Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f

Size: px
Start display at page:

Download "Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f"

Transcription

1 Physics 4B Solutions to hapter 1 HW hapter 1: Questions:, 8, 1 Exercises & Probles:,, 4,, 41, 44, 48, 60, 7, 8 Question 1- (a) less; (b) greater Question 1-8 (a) 1 an 4; (b) an Question 1-1 (a) lea; (b) capacitive; (c) less Proble 1- (a) We recall the fact that the perio is the reciprocal of the frequency. t is helpful to refer also to ig The values of t when plate A will again have axiu positive charge are ultiples of the perio: n n ta = nt = = f b = n 500. μs, Hz where n = 1,,, 4,. The earliest tie is (n = 1) t = 5.00μs. (b) We note that it takes t = 1 T for the charge on the other plate to reach its axiu positive value for the first tie (copare steps a an e in ig. 1-1). This is when plate A acquires its ost negative charge. ro that tie onwar, this situation will repeat once every perio. onsequently, ( n1) ( n1) 1 1 t= T + ( n 1) T = ( n 1) T = = = ( n1)(.50μs), f 10 Hz A ( ) where n = 1,,, 4,. The earliest tie is (n = 1) t =.50μs. (c) At t = 1 4 T, the current an the agnetic fiel in the inuctor reach axiu values for the first tie (copare steps a an c in ig. 1-1). ater this will repeat every half-perio (copare steps c an g in ig. 1-1). Therefore, T ( n1) T T t = + = ( n 1) = ( n 1)( 1.5μs ), 4 4 g

2 where n = 1,,, 4,. The earliest tie is (n = 1) t = 1.5μs. Proble 1- (a) The total energy U is the su of the energies in the inuctor an capacitor: ( ) A H J. q i U = UE + UB = + = + = (b) We solve U = Q / for the axiu charge: c hc h. Q= U = J = (c) ro U = /, we fin the axiu current: c Jh U = = H = A. () f q 0 is the charge on the capacitor at tie t = 0, then q 0 = Q cos φ an φ = cos H G q Q = KJ cos 1 1 HG =± KJ or φ = the charge on the capacitor is ecreasing, for φ = 46.9 it is increasing. To check this, we calculate the erivative of q with respect to tie, evaluate for t = 0. We obtain ωq sin φ, which we wish to be positive. Since sin(+46.9 ) is positive an sin( 46.9 ) is negative, the correct value for increasing charge is φ = (e) Now we want the erivative to be negative an sin φ to be positive. Thus, we take φ = Proble 1-4 The charge q after N cycles is obtaine by substituting t = NT = πn/ω' into Eq. 1-5: ( ω φ) ω ( π ) Rt / RNT / q = Qe cos t+ = Qe cos N / ω + φ RN ( π / )/ = Qe cos πn + φ = Qe Nπ R / cos φ.

3 We note that the initial charge (setting N = 0 in the above expression) is q 0 = Q cos φ, where q 0 = 6. μ is given (with significant figures unerstoo). onsequently, we write the above result as q exp 0 ( / N q Nπ R ) =. (a) or N = 5, q5 = 6.μ exp 5π 7.Ω /1H = 5.85μ. (b) or N = 10, q10 = 6.μ exp 10π 7.Ω /1H = 5.5μ. (c) or N = 100, q100 = 6.μ exp 100π 7.Ω /1H = 1.9μ. Proble 1- (a) The circuit consists of one generator across one inuctor; therefore, =. The current aplitue is 5.0 = = = = X ω (77 ra/s)(1.7 H) A. (b) When the current is at a axiu, its erivative is zero. Thus, Eq. 0-5 gives = 0 at that instant. State another way, since (t) an i(t) have a 90 phase ifference, then (t) ust be zero when i(t) =. The fact that φ = 90 = π/ ra is use in part (c). (c) onsier Eq. 1-8 with = /. n orer to satisfy this equation, we require sin(ω t) = 1/. Now we note that the proble states that is increasing in agnitue, which (since it is alreay negative) eans that it is becoing ore negative. Thus, ifferentiating Eq. 1-8 with respect to tie (an eaning the result be negative) we ust also require cos(ω t) < 0. These conitions iply that ωt ust equal (nπ 5π/6) [n = integer]. onsequently, Eq. 1-9 yiels (for all values of n) HG K J = H G i = sin nπ 5π π ( A) KJ = A. Proble 1-41 (a) The capacitive reactance is X = = = = 7.9 Ω. ω π f π(60.0 Η z)( ) The inuctive reactance 86.7 Ω is unchange. The new ipeance is Z = R + ( X X ) = (00 Ω ) + (7.9Ω86.7 Ω ) = 06 Ω.

4 (b) The phase angle is 1 X X Ω7.9Ω φ = tan = tan = 1.7. R 00Ω (c) The current aplitue is 6.0 = = = 0.175A. Z 06Ω () We first fin the voltage aplitues across the circuit eleents: R = R= (0.175 A)(00 Ω ) = 5.0 = X = (0.175 A)(86.7 Ω ) = 15. = X = (0.175 A)(7.9 Ω ) = 6.6 Note that X > X, so that leas. The phasor iagra is rawn to scale below. Proble 1-44 (a) The capacitive reactance is X 1 1 = = = 16.6 Ω. π f π(400 Hz)( ) (b) The ipeance is Z = R + ( X X ) = R + ( π fx ) = Ω + (400 Ω = Ω (0 ) [π Hz)( H) 16.6 ] 4. (c) The current aplitue is 0 = = = 051. A. Z 4Ω

5 () Now X 1 eq. Thus, X increases as eq ecreases. (e) Now eq = /, an the new ipeance is Z = Ω + π(400 Ω = Ω< Ω (0 ) [ Hz)( H) (16.6 )] Therefore, the ipeance ecreases. (f) Since Z 1, it increases. Proble 1-48 (a) With both switches close (which effectively reoves the resistor fro the circuit), the ipeance is just equal to the (net) reactance an is equal to X net = (1 )/(0.447 A) = 6.85 Ω. With switch 1 close but switch open, we have the sae (net) reactance as just iscusse, but now the resistor is part of the circuit; using Eq we fin X net 6.85 Ω R = = = 100 Ω. tanφ tan15 (b) or the first situation escribe in the proble (both switches open) we can reverse our reasoning of part (a) an fin X net first = We observe that the effect of switch 1 iplies R tanφ = (100 Ω) tan( 0.9º) = Ω. X = X net X net first = 6.85 Ω ( Ω) = Ω. Then Eq. 1-9 leas to = 1/ωX = 0.6 μ. (c) Since X net = X X, then we fin = X /ω = 01 H.

6 Proble 1-60 The current in the circuit satisfies i(t) = sin(ω t φ), where = = = Z R + ( ω 1/ ω ) 45.0 { μ ) } ( = 1.9A 16.0 Ω ra/s 9.0 H 1/ 000 ra/s 1. an 1 X X 1 ω1/ ω φ = tan = tan R R = ra/s 9.0 H Ω ( 000 ra/s)( 16.0 Ω)( 1. μ ) 1 = tan (a) The power supplie by the generator is () () sin( ω φ) sinω P = i t t = t t g = 1.9A 45.0 sin 000 ra/s 0.44 s sin 000 ra/s 0.44 s 46.5 = 41.4 W. (b) With v () t = sin( ω tφ π /) = cos( ω t φ) c c c where = / ω, the rate at which the energy in the capacitor changes is c q q Pc = = i = iv t sin ( ω t φ = ) cos( t ) sin ( t ) ω ω φ = ω ω φ ( 1.9A) = sin ( 000 ra/s)( 0.44 s) ( 46.5 ) ( ) 000 ra/s c =17.0 W. (c) The rate at which the energy in the inuctor changes is

7 1 1 P = i = i i = sin ( ωtφ) sin ( t ) sin ( t ) t t t ω φ = ω ω φ 1 = ( 000ra/s )( 1.9A ) ( 9.0H ) sin ( 000ra/s )( 0.44s ) ( 46.5 ) = 44.1 W. () The rate at which energy is being issipate by the resistor is ( ω φ) PR = i R= Rsin t = 1.9A 16.0 Ω sin 000 ra/s 0.44 s 46.5 = 14.4 W. (e) Equal. P + P + P = 44.1W 17.0 W W = 41.5 W = P. R c g Proble 1-7 (a) ro Eq. 1-65, we have φ = tan HG = KJ which becoes tan 1 (/ ) =.7 or ra. (b) Since φ > 0, it is inuctive (X > X ). HG 1 1 ( / 150. ) tan ( / 00. ) R (c) We have R = R = 9.98, so that =.00 R = 0.0 an = /1.50 = 1.. Therefore, fro Eq. 1-60, we have KJ = + ( ) = (9.98 ) + ( ) = 1.0. R Proble 1-8 ro Eq. 1-4 we get f = 1/π = 1.84 khz.

sinb2ωtg to write this as

sinb2ωtg to write this as Chapter 31 13. (a) The charge (as a function of tie) is given by q= Qsinωt, where Q is the axiu charge on the capacitor an ω is the angular frequency of oscillation. A sine function was chosen so that

More information

c h L 75 10

c h L 75 10 hapter 31 1. (a) All the energy in the circuit resies in the capacitor when it has its axiu charge. The current is then zero. f Q is the axiu charge on the capacitor, then the total energy is c c h h U

More information

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations Oscillating urrents h.30: Induced E Fields: Faraday s aw h.30: ircuits h.3: Oscillations and A ircuits eview: Inductance If the current through a coil of wire changes, there is an induced ef proportional

More information

PES 1120 Spring 2014, Spendier Lecture 36/Page 1

PES 1120 Spring 2014, Spendier Lecture 36/Page 1 PES 0 Spring 04, Spenier ecture 36/Page Toay: chapter 3 - R circuits: Dampe Oscillation - Driven series R circuit - HW 9 ue Wenesay - FQs Wenesay ast time you stuie the circuit (no resistance) The total

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 Chapter 31: RLC Circuits PHY049: Chapter 31 1 LC Oscillations Conservation of energy Topics Dampe oscillations in RLC circuits Energy loss AC current RMS quantities Force oscillations Resistance, reactance,

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Chapter 3. Modeling with First-Order Differential Equations

Chapter 3. Modeling with First-Order Differential Equations Chapter 3 Moeling with First-Orer Differential Equations i GROWTH AND DECAY: The initial-value problem x = kx, x(t 0 ) = x 0, (1) where k is a constant of proportionality, serves as a moel for iverse phenomena

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical echanics topics-oents of inertia,

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

6. The total charge will be conserved, and the final potential difference across the capacitors will be the same. Q Q Q Q C C C + C C C

6. The total charge will be conserved, and the final potential difference across the capacitors will be the same. Q Q Q Q C C C + C C C Homework for the week of October. 4th week of classes. h. 4: 6, 5, 8, 7, 9,, 4, 44, 49, 58, 6 h. 5: 7, 8, 9 6. The total charge will be conserve, an the final potential ifference across the capacitors

More information

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown?

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown? PHY49 Spring 5 Prof. Darin Acosta Prof. Paul Avery April 4, 5 PHY49, Spring 5 Exa Solutions. Which of the following stateents is true about the LR circuit shown? It is (): () Just after the switch is closed

More information

CHAPTER 37. Answer to Checkpoint Questions

CHAPTER 37. Answer to Checkpoint Questions 1010 CHAPTER 37 DIFFRACTION CHAPTER 37 Answer to Checkpoint Questions 1. (a) expan; (b) expan. (a) secon sie axiu; (b) :5 3. (a) re; (b) violet 4. iinish 5. (a) increase; (b) sae 6. (a) left; (b) less

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Chapter 10 ACSS Power

Chapter 10 ACSS Power Objectives: Power concepts: instantaneous power, average power, reactive power, coplex power, power factor Relationships aong power concepts the power triangle Balancing power in AC circuits Condition

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page)

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page) PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 (aitions for Spring 005 on last page) Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical

More information

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator Lecture 5 Phys. 07: Waves and Light Physics Department Yarmouk University 63 Irbid Jordan &KDSWHUElectromagnetic Oscillations and Alternating urrent L ircuit In this chapter you will see how the electric

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t τ). Consequently,

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

V q.. REASONING The potential V created by a point charge q at a spot that is located at a

V q.. REASONING The potential V created by a point charge q at a spot that is located at a 8. REASONING The electric potential at a istance r from a point charge q is given by Equation 9.6 as kq / r. The total electric potential at location P ue to the four point charges is the algebraic sum

More information

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV SPH4UW Capacitors! Capacitance: The ability to store separate charge C=Q/V Charge Q on plates V = V V B = E 0 Charge 2Q on plates V = V V B =2E 0 E=E 0 B E=2E 0 B Physics 102: Lecture 4, Slie 1 Potential

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system ynamics, control an stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct These slies follow those presente in course

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1 Lecture - Self-Inductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again

More information

Maximum a Posteriori Decoding of Turbo Codes

Maximum a Posteriori Decoding of Turbo Codes Maxiu a Posteriori Decoing of Turbo Coes by Bernar Slar Introuction The process of turbo-coe ecoing starts with the foration of a posteriori probabilities (APPs) for each ata bit, which is followe by choosing

More information

Designing Information Devices and Systems II Spring 2019 A. Sahai, J. Roychowdhury, K. Pister Midterm 1: Practice

Designing Information Devices and Systems II Spring 2019 A. Sahai, J. Roychowdhury, K. Pister Midterm 1: Practice EES 16B Designing Information Devices an Systems II Spring 019 A. Sahai, J. Roychowhury, K. Pister Miterm 1: Practice 1. Speaker System Your job is to construct a speaker system that operates in the range

More information

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t = τ). Consequently,

More information

2 ODEs Integrating Factors and Homogeneous Equations

2 ODEs Integrating Factors and Homogeneous Equations 2 ODEs Integrating Factors an Homogeneous Equations We begin with a slightly ifferent type of equation: 2.1 Exact Equations These are ODEs whose general solution can be obtaine by simply integrating both

More information

Circuit Theory Chapter 7 Response of First-Order RL and R Circuits

Circuit Theory Chapter 7 Response of First-Order RL and R Circuits 140310 Circuit Theory Chapter 7 Response of First-Orer RL an R Circuits 140310 Circuit Theory Chapter 7 Response of First-Orer RL an RC Circuits Chapter Objectives Be able to etermine the natural response

More information

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics Lecture 1 Energy, Force, an ork in Electro an MagnetoQuasistatics n this lecture you will learn: Relationship between energy, force, an work in electroquasistatic an magnetoquasistatic systems ECE 303

More information

Modeling time-varying storage components in PSpice

Modeling time-varying storage components in PSpice Moeling time-varying storage components in PSpice Dalibor Biolek, Zenek Kolka, Viera Biolkova Dept. of EE, FMT, University of Defence Brno, Czech Republic Dept. of Microelectronics/Raioelectronics, FEEC,

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

of conduction electrons

of conduction electrons Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: of 9 Hoework: See website. Table of Contents: Ch. 7 Electric Current an esistance, 7. Electric

More information

14 - OSCILLATIONS Page 1

14 - OSCILLATIONS Page 1 14 - OSCILLATIONS Page 1 14.1 Perioic an Osciator otion Motion of a sste at reguar interva of tie on a efinite path about a efinite point is known as a perioic otion, e.g., unifor circuar otion of a partice.

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

UMPC mercredi 19 avril 2017

UMPC mercredi 19 avril 2017 UMPC ercrei 19 avril 017 M Mathéatiques & Applications UE ANEDP, COCV: Analyse et contrôle e systèes quantiques Contrôle es connaissances, urée heures. Sujet onné par M. Mirrahii et P. Rouchon Les ocuents

More information

ELG3311: Assignment 3

ELG3311: Assignment 3 LG33: ssignent 3 roble 6-: The Y-connected synchronous otor whose naeplate is shown in Figure 6- has a perunit synchronous reactance of 0.9 and a per-unit resistance of 0.0. (a What is the rated input

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Applications of First Order Equations

Applications of First Order Equations Applications of First Orer Equations Viscous Friction Consier a small mass that has been roppe into a thin vertical tube of viscous flui lie oil. The mass falls, ue to the force of gravity, but falls more

More information

Ising Model on an Infinite Ladder Lattice

Ising Model on an Infinite Ladder Lattice Coun. Theor. Phys. (Beijing, China 48 (2007 pp. 553 562 c International Acaeic Publishers Vol. 48, No. 3, Septeber 15, 2007 Ising Moel on an Infinite Laer Lattice GAO Xing-Ru 2,3, an YANG Zhan-Ru 1,2 1

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s ECE 54: Session 5; Page / Spring 04 ECE 54: Lecture 5 Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

ECE 524: Reducing Capacitor Switching Transients

ECE 524: Reducing Capacitor Switching Transients ECE 54: Session 6; Page / Spring 08 ECE 54: Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive reactance

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

19. LC and RLC Oscillators

19. LC and RLC Oscillators University of Rhode Island Digitaloons@URI PHY 204: Eleentary Physics II Physics ourse Materials 2015 19. L and RL Oscillators Gerhard Müller University of Rhode Island, guller@uri.edu reative oons License

More information

th Annual IEEE Power Electronics Specialists Conference Aachen, Germany, Parallel Connection of Piezoelectric Transformers

th Annual IEEE Power Electronics Specialists Conference Aachen, Germany, Parallel Connection of Piezoelectric Transformers 004 35th Annual IEEE ower Electronics Specialists Conference Aachen, Gerany, 004 arallel Connection of iezoelectric Transforers Svetlana Bronstein, Gregory Ivensky and Sa Ben-Yaakov* ower Electronics Laboratory

More information

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits I Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock

More information

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoids and Phasors Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

ALTERNATING CURRENT

ALTERNATING CURRENT ATENATING UENT Important oints:. The alternating current (A) is generally expressed as ( ) I I sin ω t + φ Where i peak value of alternating current.. emf of an alternating current source is generally

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

Study Committee B5 Colloquium 2005 September Calgary, CANADA

Study Committee B5 Colloquium 2005 September Calgary, CANADA 36 Study oittee B olloquiu Septeber 4-6 algary, ND ero Sequence urrent opensation for Distance Protection applied to Series opensated Parallel Lines TKHRO KSE* PHL G BEUMONT Toshiba nternational (Europe

More information

Kinematics of Rotations: A Summary

Kinematics of Rotations: A Summary A Kinematics of Rotations: A Summary The purpose of this appenix is to outline proofs of some results in the realm of kinematics of rotations that were invoke in the preceing chapters. Further etails are

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Chapter 31: AC Circuits

Chapter 31: AC Circuits hapter 31: A ircuits A urrents and Voltages In this chapter, we discuss the behior of circuits driven by a source of A. Recall that A means, literally, alternating current. An alternating current is a

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle.

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle. BEF 5503 BEF 5503 Chapter BASC PRNCPLES Outline 1 3 4 5 6 7 8 9 ntroduction Phasor Representation Coplex Power Triangle Power Factor Coplex Power in AC Single Phase Circuits Coplex Power in Balanced Three-Phase

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

6.003 Homework #7 Solutions

6.003 Homework #7 Solutions 6.003 Homework #7 Solutions Problems. Secon-orer systems The impulse response of a secon-orer CT system has the form h(t) = e σt cos(ω t + φ)u(t) where the parameters σ, ω, an φ are relate to the parameters

More information

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

More information

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation.

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation. ctober 15, 2017 Geoetry. Siilarity an hoothety. Theores an probles. efinition. Two figures are hoothetic with respect to a point, if for each point of one figure there is a corresponing point belonging

More information

Problem Set II Solutions

Problem Set II Solutions Physics 31600 R. Wal Classical Mechanics Autun, 2002 Proble Set II Solutions 1) Let L(q, q; t) be a Lagrangian [where, as in class, q stans for (q 1,..., q n )]. Suppose we introuce new coorinates (Q 1

More information

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008 Name:... Section:... Problem 1 (6 Points) Physics 8 Quiz 8 April 11, 8; due April 18, 8 Consider the AC circuit consisting of an AC voltage in series with a coil of self-inductance,, and a capacitor of

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE,

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE, PERIODIC SEADY SAE ANALYSIS, EFFECIVE VALUE, DISORSION FACOR, POWER OF PERIODIC CURRENS t + Effective value of current (general definition) IRMS i () t dt Root Mean Square, in Czech boo denoted I he value

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10.

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10. P Physics Multiple Choice Practice Oscillations. ass, attache to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu isplaceent fro its equilibriu position is. What

More information

Excited against the tide: A random walk with competing drifts

Excited against the tide: A random walk with competing drifts Excite against the tie: A rano walk with copeting rifts arxiv:0901.4393v1 [ath.pr] 28 Jan 2009 Mark Holes January 28, 2009 Abstract We stuy a rano walk that has a rift β to the right when locate at a previously

More information

Question 1. The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis.

Question 1. The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis. Question 1 The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis. For which pairs is there a point at which V net = 0 between

More information

Chapter 1W Basic Electromagnetic Concepts

Chapter 1W Basic Electromagnetic Concepts Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples

More information

Exercise 1: Capacitors

Exercise 1: Capacitors Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 ENGR. M. MANSOOR ASHRAF INTRODUCTION Thus far our analysis has been restricted for the most part to dc circuits: those circuits excited by constant or time-invariant

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

Announcements: Today: more AC circuits

Announcements: Today: more AC circuits Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction Self-Inductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1 Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters. Initially the electrostatic force

More information

Lecture 21 Principle of Inclusion and Exclusion

Lecture 21 Principle of Inclusion and Exclusion Lecture 21 Principle of Inclusion and Exclusion Holden Lee and Yoni Miller 5/6/11 1 Introduction and first exaples We start off with an exaple Exaple 11: At Sunnydale High School there are 28 students

More information