Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Size: px
Start display at page:

Download "Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits"

Transcription

1 ourse Updates eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits

2 Alternating urrents (hap 31) In this chapter we study circuits where the battery is replaced by a sinusoidal voltage or current source. The circuit symbol is, cos( ωt) i t) I cos( ωt) v( t) 0 An example of an circuit connected to sinusoidal source is, or ( 0 Important: I(t) is same throughout just like D case.

3 Alternating urrents Since the currents & voltages are sinusoidal, their values change over time and the averages are zero. A more useful description of sinusoidal currents and voltages are given by considering the average of the square of this quantities. We define the MS (root mean square), which is the square root of the average of, i 2 ( I cos( ω )) 2 ( t) t 0 ( ( )) i ( t) I cos ( 1 cos( 2 ) ) 0 ωt I 0 + ωt 2 I I MS i ( t) 2 I 0 2 2

4 Alternating urrents ; Phasors A convenient method to describe currents and voltages in A circuits is Phasors. Since currents and voltages in circuits with capacitors & inductors have different phase relations, we introduce a phasor diagram. For a current, We can represented this by a vector rotating about the origin. The angle of the vector is given by ωt and the magnitude of the current is its projection on the X-axis. If we plot simultaneously currents & voltages of different components we can display different phases. i I cos ωt ( ) Note this method is equivalent to imaginary numbers approach where we take the real part (x-axis projection) for the magnitude

5 Beam me up Scotty It ate my phasor!

6 Alternating urrents: esistor in A circuit A resistor connected to an A source will have the voltage, v, and the current across the resistor has the same phase. We can draw the current phasor and the voltage phasor with the same angle. and v I ( ωt) i I cos( ωt) cos (just like D case) Phasors are rotating 2 dimensional vectors

7 esistor in A circuit; I & versus ω t I(t)Icos(ωt) (t)icos(ωt) ωt a b c d e f Note: oltage is in phase with current

8 Alternating urrents: apacitor in A circuit A capacitor connected to an A current source will have the voltage lagging behind the current by 90 degrees. We can draw the current phasor and the voltage phasor behind the current by 90 degrees. i dq dt I cos Find voltage: ( ωt) q 1 I v idt ω sin MAX I 1 ω ( ωt) q I ω sin ( ωt)

9 Alternating urrents ; apacitor in A circuit We define the capacitive reactance, X, as 1 X ω MAX I 1 cap I ω ω I X ike: I We stated that voltage lags by 90 deg., so equivalent solution is I v cos ω I sinωt ω I ω ( ωt 90) [ cosωt cos90 + sinωt sin90]

10 apacitor in A circuit; I & versus ω t i(t)icos(ωt) v(t)(i/ω)sin(ωt) a b c d e f ωt Note voltage lags 90 deg. Behind current (t)(i/ω)sin(ωt) (I/ω)cos(ωt-π/2)

11 Alternating urrents: Inductor in A circuit An inductor connected to an A current source will have the voltage leading (ahead of) the current by 90 degrees. We can draw the current phasor and the voltage phasor ahead the current by 90 degrees. i I cos MAX Iω di dt ( ωt) and Iω sin( ωt) Define inductive reactance, X, as MAX ind ( ) I X Iω I ω X ω ike: I

12 Inductor in A circuit; I & versus ω t i(t)icos(ωt) v(t) - Iωsin(ωt) a b c d e f ωt Draw phasor diagram for each point Note voltage leads 90 deg. ahead current v(t)iω sin(ωt) Iω cos(ωt + π/2)

13 What is reactance? You can think of it as a frequency-dependent resistance. X 1 ω For high ω, χ ~0 - apacitor looks like a wire ( short ) For low ω, χ - apacitor looks like a break X ω For low ω, χ ~0 - Inductor looks like a wire ( short ) For high ω, χ - Inductor looks like a break (inductors resist change in current) (" X " )

14 Frequency Filtering with inductor circuit The voltage across the inductor is, ab di dt Iω sin ωt ( ) and the magnitude depends on ω. So OW frequencies are reduced or FITEED out. Frequency Filtering with capacitor circuit The voltage across the capacitor is, I ab ω sin ωt ( ) and the magnitude depends on (1/ω). So HIGH frequencies are reduced or FITEED out.

15 Question 1 An circuit is driven by an A generator as shown in the figure. For what driving frequency ω of the generator, will the current through the resistor be largest a) ω large b) ω small c) ω doesn t matter

16 Question 1 An circuit is driven by an A generator as shown in the figure. For what driving frequency ω of the generator, will the current through the resistor be largest a) ω large b) ω small c) ω doesn t matter The current amplitude is inversely proportional to the frequency of the generator.

17 Alternating urrents: circuit Figure (b) has X >X and (c) has X <X. Using Phasors, we can construct the phasor diagram for an ircuit. This is similar to 2-D vector addition. We add the phasors of the resistor, the inductor, and the capacitor. The inductor phasor is +90 and the capacitor phasor is -90 relative to the resistor phasor. Adding the three phasors vectorially, yields the voltage sum of the resistor, inductor, and capacitor, which must be the same as the voltage of the A source. Kirchoff s voltage law holds for A circuits. Also and I are in phase.

18 Phasors Problem: Given drive ε m sin(ωt), find,,, I, I, I ε Strategy: We will use Kirchhoff s voltage law that the (phasor) sum of the voltages,, and must equal drive.

19 Phasors, cont. Problem: Given drive ε m sin(ωt), find,,, I, I, I ε 1. Draw phasor along x-axis (this direction is chosen for convenience). Note that since I, this is also the direction of the current phasor i. Because of Kirchhoff s current law, I I I I (i.e., the same current flows through each element)., I

20 Phasors, cont. Problem: Given drive ε m sin(ωt), find,,, I, I, I ε 2. Next draw the phasor for. Since the inductor current I always lags draw 90 further counterclockwise. The length of the phasor is I X I ω I X I

21 Phasors, cont. Problem: Given drive ε m sin(ωt), find,,, I, I, I ε 3. The capacitor voltage always lags I draw 90 further clockwise. The length of the phasor is I X I /ω IX I I X The lengths of the phasors depend on,,, and ω. The relative orientation of the,, and phasors is always the way we have drawn it. Memorize it!

22 Phasors, cont. Problem: Given drive ε m sin(ωt), find,,, I, I, I ε The phasors for,, and are added like vectors to give the drive voltage + + ε m : From this diagram we can now easily calculate quantities of interest, like the net current I, the maximum voltage across any of the elements, and the phase between the current the drive voltage (and thus the power). ε m

23 Question 2 A series circuit is driven by emf ε. Which of the following could be an appropriate phasor diagram? ε m ε m ~ (a) (b) (c) ε m

24 Question 2 A series circuit is driven by emf ε. Which of the following could be an appropriate phasor diagram? ~ ε m ε m (a) (b) (c) ε m The phasor diagram for the driven series circuit always has the voltage across the capacitor lagging the current by 90. The vector sum of the and phasors must equal the generator emf phasor ε m.

25 Question 3 A series circuit is driven by emf ε. ~ ε m For this circuit which of the following is true? (a) The drive voltage is in phase with the current. (b)the drive voltage lags the current. (c) The drive voltage leads the current.

26 Question 3 For this circuit which of the following is true? (a) The drive voltage is in phase with the current. (b)the drive voltage lags the current. (c) The drive voltage leads the current., I ε m φ First, remember that the current phasor I is always in the same orientation as the resistor voltage phasor (since the current and voltage are always in phase). From the diagram, we see that the drive phasor ε m is lagging (clockwise) I. Just as lags I by 90, in an A driven circuit, the drive voltage will also lag I by some angle less than 90. The precise phase lag φ depends on the values of, and ω. ~

27 () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos cos - cos - cos X X Z t IZ t X X I t IX IX I t t v φ ω φ ω φ ω φ ω ω ω φ 1/ tan oltage (t) across A source Z is called impedance Also: ) cos( cos φ ω ω + t v t I i Z I Z I rms rms MAX ike: I IX IX I

28 Alternating urrents: circuit, Fig Y&F Example v ω10000rad/s 300ohm 60mH 0.5μ

29 series circuit; Summary of instantaneous urrent and voltages I IX IX () t I cos( ωt) () t I cos( ωt) i v v v v ad 1 ω () t IX cos( ωt 90) I cos( ωt 90) ( t) IX cos( ωt + 90) Iω cos( ωt + 90) 2 2 () t I ( X ) + ( X - X ) cos( ωt + φ) tanφ ω 1/ ω

30 For next time Homework #10 [due now] Homework #11 posted this afternoon, due next Wed. Quiz on Friday: Faraday s aw, Inductance and Inductors, circuits

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase) Physics-7 ecture 0 A Power esonant ircuits Phasors (-dim vectors, amplitude and phase) What is reactance? You can think of it as a frequency-dependent resistance. 1 ω For high ω, χ ~0 - apacitor looks

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

ALTERNATING CURRENT

ALTERNATING CURRENT ATENATING UENT Important oints:. The alternating current (A) is generally expressed as ( ) I I sin ω t + φ Where i peak value of alternating current.. emf of an alternating current source is generally

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors Physics 2112 Unit 20 Outline: Driven A ircuits Phase of V and I onceputally Mathematically With phasors Electricity & Magnetism ecture 20, Slide 1 Your omments it just got real this stuff is confusing

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Physics 294H. lectures will be posted frequently, mostly! every day if I can remember to do so

Physics 294H. lectures will be posted frequently, mostly! every day if I can remember to do so Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Chapter 31: AC Circuits

Chapter 31: AC Circuits hapter 31: A ircuits A urrents and Voltages In this chapter, we discuss the behior of circuits driven by a source of A. Recall that A means, literally, alternating current. An alternating current is a

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Chapter 3: Capacitors, Inductors, and Complex Impedance

Chapter 3: Capacitors, Inductors, and Complex Impedance hapter 3: apacitors, Inductors, and omplex Impedance In this chapter we introduce the concept of complex resistance, or impedance, by studying two reactive circuit elements, the capacitor and the inductor.

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 40) eminder: Exam this Wednesday 6/3 ecture 0-4 4 questions. Electricity and Magnetism nduced voltages and induction Self-nductance Circuits Energy in magnetic fields AC circuits and

More information

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016 BME/ISE 35 Bioelectronics - Test Six ourse Notes Fall 06 Alternating urrent apacitive & Inductive Reactance and omplex Impedance R & R ircuit Analyses (D Transients, Time onstants, Steady State) Electrical

More information

PHYS Fields and Waves

PHYS Fields and Waves PHYS 2421 - Fields and Waves Idea: how to deal with alternating currents Edison wanted direct current, Tesla alternating current, who won? Mathematically: Instantaneous current: Instantaneous voltage:

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

Learnabout Electronics - AC Theory

Learnabout Electronics - AC Theory Learnabout Electronics - AC Theory Facts & Formulae for AC Theory www.learnabout-electronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

Chapter 6 Objectives

Chapter 6 Objectives hapter 6 Engr8 ircuit Analysis Dr urtis Nelson hapter 6 Objectives Understand relationships between voltage, current, power, and energy in inductors and capacitors; Know that current must be continuous

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 10 6/12/2007 Electricity and Magnetism Induced voltages and induction Self-Inductance RL Circuits Energy in magnetic fields AC circuits and EM waves Resistors, capacitors

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

L L, R, C. Kirchhoff s rules applied to AC circuits. C Examples: Resonant circuits: series and parallel LRC. Filters: narrowband,

L L, R, C. Kirchhoff s rules applied to AC circuits. C Examples: Resonant circuits: series and parallel LRC. Filters: narrowband, Today in Physics 1: A circuits Solving circuit problems one frequency at a time. omplex impedance of,,. Kirchhoff s rules applied to A circuits. it V in Examples: esonant circuits: i series and parallel.

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoids and Phasors Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

Physics 9 Friday, April 18, 2014

Physics 9 Friday, April 18, 2014 Physics 9 Friday, April 18, 2014 Turn in HW12. I ll put HW13 online tomorrow. For Monday: read all of Ch33 (optics) For Wednesday: skim Ch34 (wave optics) I ll hand out your take-home practice final exam

More information

Announcements: Today: more AC circuits

Announcements: Today: more AC circuits Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

Course Updates.

Course Updates. Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Notes for today: 1) Chapter 26 this week (DC, C circuits) 2) Assignment 6 (Mastering Physics) online and separate, written

More information

Electricity & Magnetism Lecture 20

Electricity & Magnetism Lecture 20 Electricity & Magnetism Lecture 20 Today s Concept: AC Circuits Maximum currents & voltages Phasors: A Simple Tool Electricity & Magne?sm Lecture 20, Slide 1 Other videos: Prof. W. Lewin, MIT Open Courseware

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

20. Alternating Currents

20. Alternating Currents University of hode sland DigitalCommons@U PHY 204: Elementary Physics Physics Course Materials 2015 20. lternating Currents Gerhard Müller University of hode sland, gmuller@uri.edu Creative Commons License

More information

AC Source and RLC Circuits

AC Source and RLC Circuits X X L C = 2π fl = 1/2π fc 2 AC Source and RLC Circuits ( ) 2 Inductive reactance Capacitive reactance Z = R + X X Total impedance L C εmax Imax = Z XL XC tanφ = R Maximum current Phase angle PHY2054: Chapter

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

CLUSTER LEVEL WORK SHOP

CLUSTER LEVEL WORK SHOP CLUSTER LEVEL WORK SHOP SUBJECT PHYSICS QUESTION BANK (ALTERNATING CURRENT ) DATE: 0/08/06 What is the phase difference between the voltage across the inductance and capacitor in series AC circuit? Ans.

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

8.1 Alternating Voltage and Alternating Current ( A. C. )

8.1 Alternating Voltage and Alternating Current ( A. C. ) 8 - ALTENATING UENT Page 8. Alternating Voltage and Alternating urrent ( A.. ) The following figure shows N turns of a coil of conducting wire PQS rotating with a uniform angular speed ω with respect to

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations Oscillating urrents h.30: Induced E Fields: Faraday s aw h.30: ircuits h.3: Oscillations and A ircuits eview: Inductance If the current through a coil of wire changes, there is an induced ef proportional

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by

Exam 3 Solutions. The induced EMF (magnitude) is given by Faraday s Law d dt dt The current is given by PHY049 Spring 008 Prof. Darin Acosta Prof. Selman Hershfield April 9, 008. A metal rod is forced to move with constant velocity of 60 cm/s [or 90 cm/s] along two parallel metal rails, which are connected

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Almost all electrical systems, whether signal or power, operate with alternating currents and voltages. We have seen that when any circuit is disturbed (switched on or

More information

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1 Lecture - Self-Inductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Mauro Forti October 27, 2018 Constitutive Relations in the Frequency Domain Consider a network with independent voltage and current sources at the same angular frequency

More information

Physics 1402: Lecture 10 Today s Agenda

Physics 1402: Lecture 10 Today s Agenda Physics 1402: Lecture 10 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Physics 115. AC circuits Reactances Phase relationships Evaluation. General Physics II. Session 35. R. J. Wilkes

Physics 115. AC circuits Reactances Phase relationships Evaluation. General Physics II. Session 35. R. J. Wilkes Session 35 Physics 115 General Physics II AC circuits Reactances Phase relationships Evaluation R. J. Wilkes Email: phy115a@u.washington.edu 06/05/14 1 Lecture Schedule Today 2 Announcements Please pick

More information

Phasors: Impedance and Circuit Anlysis. Phasors

Phasors: Impedance and Circuit Anlysis. Phasors Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information

Physics 11b Lecture #15

Physics 11b Lecture #15 Physics 11b ecture #15 and ircuits A ircuits S&J hapter 3 & 33 Administravia Midterm # is Thursday If you can t take midterm, you MUST let us (me, arol and Shaun) know in writing before Wednesday noon

More information

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set University of the Philippines College of Science PHYSICS 72 Summer 2012-2013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

More information

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015 BME/ISE 35 Bioelectronics - Test Five Review Notes Fall 205 Test Five Topics: RMS Resistive Power oss (I 2 R) A Reactance, Impedance, Power Factor R ircuit Analysis alculate Series R Impedance alculate

More information

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

Chapter 9 Objectives

Chapter 9 Objectives Chapter 9 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 9 Objectives Understand the concept of a phasor; Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor

More information

Plumber s LCR Analogy

Plumber s LCR Analogy Plumber s LCR Analogy Valve V 1 V 2 P 1 P 2 The plumber s analogy of an LC circuit is a rubber diaphragm that has been stretched by pressure on the top (P 1 ) side. When the valve starts the flow, the

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

ELEC ELE TRO TR MAGNETIC INDUCTION

ELEC ELE TRO TR MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION Faraday Henry 1791-1867 1797 1878 Laws:- Faraday s Laws :- 1) When ever there is a change in magnetic flux linked with a coil, a current is generated in the coil. The current

More information