General Properties of Radiation Detectors Supplements

Size: px
Start display at page:

Download "General Properties of Radiation Detectors Supplements"

Transcription

1 Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat

2 Overview Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Introduction Siplified Detector Model Interaction of Fast Electrons Pulse Height Spectra Counting Curves and Plateaus Energy Resolution Detection Efficiency Dead Tie Dr. Nidal M. Ershaidat Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors Introduction Coon Properties Detectors have any coon properties. For all detectors we shall need to know the efficiency energy resolution But also: odes of operation and ethods of recording data. Signal treatent is finally coon to all types of detectors. But this is another course Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 4

3 I. Siplified Detector Model Scheatic Radiation hits the detector. Stopping tie varies between a few ns to a few ps (See schee). Ties are practically so short that we can consider the deposition alost instantaneous! Radiation Detector Charge collector First we consider that only one single particle (or one photon or quantu of radiation) is incident on the detector. The result of the interaction between the radiation and the aterial (of the detector) is a charge Q. An electric field is applied in order to "collect" the resulting electrons (currents) Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 6 Collection Tie The collection tie fro t=0 (creation of the charge) varies fro a few s for ionization chabers to ns for seiconductor diode detectors. This collection tie is a function of )the obility of charge carriers within the detector and )the average distance that the charge ust travel before arriving at the collection electrodes! The figure below shows the flow of a current for a tie equal to the charge collection tie (t C ). Real Situations For any real situation, a flux of radiation is incident on on the detector. If the rate of interaction is high then current is flowing in the detector fro ore than one interaction at a given tie. For siplicity we consider that this rate is low enough such as the current resulting fro each individual interaction is distinguishable fro the others. The Magnitude figure and below duration shows of the each flow current of a current pulse depend in this case. on the type of interaction. t c i 0 ( t) dt = Q Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 7 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 8

4 II. Modes of Detector Operation Pulse ode Current ode MSV (Mean Square Voltage) ode General Features Current ode operation is used with any detectors when event rates are high. Detectors that are applied to radiation dosietry are also norally operated in current ode. MSV ode is appropriate for enhancing the relative response of detector to large aplitude events. This ode is especially used in reactor instruentation. Pulse ode is used when one wants to preserve the aplitude and tiing of individual events. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 0 Pulse Mode Here the easureent instruentation is designed in order to record each individual quantu of radiation that interacts in the detector. The total charge, Q, related to the energy deposited in the detector, is recorded. Measureents of individual radiation quanta (radiation spectroscopy) ust be done using detectors operated in pulse ode. The object is to easure the energy distribution of the incident radiation. Radiation spectroscopy, nae reserved to such applications, constitutes the ajor part of this course. We stress again the fact that this ode is practical and efficient in the case of low rate of interactions. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors Current Mode The sketch below shows the setup of a detector in current ode. A current easuring device (a picoaeter) is connected across the output terinals of a radiation detector. If the easuring device has a fixed response tie T then the recorded signal fro a sequence of events will be a tie-dependent current given by: I t T t T ( t) = i( t ) dt () Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 3

5 Averaging! The response tie T being long copared to the average tie between individual current pulses fro the detector, the effect is to average out any of the fluctuations in the intervals between individual radiation interactions and to record an average current that depends on the product of the interaction rate and the charge per interaction. Average Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 3 Average Current The average current is given by: E I 0 = r Q = r e () W r = event rate Q = Eq/W = charge produced for each event E = Average energy deposited per event W= average energy required to produce a unit charge pair (positive ion + e - ) e = fundaental charge = C For a steady-state irradiation of the detector, the average current can also be rewritten as the su of a constant current I 0 plus a tie-dependent fluctuating coponent σ i (t) as in the sketch. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 4 σ i (t) Figure σ i (t) is the rando tie-dependent variable that occurs as a consequence of the rando nature of the radiation events interacting within the detector Rando Coponent σ i (t) A statistical easure of this rando coponent is the variance or the ean square value defined by: t t σ I ( t) = [ I( t ) I ] dt = σi ( t) dt T 0 T t T t T The standard deviation is thus: ( t) = σ ( t) (3) σ (4) I I Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 5 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 6 4

6 σ, Rate and Tie The statistics being of Poisson type, the standard deviation is: σ = n (5) n For a nuber of events occurring at rate r in an effective easureent tie T, the standard deviation is siply: σ = n r T (6) In a hypothetical (and reasonable) approxiation where we can consider that each recorded pulse contributes the sae charge, the fractional 5 standard deviation in the easured signal due to rando fluctuations in pulse arrival tie is given by: σ I ( t) σ n = = (7) I n r T 0 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 7 B. Mean Square Voltage Mode Suppose that we send the current signal through a circuit eleent that blocks the average current I 0 and only passes the fluctuating coponent σ i (t). The figure below scheatizes the processing steps: Ion Chaber Squaring Circuit Averaging Output The results correspond to the quantity defined in Eq. 3 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 8 MSV: Signal Aplitude Q Cobining Eq. and Eq. 7 we predict the agnitude of the signal derived in this way to be: r Q σ I ( t) = (8) T This ean square signal is directly proportional to the event rate r and ore significantly proportional to the square of the charge Q produced in each event This is the MSV node, also called Capbelling ode (Capbell was the first to devise this ode!) MSV: Application The MSV ode is ost useful when aking easureents in ixed radiation environent when the charge produced by one type of radiation is uch different fro the second type. A standard application is in the detection of neutron in reactors where one can distinguish easily the fast electrons fro the salleraplitude gaa-rays events. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 9 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 0 5

7 C. Pulse Mode This ode is used when one wants to preserve inforation on the aplitude and tiing of individual events. This is the ode which will be dealt with in this chapter. The nature of the signal pulse fro a single event depends on the input characteristics of the circuit to which the detector is connected (usually a preaplifier). Typical Circuit in Pulse Mode The following figure is a schee of a circuit used in pulse ode. R represents the input resistance of the circuit and C represents the equivalent capacitance of both the detector and the easuring circuit (including cables) The potential difference (V(t)) across the load resistance is the fundaental signal voltage on which the pulse ode is based! Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors Capacitive Tie Constant The capacitive tie constant of the previous circuit is τ = RC Two extree cases are used in pulse ode. Case : Sall RC (τ << t C ) Here the current flowing through the resistance is essentially equal to the instantaneous value of the current flowing in the detector. This configuration is used when high event rates or tiing inforation are ore iportant than accurate energy inforation. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 3 σ >> t C Case : large RC (τ >> t C ) This configuration is used for accurate energy easureents. Very little current flows in R during the charge collection tie and the detector current is oentarily integrated on the capacitance. The voltage here has a long tail that is created as the capacitor discharges. If the tie between pulses is sufficiently large, the capacitance will discharge through the resistance, returning the voltage across R to zero This configuration is the ost coonly used. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 4 6

8 τ >> t C The agnitude of the axiu voltage is equal to Q (the total charge) divided by C. Instead of integrating the signal (as we should do in the case "sall RC ), we siply easure V ax of the pulse. See Next Chapters III. Pulse Height Spectra IV. Counting Curves and Plateaus Figure 3 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 5 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 6 Detectors in Radiation Spectroscopy. Response to onoenergetic source of radiation Fig. 4 shows the so-called response-function which represents the differential pulse height distribution. V. Energy Resolution Figure 4 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 8 7

9 Detectors in Radiation Spectroscopy In both cases, good resolution and poor resolution, the sae energy is deposited in the detector. This eans that that the area under both curves is the sae. Although they are both centered on the sae value, the difference coes fro the fact that the detector with poor resolution has recorded a large aount of fluctuation fro pulse to pulse. On the other extree side, if these fluctuations are ade saller, the resolution becoes better and in an ideal case we should, reach a clear spike or even an alost delta function. (There is still the broadening resulting fro the nature of the easured energy Uncertainty principle) Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 9 Detectors in Radiation Spectroscopy Fig. 5 illustrates the foral definition of energy resolution. Figure 5 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 30 R = FWHM/H 0 The energy resolution (R) is defined by: FWHM R = H 0 unitless where FWHM is the full width at half axiu and H 0 is the "centroid" of the gaussian signal. R expresses the ability of the detector to distinguish between two radiations whose energies are near each other. Roughly speaking the detector should be able to resolve two energies that are separated by ore than one value of the detector FWHM. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 3 Sources of Signal Noise There are a nuber of potential sources of fluctuation in the response of a given detector: ) Drift of the operating characteristics of the detector during the easureent. ) Rando noise within the detector and the whole instruentation syste (preaplifiers, aplifiers and the easureent electronics). 3) The statistical fluctuation (noise) which will be present whatever the reainder of the syste is. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 33 8

10 Statistical Noise This is by far the ost iportant noise to the detection signal. Statistical noise arises fro the fact that the charge Q generated within the detector is not a continuous variable but instead represents a discrete nuber of charge carriers. In an ion chaber the carriers are the ion pairs produced by the passage of the radiation, whereas in a scintillator the charge carriers are the nuber of electrons collected fro the photocathode of the photoultiplier tube. In all cases this nuber is discrete and subject to rando fluctuation fro event to event even though exactly the sae aount of energy is deposited in the detector. 34 Estiate of Statistical Noise We can consider that the foration of each charge carrier is a Poisson process, i.e. the nuber of carriers created per event is sall. If the total nuber N of charge carriers is generated on the average, the standard deviation and thus the inherent statistical fluctuation is given by N If this were the only source of fluctuation in the signal, the response function is a Gaussian, N being a sufficiently large nuber (See Fig. 5). Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 35 FWHM The Gaussian function (Average H 0 and standard deviation σ) is: ( ) ( ) A H H ( ) = 0 H H G H exp = C exp 0 σ π (0) σ σ The Full Width at Half Maxiu is by definition: C = C exp h σ h ln = h = σ ln0.5 = ln σ σ FWHM = h = ln σ =. 355σ () Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 36 Resolution (Poisson Liit) For the ajority of detectors, the average pulse height H 0 is proportional to N, i.e. H 0 = K N The standard deviation σ of the peak in the pulse height spectru is K/NK N and the FWHM is.355 K N. A liiting resolution R due only to statistical fluctuation in the nuber of charge carriers is thus given by: FWHM.355 K N.355 R = = = Poisson liit H0 K N N () Note the inverse proportionality between R and N. N should be greater than in order to achieve a resolution better than % (R =0.0) Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 37 9

11 Fano Factor Practically, easureents of R give lower energy resolution by a factor of 3 or 4. This is essentially due to the fact that the processes that give rise to the foration of each charge carrier are not independent and in this case Poisson statistics is no ore valid! The Fano factor is introduced in order to quantify the departure of (difference between) the observed statistical fluctuation in the nuber of charge carriers fro pure Poisson statistics. It is defined by: observed variance in N F = (3) Poisson Predicted variance ( = N ) Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 38 Overall FWHM For typical seiconductor diode detectors the Fano factor is less than unity, while for scintillators this factor is alost unity. In general one should add all "noises" and the overall FWHM in this case is defined by: ( FWHM ) = ( FWHM ) + ( FWHM ) + ( FWHM ) + L (4) overall statistical Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 39 noise drift VI. Detection Efficiency What is Detection Efficiency? Upon entry in the active volue, a charged particle, alpha or beta, and after traveling a sall fraction of its range, enough pairs of ion-electron are created. Their nuber is sufficient to ensure that the resulting pulse is large enough to be recorded. In this case a detector will see every alpha or beta particle that enters its active volue. The detection efficiency, under these conditions, is 00% Things are different in the case of uncharged radiation since they ust first undergo a significant interaction before being detected. The detection efficiencies in this case are often less than 00% 4 0

12 Absolute and Intrinsic efficiencies We define the absolute efficiency by: nuber of pulses recorded ε abs = nuber of radiation quanta eitted by source It is dependent on the detector nature and on the counting geoetry (essentially the distance between the source of radiation and the detector). The intrinsic efficiency defined by: nuber of pulses recorded ε int = 6 nuber of radiation quanta incident on detector no longer includes the solid angle subtended by the detector as an iplicit factor. 5 Intrinsic Efficiency The intrinsic efficiency depends on three factors: ) The detector aterial, ) Radiation energy, 3) Thickness of the detector in the direction of the incident radiation. The dependence on the distance sourcedetector is still there, since it affects the range of the radiation in the detector. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 4 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 43 Total Efficiency If we accept all pulses fro the detector, in this case one talks about total efficiency. εabs Ω = εint 4π (7) In practice, soe constraint is iposed on the output signal, using a discriinator or a gate, in order to eliinate very sall pulses fro electronic noise sources. A threshold is iposed and the total efficiency is theoretically approached if this threshold is as sall as possible. Fig. 6 shows a hypothetical differential pulse height distribution. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 45 Peak to Total ratio The peak efficiency assues that only those interactions that deposit the full-energy of the incident radiation are counted. Figure 6 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 46

13 Peak to Total ratio The nuber of events having deposited all their energy (full energy events) is siply obtained by integrating the area under the peak! Events which deposited only a part of their energy are spread to the left of the peak. A peak to total ratio relates the peak and the total efficiencies: ε peak r = ε Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter tot 4: General Properties of Radiation Detectors 47 Peak to ratio The peak to ratio efficiency is soeties tabulated separately. But it is often better to use the peak efficiency because the nuber of full energy events is not sensitive to perturbing effects such as scattering fro surrounding objects or spurious noise. Therefore, the peak efficiencies are copiled and tabulated and applied to a wide variety of laboratory conditions. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 48 VII. Dead Tie What is the "Dead Tie"? There will always be a iniu aount of tie that ust separate two events in order that they be recorded as two separate pulses. This liiting tie called the dead tie of the counting syste ay be due to one of the following reasons (or both): Processes in the detector itself and/or Associated Electronics used for pulse processing and recording. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 50

14 A. Models for Dead Tie Behavior There are two coon odels: Paralyzable response Nonparalyzable response Definitions A detector is said to be paralyzable if it is affected by the radiation even if the signal is not processed. This could happen if the detector or its electronics are slow. Here pulses that arrive while the first pulse is being processed further delay the recovery of the counting syste. The detector is nonparalyzable if it has a fixed dead tie. Here the pulses arriving while the first pulse is being processed are siply ignored. These odels represent idealized behavior, one or the other of which often adequately resebles the response of a real counting syste. Fig. 7 illustrates the fundaental assuptions of these odels. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 5 Exaple Extree Cases Figure 7 Six randoly spaced events in tie in the detector A paralyzable detector would record 3 events. A nonparalyzable one would records 4 events. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 53 Real Case A fixed tie τ is assued to follow each true event that occurs during the "live period" of the detector. The true events that occur during the dead period are lost and assued to have no effect whatsoever on the behavior of the detector. In the exaple shown, the nonparalyzable detector would record four of the six events. In the case of the paralyzable detector, assuing the sae τ, true events although not recorded by the detector extend the dead tie by another period τ following the lost event! Here only three events out of the true six ones are recorded. This is an idealized case and the two odels predict the sae first-order losses and differ only when true events rates are high. A practical case would be soething between these two extrees! Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 54 3

15 Dead Tie Nonparalyzable Model Let's consider a steady-state source of radiation. Let n = true interaction rate = recorded count rate τ = syste dead tie We need to know the dead tie in order to ake appropriate corrections to easured data in order to have the true interaction rate (n)! In the nonparalyzable case (fixed τ) the fraction of all tie that the detector is dead is given siply by the product τ. The total loss rate is here nτ The rate previous of losses relation also is equals used n to calculate thus we n, have: knowing τ and easuring. We n have = n τ n = Nonparalyzable odel (8) τ Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 55 Dead Tie Paralyzable Model In the paralyzable case, as we said earlier, dead periods are not always of fixed length. The rate is identical to the rate of occurrences of tie intervals between true events which exceed τ. The distribution of intervals between rando events occurring at an average rate n is given by: nt ( T ) dt = ne dt P (9) where P (T)dT is the probability of observing an interval whose length lies within dt about T. The probability of intervals larger than τ can be obtained by integrating this distribution between τ and, i.e. nt nτ P( > τ) = P ( τ) = ne dt = e (0) τ Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 56 Dead Tie Paralyzable Model The rate of occurrences of such intervals (tie intervals between true events which exceed τ) is thus: nτ = ne Paralyzable odel () Here we cannot solve explicitly for n. The solution is nuerical (iteration) P nt ( T ) dt = n e dt () Fig. 8 shows the observed rate vs. the true rate n for both odels. For low rates, the two odes give virtually the sae result. For high rates it is another story! Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 57 The High Rate Case High rates Low rates Figure 8 We seek values of which approach the line =n Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 58 4

16 B. Methods of Dead Tie Measureent Technique! More often the dead tie will not be known or ay vary with operating conditions and ust therefore be easured directly. The technique is to assue that one of the two odes is applicable and easure two different true rates which differ by a known ratio. In the two-source ethod, the rate fro the two sources separately is easured (values n and n ) and a third easureent with the two sources cobined is achieved (n ). Due to the fact that energy losses are not linear, the third easureent, n, is saller the su n +n. The discrepancy is used to copute the dead tie. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 60 The Two-Source Method Let n, n and n be the true counting rates (saple plus background) with sources, and and cobined respectively. Let the corresponding easured rates be, and. Also let n b and b be the true and easured background rates with both sources reoved. Then we have: n nb = ( n nb ) + ( n nb ) n + nb = n + n (3) Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 6 Nonparalyzable Model Assuing the nonparalyzable odel, we have: b + = + (4) τ b τ τ τ Solving this equation explicitly for τ we get: ( ) X Z τ = where Y X = b ( + b ) b ( b ) ( + ) Y + = Y Z = X Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 6 b (5) 5

17 No Background approxiation In the case where b 0, we have: X =, Y = + Z = ( ) and τ = ( ) [ ( )( )] = ( + ) (6) Approxiations Siplifications of Eq. 5 are based on any approxiations. One should be aware that these approxiations could introduce significant errors. See Geiger-Muller Experient for details on how to proceed. The Short-lived isotope case: See Knoll for the decaying source ethod for the calculations in the case of a short-lived isotope (pages 3-4) Study Fig. 4.9 carefully. Nonparalyzable ode: λ e t = n τ + Paralyzable ode: 0 n 0 λ t + λ t + ln = n0 τ e ln n 0 (7-a) (7-)b Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 63 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 64 C. Statistics of Dead Tie Loses D. Dead Tie Loses fro Pulsed Sources Self Reading (pages 4-5) 6

18 Pulsed Sources Until now we have assued steady state sources. In soe situations non steady state sources of radiation are encountered. For exaple: - Electron linear accelerator used to generate high-energy X-rays can be operated to produce a few icrosecond width with a repetition frequency of several kilohertz. The analysis for dead tie loses effects is different here fro the one we detailed in the previous sections. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 67 Analysis The sketch below shows a source of pulsed source We assue that the radiation intensity is constant throughout the duration T of each pulse and that the pulses occur at a constant frequency /f. Note that the tie between two consecutive pulses is /f. Depending on the relative value of the detector dead tie τ, several conditions ay apply: Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 68 τ vs. T If τ is uch saller than T, the fact that the source is pulsed has little or negligible effect and this case becoes alost siilar to the case of steady state sources If τ is less than T but not by a large factor, only a sall nuber of counts ay be registered by the detector during a single pulse. This is a coplicated situation which we will not treat here in this course. If τ is larger than T but less than the "off" tie between pulses (T /f), the following analysis is applied Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 69 Counts In the following we do not need to ipose that the radiation be constant over the pulse length T but we require that each radiation pulse be of the sae intensity. Using the sae sybols in the steady state analysis, the probability of an observed count per second pulse is given by /f. The average nuber of true events per (source) pulse is by definition equal to n/f. Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 70 7

19 τ > T The statistics here is of Poissonian type and the probability that at least one true event occurs per source pulse is given by: P ( > 0) = P( 0) n f = e x = e (8) Since the detector is live at the start of each pulse, a count will be recorded if at least one true event occurs during the pulse. Only one such count can be recorded, so the above expression is also the probability of recording a count per source pulse, i.e. n f = e n f Or = f ( e ) (9) f Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 7 τ > T We plot here this behavior. We see that that the axiu observable counting rate is just the pulse repetition frequency No dependence on the length of the dead tie or the detailed dead tie behavior of the syste (paralyzable or not) Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 7 Correction Forula As usual we are interested in predicting the true rate (n) Solving Eq. 9 for n we get: n = f ln f This condition is valid only under the conditions T < τ < (/f T). In this case, the dead tie loses are sall under the condition << f. At this liit we have: n f 0 f (30) (3) Effective Dead Tie Using the siilarity with eq. 8, the previous relation can be viewed as predicting an effective dead tie value of ½ f in this lowloss liit Last reark: Since the value is now one half the source pulsing period, it can be any ties larger than the actual physical dead tie of the detection syste! Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 73 Dr. Nidal M. Ershaidat - Nuclear Techniques - Chapter 4: General Properties of Radiation Detectors 74 8

20 Next Lecture Chapter 5 Gas-Filled Detectors Dr. Nidal M. Ershaidat 9

Chapter 2 General Properties of Radiation Detectors

Chapter 2 General Properties of Radiation Detectors Med Phys 4RA3, 4RB3/6R3 Radioisotopes and Radiation Methodology -1 Chapter General Properties of Radiation Detectors Ionizing radiation is ost coonly detected by the charge created when radiation interacts

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Figure 1: Equivalent electric (RC) circuit of a neurons membrane

Figure 1: Equivalent electric (RC) circuit of a neurons membrane Exercise: Leaky integrate and fire odel of neural spike generation This exercise investigates a siplified odel of how neurons spike in response to current inputs, one of the ost fundaental properties of

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Time-of-flight Identification of Ions in CESR and ERL

Time-of-flight Identification of Ions in CESR and ERL Tie-of-flight Identification of Ions in CESR and ERL Eric Edwards Departent of Physics, University of Alabaa, Tuscaloosa, AL, 35486 (Dated: August 8, 2008) The accuulation of ion densities in the bea pipe

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

Q ESTIMATION WITHIN A FORMATION PROGRAM q_estimation

Q ESTIMATION WITHIN A FORMATION PROGRAM q_estimation Foration Attributes Progra q_estiation Q ESTIMATION WITHIN A FOMATION POGAM q_estiation Estiating Q between stratal slices Progra q_estiation estiate seisic attenuation (1/Q) on coplex stratal slices using

More information

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2. Page 1 of 6

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2.  Page 1 of 6 TEST-7 TOPIC: ELECTRONIC DEICES ND DUL NTURE OF MTTER Q.1 Lights of two different frequencies whose photons have energies 1e and.5 e respectively, successively illuinate a etal of work function.5 e. The

More information

Data-Driven Imaging in Anisotropic Media

Data-Driven Imaging in Anisotropic Media 18 th World Conference on Non destructive Testing, 16- April 1, Durban, South Africa Data-Driven Iaging in Anisotropic Media Arno VOLKER 1 and Alan HUNTER 1 TNO Stieltjesweg 1, 6 AD, Delft, The Netherlands

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Week 4: Chap. 4 Basic Detector Principles

Week 4: Chap. 4 Basic Detector Principles Week 4: Chap. 4 Basic Detector Principles General use of Statistical Distributions Basic Detector Principles -- Current Mode -- Pulse Mode --- resolution ---- Fano Factor --- efficiency --- dead time Ion

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the 2. Electric Current The net flow of charges through a etallic wire constitutes an electric current. Do you know who carries current? Current carriers In solid - the electrons in outerost orbit carries

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

DETECTION OF NONLINEARITY IN VIBRATIONAL SYSTEMS USING THE SECOND TIME DERIVATIVE OF ABSOLUTE ACCELERATION

DETECTION OF NONLINEARITY IN VIBRATIONAL SYSTEMS USING THE SECOND TIME DERIVATIVE OF ABSOLUTE ACCELERATION DETECTION OF NONLINEARITY IN VIBRATIONAL SYSTEMS USING THE SECOND TIME DERIVATIVE OF ABSOLUTE ACCELERATION Masaki WAKUI 1 and Jun IYAMA and Tsuyoshi KOYAMA 3 ABSTRACT This paper shows a criteria to detect

More information

The Transactional Nature of Quantum Information

The Transactional Nature of Quantum Information The Transactional Nature of Quantu Inforation Subhash Kak Departent of Coputer Science Oklahoa State University Stillwater, OK 7478 ABSTRACT Inforation, in its counications sense, is a transactional property.

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

The Wilson Model of Cortical Neurons Richard B. Wells

The Wilson Model of Cortical Neurons Richard B. Wells The Wilson Model of Cortical Neurons Richard B. Wells I. Refineents on the odgkin-uxley Model The years since odgkin s and uxley s pioneering work have produced a nuber of derivative odgkin-uxley-like

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

Verifying the Authenticity of Nuclear Warheads Without Revealing Sensitive Design Information

Verifying the Authenticity of Nuclear Warheads Without Revealing Sensitive Design Information Verifying the Authenticity of Nuclear Warheads Without Revealing Sensitive Design Inforation Steve Fetter and Thoas B. Cochran Verifying the disantleent of nuclear warheads will require reconciling two

More information

IN modern society that various systems have become more

IN modern society that various systems have become more Developent of Reliability Function in -Coponent Standby Redundant Syste with Priority Based on Maxiu Entropy Principle Ryosuke Hirata, Ikuo Arizono, Ryosuke Toohiro, Satoshi Oigawa, and Yasuhiko Takeoto

More information

UNCERTAINTIES IN THE APPLICATION OF ATMOSPHERIC AND ALTITUDE CORRECTIONS AS RECOMMENDED IN IEC STANDARDS

UNCERTAINTIES IN THE APPLICATION OF ATMOSPHERIC AND ALTITUDE CORRECTIONS AS RECOMMENDED IN IEC STANDARDS Paper Published on the16th International Syposiu on High Voltage Engineering, Cape Town, South Africa, 2009 UNCERTAINTIES IN THE APPLICATION OF ATMOSPHERIC AND ALTITUDE CORRECTIONS AS RECOMMENDED IN IEC

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL (Del I, teori; 1 p.) 1. In fracture echanics, the concept of energy release rate is iportant. Fro the fundaental energy balance of a case with possible crack growth, one usually derives the equation where

More information

Optical Properties of Plasmas of High-Z Elements

Optical Properties of Plasmas of High-Z Elements Forschungszentru Karlsruhe Techni und Uwelt Wissenschaftlishe Berichte FZK Optical Properties of Plasas of High-Z Eleents V.Tolach 1, G.Miloshevsy 1, H.Würz Project Kernfusion 1 Heat and Mass Transfer

More information

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005 Hyperbolic Horn Helical Mass Spectroeter (3HMS) Jaes G Hageran Hageran Technology LLC & Pacific Environental Technologies April 5 ABSTRACT This paper describes a new type of ass filter based on the REFIMS

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Kinematics and dynamics, a computational approach

Kinematics and dynamics, a computational approach Kineatics and dynaics, a coputational approach We begin the discussion of nuerical approaches to echanics with the definition for the velocity r r ( t t) r ( t) v( t) li li or r( t t) r( t) v( t) t for

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

Counting Statistics and Error Prediction

Counting Statistics and Error Prediction Counting Statistics and Error Prediction Outline Characterization of data Statistical models Error propagation Optimization of counting experiments Energy resolution Detection efficiency Dead time Characterization

More information

Electromagnetic fields modeling of power line communication (PLC)

Electromagnetic fields modeling of power line communication (PLC) Electroagnetic fields odeling of power line counication (PLC) Wei Weiqi UROP 3 School of Electrical and Electronic Engineering Nanyang echnological University E-ail: 4794486@ntu.edu.sg Keyword: power line

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

ECE 4430 Analog Integrated Circuits and Systems

ECE 4430 Analog Integrated Circuits and Systems ECE 4430 Analog Integrated Circuits and Systes Prof. B. A. Minch s lecture notes in Cornell University on Septeber 21, 2001 1 MOS Transistor Models In this section, we shall develop large-signal odels

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 3: Linear Multistep Methods: Absolute Stability, Part II 5.7 Linear ultistep ethods: absolute stability At this point, it ay well

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

IMPROVEMENTS IN DESCRIBING WAVE OVERTOPPING PROCESSES

IMPROVEMENTS IN DESCRIBING WAVE OVERTOPPING PROCESSES IMPROVEMENS IN DESCRIBING WAVE OVEROPPING PROCESSES Steven Hughes 1, Christopher hornton 2, Jentsje van der Meer 3, and Bryon Scholl 4 his paper presents a new epirical relation for the shape factor in

More information

Mutual capacitor and its applications

Mutual capacitor and its applications Mutual capacitor and its applications Chun Li, Jason Li, Jieing Li CALSON Technologies, Toronto, Canada E-ail: calandli@yahoo.ca Published in The Journal of Engineering; Received on 27th October 2013;

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

Lower Bounds for Quantized Matrix Completion

Lower Bounds for Quantized Matrix Completion Lower Bounds for Quantized Matrix Copletion Mary Wootters and Yaniv Plan Departent of Matheatics University of Michigan Ann Arbor, MI Eail: wootters, yplan}@uich.edu Mark A. Davenport School of Elec. &

More information

INVESTIGATION OF THE INTERMEDIATE NEUTRON CAPTURE ON UNSTABLE NUCLIDES BY MEANS OF THE ACTIVATION METHOD. Abstract

INVESTIGATION OF THE INTERMEDIATE NEUTRON CAPTURE ON UNSTABLE NUCLIDES BY MEANS OF THE ACTIVATION METHOD. Abstract INVESTIGATION OF THE INTERMEDIATE NEUTRON CAPTURE ON UNSTABLE NUCLIDES BY MEANS OF THE ACTIVATION METHOD V. Skorkin 1, P. Mastinu 2 1 Institute for Nuclear Research RAS, Moscow, Russia 2 Istituto Nazionale

More information

Plasma-Wall Interaction: Sheath and Pre-sheath

Plasma-Wall Interaction: Sheath and Pre-sheath Plasa-Wall Interaction: Sheath and Pre-sheath Under ost conditions, a very thin negative sheath appears in the vicinity of walls, due to accuulation of electrons on the wall. This is in turn necessitated

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

IDAN Shock Mount Isolation Vibration Study November 1, The operation of shock and vibration isolation base plate

IDAN Shock Mount Isolation Vibration Study November 1, The operation of shock and vibration isolation base plate dr. Istvan Koller RTD USA BME Laboratory. Background In 998, Real Tie Devices USA, Inc. introduced a novel packaging concept for ebedded PC/04 odules to build Intelligent Data Acquisition Nodes. This syste,

More information

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES S. E. Ahed, R. J. Tokins and A. I. Volodin Departent of Matheatics and Statistics University of Regina Regina,

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

Chapter 2. Small-Signal Model Parameter Extraction Method

Chapter 2. Small-Signal Model Parameter Extraction Method Chapter Sall-Signal Model Paraeter Extraction Method In this chapter, we introduce a new paraeter extraction technique for sall-signal HBT odeling. Figure - shows the sall-signal equivalent circuit of

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

Optimization of ripple filter for pencil beam scanning

Optimization of ripple filter for pencil beam scanning Nuclear Science and Techniques 24 (2013) 060404 Optiization of ripple filter for pencil bea scanning YANG Zhaoxia ZHANG Manzhou LI Deing * Shanghai Institute of Applied Physics, Chinese Acadey of Sciences,

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

Effects of an Inhomogeneous Magnetic Field (E =0)

Effects of an Inhomogeneous Magnetic Field (E =0) Effects of an Inhoogeneous Magnetic Field (E =0 For soe purposes the otion of the guiding centers can be taken as a good approxiation of that of the particles. ut it ust be recognized that during the particle

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

Algebraic Approach for Performance Bound Calculus on Transportation Networks

Algebraic Approach for Performance Bound Calculus on Transportation Networks Algebraic Approach for Perforance Bound Calculus on Transportation Networks (Road Network Calculus) Nadir Farhi, Habib Haj-Sale & Jean-Patrick Lebacque Université Paris-Est, IFSTTAR, GRETTIA, F-93166 Noisy-le-Grand,

More information

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre Multiscale Entropy Analysis: A New Method to Detect Deterinis in a Tie Series A. Sarkar and P. Barat Variable Energy Cyclotron Centre /AF Bidhan Nagar, Kolkata 700064, India PACS nubers: 05.45.Tp, 89.75.-k,

More information

Structure of semiconductor detectors for characterization of ionizing radiation sources

Structure of semiconductor detectors for characterization of ionizing radiation sources Structure of seiconductor detectors for characterization of ionizing radiation sources A. Cannavò 1, L. Tòrrisi 1, L. Calcagnò 2, A. Sciutò 3 1 Dottorato di Ricerca in Fisica, Università di Messina, V.le

More information

Supplementary Figure 1. Numeric simulation results under a high level of background noise. Relative

Supplementary Figure 1. Numeric simulation results under a high level of background noise. Relative Suppleentary Inforation Suppleentary Figure. Nueric siulation results under a high level of bacground noise. Relative variance of lifetie estiators, var( ˆ ) /, noralised by the average nuber of photons,

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Current, Resistance Electric current and current density

Current, Resistance Electric current and current density General Physics Current, Resistance We will now look at the situation where charges are in otion - electrodynaics. The ajor difference between the static and dynaic cases is that E = 0 inside conductors

More information

DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS *

DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M1, pp 89-100 Printed in The Islaic Republic of Iran, 2015 Shira University DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

2.141 Modeling and Simulation of Dynamic Systems Assignment #2

2.141 Modeling and Simulation of Dynamic Systems Assignment #2 2.141 Modeling and Siulation of Dynaic Systes Assignent #2 Out: Wednesday Septeber 20, 2006 Due: Wednesday October 4, 2006 Proble 1 The sketch shows a highly siplified diagra of a dry-dock used in ship

More information

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields.

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields. s Vector Moving s and Coputer Science Departent The University of Texas at Austin October 28, 2014 s Vector Moving s Siple classical dynaics - point asses oved by forces Point asses can odel particles

More information

An Introduction to Meta-Analysis

An Introduction to Meta-Analysis An Introduction to Meta-Analysis Douglas G. Bonett University of California, Santa Cruz How to cite this work: Bonett, D.G. (2016) An Introduction to Meta-analysis. Retrieved fro http://people.ucsc.edu/~dgbonett/eta.htl

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Upper bound on false alarm rate for landmine detection and classification using syntactic pattern recognition

Upper bound on false alarm rate for landmine detection and classification using syntactic pattern recognition Upper bound on false alar rate for landine detection and classification using syntactic pattern recognition Ahed O. Nasif, Brian L. Mark, Kenneth J. Hintz, and Nathalia Peixoto Dept. of Electrical and

More information

Statistical Logic Cell Delay Analysis Using a Current-based Model

Statistical Logic Cell Delay Analysis Using a Current-based Model Statistical Logic Cell Delay Analysis Using a Current-based Model Hanif Fatei Shahin Nazarian Massoud Pedra Dept. of EE-Systes, University of Southern California, Los Angeles, CA 90089 {fatei, shahin,

More information