaces Lawrence A. Harris Departent of Matheatics, University of Kentucky Lexington, Kentucky 40506-0027 Abstract Let X and Y be real nored linear spaces and let φ :

More information

New upper bound for the B-spline basis condition number II. K. Scherer. Institut fur Angewandte Mathematik, Universitat Bonn, Bonn, Germany.

New upper bound for the B-spline basis condition number II. K. Scherer. Institut fur Angewandte Mathematik, Universitat Bonn, Bonn, Germany. New upper bound for the B-spline basis condition nuber II. A proof of de Boor's 2 -conjecture K. Scherer Institut fur Angewandte Matheati, Universitat Bonn, 535 Bonn, Gerany and A. Yu. Shadrin Coputing

More information

Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography

Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography Tight Bounds for axial Identifiability of Failure Nodes in Boolean Network Toography Nicola Galesi Sapienza Università di Roa nicola.galesi@uniroa1.it Fariba Ranjbar Sapienza Università di Roa fariba.ranjbar@uniroa1.it

More information

Introduction to Optimization Techniques. Nonlinear Programming

Introduction to Optimization Techniques. Nonlinear Programming Introduction to Optiization echniques Nonlinear Prograing Optial Solutions Consider the optiization proble in f ( x) where F R n xf Definition : x F is optial (global iniu) for this proble, if f( x ) f(

More information

Improved multiprocessor global schedulability analysis

Improved multiprocessor global schedulability analysis Iproved ultiprocessor global schedulability analysis Sanjoy Baruah The University of North Carolina at Chapel Hill Vincenzo Bonifaci Max-Planck Institut für Inforatik Sebastian Stiller Technische Universität

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Handout 7. and Pr [M(x) = χ L (x) M(x) =? ] = 1.

Handout 7. and Pr [M(x) = χ L (x) M(x) =? ] = 1. Notes on Coplexity Theory Last updated: October, 2005 Jonathan Katz Handout 7 1 More on Randoized Coplexity Classes Reinder: so far we have seen RP,coRP, and BPP. We introduce two ore tie-bounded randoized

More information

On Certain C-Test Words for Free Groups

On Certain C-Test Words for Free Groups Journal of Algebra 247, 509 540 2002 doi:10.1006 jabr.2001.9001, available online at http: www.idealibrary.co on On Certain C-Test Words for Free Groups Donghi Lee Departent of Matheatics, Uni ersity of

More information

arxiv: v1 [cs.ds] 17 Mar 2016

arxiv: v1 [cs.ds] 17 Mar 2016 Tight Bounds for Single-Pass Streaing Coplexity of the Set Cover Proble Sepehr Assadi Sanjeev Khanna Yang Li Abstract arxiv:1603.05715v1 [cs.ds] 17 Mar 2016 We resolve the space coplexity of single-pass

More information

1 Rademacher Complexity Bounds

1 Rademacher Complexity Bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #10 Scribe: Max Goer March 07, 2013 1 Radeacher Coplexity Bounds Recall the following theore fro last lecture: Theore 1. With probability

More information

A Quantum Observable for the Graph Isomorphism Problem

A Quantum Observable for the Graph Isomorphism Problem A Quantu Observable for the Graph Isoorphis Proble Mark Ettinger Los Alaos National Laboratory Peter Høyer BRICS Abstract Suppose we are given two graphs on n vertices. We define an observable in the Hilbert

More information

Maximum Entropy Interval Aggregations

Maximum Entropy Interval Aggregations Maxiu Entropy Interval Aggregations Ferdinando Cicalese Università di Verona, Verona, Italy Eail: cclfdn@univr.it Ugo Vaccaro Università di Salerno, Salerno, Italy Eail: uvaccaro@unisa.it arxiv:1805.05375v1

More information

Acyclic Colorings of Directed Graphs

Acyclic Colorings of Directed Graphs Acyclic Colorings of Directed Graphs Noah Golowich Septeber 9, 014 arxiv:1409.7535v1 [ath.co] 6 Sep 014 Abstract The acyclic chroatic nuber of a directed graph D, denoted χ A (D), is the iniu positive

More information

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples

Order Recursion Introduction Order versus Time Updates Matrix Inversion by Partitioning Lemma Levinson Algorithm Interpretations Examples Order Recursion Introduction Order versus Tie Updates Matrix Inversion by Partitioning Lea Levinson Algorith Interpretations Exaples Introduction Rc d There are any ways to solve the noral equations Solutions

More information