of conduction electrons

Size: px
Start display at page:

Download "of conduction electrons"

Transcription

1 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: of 9 Hoework: See website. Table of Contents: Ch. 7 Electric Current an esistance, 7. Electric Current I an current ensity j, 7.a eview of incopressible liqui flow as exaple for flux of an electric fiel, 7.b Electric current an electric current ensity, 3 7.c Density q of conuction electrons 7. Electric esistance in Conucting Material, conuctivity, resistivity; 4 7.a Calculating for varying cross-sections, Siple classical oel for electrical conuction, esistance an Teperature, teperature coefficient α; 6 7.4a Gauge easures for electric wire, Electrical Power, 8

2 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: Ch. 7 Electric Current an esistance. 7. Electric Current I an current ensity j, of 9 +qv E V E L Δx We consier a conucting wire with length L an cross-section in a constant electric fiel E, irecte parallel to the cyliner s axis. Free positive charges flow to the right. Q I flow rate of charge =current (7.) Coulob I pere; tie We assign the positive irection of current to the irection of flow of positive charges, i.e. the actual irection of flow (rift velocity v ) of electrons on a wire is opposite to the conventional irection of current. The electric fiel is irecte fro + positive polarity to negative polarity. (Pitfalls: istinguish carefully between v for velocity, V for volue an ΔV for potential ifference; also there are two ensities: the conventional ass ensity ρ or ρ ; charge ensity ρ q ; an we use another sybol ρ later, the resistivity ρ Ω.) 7.a eview of incopressible liqui flow as exaple for flux of an electric fiel: We iscusse this previously at the introuction of the concept of flux through a surface which le us to the Gaussian law for electrostatics: ive (chapter 4, chapter ). Let us review again what we learne about the rate of water flow out of a cylinrical pipe: M The aount of liqui ass flowing out of the pipe per secon is given by v If we ha a nuber N of ientical particles, each with ass, flowing through the pipe, N we coul write: nv, with nv (nuber-ensity) an efine the V ass current ensity j=nv v. The ass current woul then be equal to the scalar prouct M of current ensity an cross-sectional surface: j M (7.) Current : I For a steay state flow of an incopressible liqui, i.e. with constant ass ensity, we foun that the aount of liqui coing in is equal to the aount of liqui coing out. This was referre to as the continuity equation. We can see that the continuity equation is a special case of the law that says that the ivergence of the current ensity is equal to, which eans that the total flux of the current ensity through a close surface is. This result presues that there are no liqui sources or sinks for liqui insie of the volue.

3 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: iv j j j j Gaussian surface (7.3) 7.b Electric current an electric current ensity: In coplete analogy with this we get for the electric current I of positive electric charges q through a conucting wire: (7.4) Q I x v n qv q q V j Coulob C [ I] apere s s [ j] 3 of 9 (7.5) x nuber of charges I j n eleentary charge cross-section= v Vq q volue q V I n qv where v is the rift velocity of the charges ue to the electric fiel E. V q is the value of the eleentary charge =.6 9 Coulob Conversely, we can efine the agnitue of the current ensity j as the current ivie by the cross-section : I current ensity=j= or in vector for (7.6) I= j j =flux of the charge-ensity vector through the surface (7.7) j nvqv qv 7.c Density q of conuction electrons: The ensity of conucting electrons in copper wire is obtaine by assuing that there is one conucting electron per copper ato. The olar ass of copper is 63.5 g/ol. The ass ensity of copper is 8.95 g/c 3. g (7.8) c ol atos.4.4 N 3 n 3 V g 63.5 c ol 8 3 nuber ensity of conucting electrons in Cu: nv 8.5 electrons per (7.9) 8 9 C conucting charge ensity in copper q nq V Note: Get clear on the various istinctions between current I, an current ensity j, as well as charge ensity, ass ensity, ass current, an ass current ensity.

4 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: 4 of 9 7. Electric esistance in Conucting Material, conuctivity, resistivity: The Geran physicist Georg Sion Oh ( ) establishe that for conventional etals there is a irect proportionality between the current ensity an the applie electric fiel (Note that this is not always the case). Materials in which the current ensity is irectly proportional to the applie electric fiel are calle Ohic: (7.) j E conuctivity E; Oh's law E j j; with resistivity E V V Oh eter j Pay attention to whether the Greek sybol (siga) refers to the conuctivity or to Q the surface ensity of charges. esistivity is the inverse of conuctivity, thus Oh s law can also be written as: (7.) E j Fro the concept of conuctivity we get to the concept of electric resistance in a wire by applying Oh s law above to a segent of wire with length L to which a voltage ΔV is applie. cross the length of a wire with length L we have V E L (ΔV epens on the initial an final point only, not on the path or shape of the wire) We write for the agnitues: j E (7.) Solving this for ΔV (7.3) j I L L L V E L L I I L L V I I I resistance current This is the ost coon for of Oh s law, which states that the voltage ifference easure across a wire is equal to the electrical resistance of the wire ties the current. The unit of resistance is calle Oh for which we use the Greek capital letter for

5 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: (7.4) V I resistancecurrent Volts V aperes 5 of 9 E j; j nqv; I j ; V I (7.5) resistivity in Oh-eters L = in Ohs or The resistance of a wire increases with the length an ecreases with the cross-section. The resistivity of copper is.7e-8 Ω. Both, resistivity an conuctivity are aterial constants, which can be looke up in tables. They are usually given at a teperature of C. They both vary with teperature: resistivity an resistance increase with teperature in ost etals. 7.a Calculating for varying cross-sections: Soeties we have to consier a flow of current through a non-constant cross-section, like, for exaple in a cyliner or sphere. I such cases we nee to consier the current flow through infinitesial sections an integrate: Exaple: Fin the raial resistance between the walls of a coaxial wire of length with inner raius an outer raius 4. The walls consist of plastic aterial with resistivity.e3 Ω. (7.6) b r r b ln ln. rl L r L a L a Fin the raial resistance between the interior an exterior walls of a spherical shell: b r r 4 (7.7) 8. r r r a b a 7.3 Siple classical oel for electrical conuction: Conucting electrons rift through a etal ue to the electric force qe. This eans they are being accelerate by the electric fiel. They o not ove in a straight line but bounce off of positively charge areas. Due to this effect electrons reach a final velocity (like terinal velocity), or average rift velocity v which we can estiate in the following way: Between two scattering points the electrons are being accelerate ue to the applie exterior qe electric fiel. F qe x a; a

6 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: v v a; where is the average tie interval between iniviual scatterings, the corresponing length woul be the ean free path length for conucting electrons. l v average v Note: Do not ix this free path length up with the free path length of rano theroynaic otion. They are siilar but not the sae. v qe at We insert this rift velocity into our forula for the current ensity j; (7.7): nv q E (7.8) j E nv qv 6 of 9 (7.9) nq V an nv q ccoring to this classical oel the conuctivity an resistivity o not epen on the current, (or voltage or electric fiel.) We can calculate the tie between collisions for copper which has a resistivity of.7e-8 Ω an n=8.49e8 electrons/ 3 (See (7.9)). (7.) nvq nvq It turns out to be about.5e-4 s. The rift velocity, on the other han oes epen on the current. I (7.) I j nv qv v n q This eans that the rift velocity v an the istance between scatterings increases with increasing currents, whereas the tie between scatterings reains the sae. For a typical current in a gauge copper wire the cross sectional area is See table (7.7). (Note that the saller the gauge nuber, the larger the iaeter; househol wire is typically an 4 gauge; the iaeter for gauge wire is.53 at egree C, 4 gauge is.68, gauge is.588 ). This results in a rift velocity of. /s. 7.4 esistance an Teperature. Over a liite teperature range the relative change of resistivity is proportional to teperature: T T ; an T are usually taken at Celsius (7.) TT T; ; e Celsius T V

7 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: α is calle the teperature coefficient of resistivity. (For Pt: α=3.9-3 /Cº) s the resistance in a circuit is proportional to the resistivity, we get the sae forula for. TT (7.3) T; e T Evaluating this between an leas to the expression for the teperature epenence of resistance in a coon etal. T T ln T T (7.4) T T e ; e x ( T T ) TT x 7 of 9 (7.5) T T; Celsius 7.4a Gauge easures for electric wire, The ost accurate theroeters are base on the changing resistivity an resistance of a particular kin of wire (often platinu). We use such a theroeter in the echanical equivalent of heat experient, where we eterine the relationship between an T to be of a logarithic nature, in its best approxiation. Here are soe constants: 8 3 Cu :.7 ; 3.9 / C (7.6) 8 3 Pt : ; 3.9 / C 6 3 Nichroe :.5 ;.4 / C Note that Nichroe wire has about ties the resistivity of copper but only / of the teperature coefficient. This leas to the coon use of Nichroe wire in heating eleents like toasters, irons, an electric heaters. The thickness of electric wire is rate by gauge: the higher the gauge nuber, the saller the iaeter of the wire. #.9".5886 (7.7) #.88".53 #6.58".93 #.3".88 #.54".6456 Fin the resistance per eter of #6 Nichroe wire: 6.5 (7.8).5 L /4 If a voltage ifference of Volt is aintaine across of such wire, fin the current in the wire: V V (7.9) I The resistance of a siilar copper wire woul be about ties saller. potential ifference of only about V woul result in the sae current in the wire. s we will see in the next section,

8 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: power elivere to an electric circuit is equal to P=I, an in a wire this power is turne into heat, which, in turn will increase the resistance. 8 of 9 Soe aterials, calle superconuctors, lose suenly all resistance at a low critical teperature T c. The phenoenon was first iscovere in ercury, which has a critical teperature of 4.5ºK. Soe of the highest critical teperatures can be foun in ceraics with T c up to 34ºK. 7.6 Electrical Power. When current travels through a resistor, heat is being generate an electric potential energy lost, (Oh loss.) The power supply provies the sae potential ifference across the bounaries of a resisting aterial; ΔV is therefore constant. U Q QV V IV I I I (7.3) V U V s I= this is also equal to Power Power elivere to a resistive wire or appliance: (7.3) Power V I Exaple: househol appliance is rate accoring to the axiu power it consues. s appliances typically run at Volts, we can calculate the axiu current rawn by the appliance. Watt light bulb, for exaple, raws a current of Watts/Volts =.9 ps. Every house is subivie into areas of an 5 ps, each protecte by a circuit breaker. Whenever too any appliances are running at the sae tie an the total current rawn excees or 5 ps, the circuit breaker gets activate an stops the flow of electricity. If an unprotecte circuit gets overloae, the wiring is in anger of overheating an eventually causing a fire. (Even though househols are using ac current, the sae concepts of current an power apply.) Proble: coil of Nichroe wire is 5. long. The wire has a iaeter of.4 at ºC. If it carries a current of.5, calculate the electric fiel in the wire an the power elivere to it. If the teperature is increase to 34ºC an the voltage across the wire reains constant, what is the power elivere at the higher teperature / C;.5? (7.3) l V El I; ; 7 V I ; 99 ; E 5.97 V / 4 l l 5 (7.33) P I IV 74.6W with V I 5V If the teperature is increase the resistance increases. To aintain the sae voltage rop, the current ust ecrease.

9 Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: e e ( TT ).4 3 ' (not 337 which you get with +x) (7.34) (7.35) The power elivere is therefore: 5V I'.444 ' P' ' I ' 66.W (7.36) 9 of 9

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Current, Resistance Electric current and current density

Current, Resistance Electric current and current density General Physics Current, Resistance We will now look at the situation where charges are in otion - electrodynaics. The ajor difference between the static and dynaic cases is that E = 0 inside conductors

More information

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1 Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters. Initially the electrostatic force

More information

CURRENT ELECTRICITY Q.1

CURRENT ELECTRICITY Q.1 CUENT EECTCTY Q. Define Electric current an its unit.. Electric Current t can be efine as the time rate of flow of charge in a conuctor is calle Electric Current. The amount of flow of charge Q per unit

More information

From last time. Attention. Capacitance. Spherical capacitor. Energy stored in capacitors. How do we charge a capacitor? Today:

From last time. Attention. Capacitance. Spherical capacitor. Energy stored in capacitors. How do we charge a capacitor? Today: Attention From last time More on electric potential an connection to Efiel How to calculate Efiel from V Capacitors an Capacitance switch off computers in the room an be prepare to a very lou noise Toay:

More information

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical

CAPACITANCE: CHAPTER 24. ELECTROSTATIC ENERGY and CAPACITANCE. Capacitance and capacitors Storage of electrical energy. + Example: A charged spherical CAPACITANCE: CHAPTER 24 ELECTROSTATIC ENERGY an CAPACITANCE Capacitance an capacitors Storage of electrical energy Energy ensity of an electric fiel Combinations of capacitors In parallel In series Dielectrics

More information

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F Phys10 Secon Major-1 Zero Version Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters.

More information

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the 2. Electric Current The net flow of charges through a etallic wire constitutes an electric current. Do you know who carries current? Current carriers In solid - the electrons in outerost orbit carries

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

PH 132 Exam 1 Spring Student Name. Student Number. Lab/Recitation Section Number (11,,36)

PH 132 Exam 1 Spring Student Name. Student Number. Lab/Recitation Section Number (11,,36) PH 13 Exam 1 Spring 010 Stuent Name Stuent Number ab/ecitation Section Number (11,,36) Instructions: 1. Fill out all of the information requeste above. Write your name on each page.. Clearly inicate your

More information

2013 Feb 13 Exam 1 Physics 106. Physical Constants:

2013 Feb 13 Exam 1 Physics 106. Physical Constants: 203 Feb 3 xam Physics 06 Physical onstants: proton charge = e =.60 0 9 proton mass = m p =.67 0 27 kg electron mass = m e = 9. 0 3 kg oulomb constant = k = 9 0 9 N m 2 / 2 permittivity = ǫ 0 = 8.85 0 2

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation.

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation. ctober 15, 2017 Geoetry. Siilarity an hoothety. Theores an probles. efinition. Two figures are hoothetic with respect to a point, if for each point of one figure there is a corresponing point belonging

More information

Geometry. Selected problems on similar triangles (from last homework).

Geometry. Selected problems on similar triangles (from last homework). October 25, 2015 Geoetry. Selecte probles on siilar triangles (fro last hoework). Proble 1(5). Prove that altitues of any triangle are the bisectors in another triangle, whose vertices are the feet of

More information

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2?

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2? Secon Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of.77 µf. What is C? C 4.0 µf.0 µf A) 7 µf B) µf C) 4 µf D) 3 µf E) 6 µf Q. When the potential ifference across

More information

inflow outflow Part I. Regular tasks for MAE598/494 Task 1

inflow outflow Part I. Regular tasks for MAE598/494 Task 1 MAE 494/598, Fall 2016 Project #1 (Regular tasks = 20 points) Har copy of report is ue at the start of class on the ue ate. The rules on collaboration will be release separately. Please always follow the

More information

PhyzExamples: Advanced Electrostatics

PhyzExamples: Advanced Electrostatics PyzExaples: Avance Electrostatics Pysical Quantities Sybols Units Brief Definitions Carge or Q coulob [KOO lo]: C A caracteristic of certain funaental particles. Eleentary Carge e 1.6 10 19 C Te uantity

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical echanics topics-oents of inertia,

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

Geometry. Selected problems on similar triangles (from last homework).

Geometry. Selected problems on similar triangles (from last homework). October 30, 2016 Geoetry. Selecte probles on siilar triangles (fro last hoework). Proble 1(5). Prove that altitues of any triangle are the bisectors in another triangle, whose vertices are the feet of

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Excited against the tide: A random walk with competing drifts

Excited against the tide: A random walk with competing drifts Excite against the tie: A rano walk with copeting rifts arxiv:0901.4393v1 [ath.pr] 28 Jan 2009 Mark Holes January 28, 2009 Abstract We stuy a rano walk that has a rift β to the right when locate at a previously

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10.

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10. P Physics Multiple Choice Practice Oscillations. ass, attache to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu isplaceent fro its equilibriu position is. What

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

Angular movement. Torque. W = M θ [Nm] Pm = M ω [W] motor shaft. motor shaft

Angular movement. Torque. W = M θ [Nm] Pm = M ω [W] motor shaft. motor shaft Meoranu Linear oeent = ass [kg] = linear isplaceent [] = linear spee [/s] a = linear acceleration [/s 2 ] r = raius [] p = pitch [] η = transission efficiency [ ] F = force [N] Force F = a [N] Angular

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

c h L 75 10

c h L 75 10 hapter 31 1. (a) All the energy in the circuit resies in the capacitor when it has its axiu charge. The current is then zero. f Q is the axiu charge on the capacitor, then the total energy is c c h h U

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page)

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page) PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 (aitions for Spring 005 on last page) Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical

More information

Physics 2212 GJ Quiz #4 Solutions Fall 2015

Physics 2212 GJ Quiz #4 Solutions Fall 2015 Physics 2212 GJ Quiz #4 Solutions Fall 215 I. (17 points) The magnetic fiel at point P ue to a current through the wire is 5. µt into the page. The curve portion of the wire is a semicircle of raius 2.

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

Sample Mean Deviation (d) Chart Under the Assumption of Moderateness and its Performance Analysis Under Normality Against Moderateness

Sample Mean Deviation (d) Chart Under the Assumption of Moderateness and its Performance Analysis Under Normality Against Moderateness Volue-7, Issue-4, July-August 217 International Journal of Engineering a Manageent Research Page Nuber: 292-296 Saple Mean Deviation () Chart Uer the Assuption of Moerateness a its Perforance Analysis

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) PYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) MOLE CONCEPT, STOICIOMETRIC CALCULATIONS Learner Note: The ole concept is carried forward to calculations in the acid and base section, as well as in

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

SPH4U. Conservation of Energy. Review: Springs. More Spring Review. 1-D Variable Force Example: Spring. Page 1. For a spring we recall that F x = -kx.

SPH4U. Conservation of Energy. Review: Springs. More Spring Review. 1-D Variable Force Example: Spring. Page 1. For a spring we recall that F x = -kx. -D Variable Force Exaple: Spring SPH4U Conseration of Energ For a spring we recall that F x = -kx. F(x) x x x relaxe position -kx F = - k x the ass F = - k x Reiew: Springs Hooke s Law: The force exerte

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Moving Charges And Magnetism

Moving Charges And Magnetism AIND SINGH ACADEMY Moving Charges An Magnetism Solution of NCET Exercise Q -.: A circular coil of wire consisting of turns, each of raius 8. cm carries a current of. A. What is the magnitue of the magnetic

More information

Chapter 17 ELECTRIC POTENTIAL

Chapter 17 ELECTRIC POTENTIAL Chapter 17 ELECTRIC POTENTIAL Conceptual Questions 1. (a) The electric fiel oes positive work on q as it moves closer to +Q. (b) The potential increases as q moves closer to +Q. (c) The potential energy

More information

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE

CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE CHAPTER: 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE. Define electric potential at a point. *Electric potential at a point is efine as the work one to bring a unit positive charge from infinity to that point.

More information

Physics 207 Lecture 24

Physics 207 Lecture 24 Physics 7 Lecture 4 Physics 7, Lecture 4, Nov. 7 gena: Mi-Ter 3 Review Elastic Properties of Matter, Mouli Pressure, Wor, rchiees Principle, Flui flow, Bernoulli Oscillatory otion, Linear oscillator, Penulus

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Electric Potential & Potential Energy

Electric Potential & Potential Energy Electric Potential & Potential Energy I) ELECTRIC POTENTIAL ENERGY of a POINT CHARGE Okay, remember from your Mechanics: Potential Energy (U) is gaine when you o work against a fiel (like lifting a weight,

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

qq 1 1 q (a) -q (b) -2q (c)

qq 1 1 q (a) -q (b) -2q (c) 1... Multiple Choice uestions with One Correct Choice A hollow metal sphere of raius 5 cm is charge such that the potential on its surface to 1 V. The potential at the centre of the sphere is (a) zero

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Capacitors Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 12 Capacitors are evices that can store electrical energy Capacitors are use in many every-ay applications Heart efibrillators

More information

Chapter 5 Sludge treatment

Chapter 5 Sludge treatment Chapter 5 Sluge treatent 5.1 Sluge efinition: Sluge is ae of soli aterials separate fro the water line uring wastewater treatent. In aition to solis, sluge contains a high percent of water. 5.2 Sluge sources:

More information

EXAM 3 REVIEW: hardest problems

EXAM 3 REVIEW: hardest problems PHYS 17: oern echanics Spring 011 xa 3 results: ultiple choice: 4.5/70 = 60.7% Hanwritten: XXX FINAL XA: 1. Coprehensie. About 0-5 ultiple choice questions only. If you hae Final xa conflict: 1. Notify

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

Chapter 4: Hypothesis of Diffusion-Limited Growth

Chapter 4: Hypothesis of Diffusion-Limited Growth Suary This section derives a useful equation to predict quantu dot size evolution under typical organoetallic synthesis conditions that are used to achieve narrow size distributions. Assuing diffusion-controlled

More information

Classical systems in equilibrium

Classical systems in equilibrium 35 Classical systes in equilibriu Ideal gas Distinguishable particles Here we assue that every particle can be labeled by an index i... and distinguished fro any other particle by its label if not by any

More information

Shahlar Gachay Askerov. Baku State University, Baku, Azerbaijan

Shahlar Gachay Askerov. Baku State University, Baku, Azerbaijan Econoics Worl, Nov.-Dec. 2018, Vol. 6, No. 6, 450-456 oi: 10.17265/2328-7144/2018.06.004 D DAVID PUBLISHING Econophysical Applications for Econoic Progress: Monopoly an Copetition Cases Shahlar Gachay

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

Ising Model on an Infinite Ladder Lattice

Ising Model on an Infinite Ladder Lattice Coun. Theor. Phys. (Beijing, China 48 (2007 pp. 553 562 c International Acaeic Publishers Vol. 48, No. 3, Septeber 15, 2007 Ising Moel on an Infinite Laer Lattice GAO Xing-Ru 2,3, an YANG Zhan-Ru 1,2 1

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

What are primes in graphs and how many of them have a given length?

What are primes in graphs and how many of them have a given length? What are pries in graphs an how any of the have a given length? Aurey Terras Math. Club Oct. 30, 2008 A graph is a bunch of vertices connecte by eges. The siplest exaple for the talk is the tetraheron

More information

Faraday's Law Warm Up

Faraday's Law Warm Up Faraday's Law-1 Faraday's Law War Up 1. Field lines of a peranent agnet For each peranent agnet in the diagra below draw several agnetic field lines (or a agnetic vector field if you prefer) corresponding

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

( ) Energy storage in CAPACITORs. q C

( ) Energy storage in CAPACITORs. q C Energy storage in CAPACITORs Charge capacitor by transferring bits of charge q at a time from bottom to top plate. Can use a battery to o this. Battery oes work which increase potential energy of capacitor.

More information

Influence of Surface Roughness on Sliding Characteristics of Rubber Seals

Influence of Surface Roughness on Sliding Characteristics of Rubber Seals TECHNICAL REPORT Influence of Surface Roughness on Sliing Characteristics of Seals K. YAMAMOTO D. OZAKI T. NAKAGAWA The influence of surface roughness on frictional vibration of a bearing seal has been

More information

ELEC NCERT. 1. Which cell will measure standard electrode potential of copper electrode? (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq.

ELEC NCERT. 1. Which cell will measure standard electrode potential of copper electrode? (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq. I. Multiple Choice Questions (Type-I) 1. Which cell will easure standard electrode potential of copper electrode? Pt (s) H 2 (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq.,1m) Cu Pt(s) H 2 (g, 1 bar) H + (aq.,1

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

16 - MAGNETIC EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions )

16 - MAGNETIC EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions ) 16 - MAGNETIC EFFECTS OF CURRENTS Page 1 1 ) One conducting U tue can slide inside another as shown in the figure, aintaining electrical contacts etween the tues. The agnetic field B is perpendicular to

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

General Properties of Radiation Detectors Supplements

General Properties of Radiation Detectors Supplements Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat Overview Phys. 649: Nuclear Techniques Physics Departent

More information

CHAPTER 37. Answer to Checkpoint Questions

CHAPTER 37. Answer to Checkpoint Questions 1010 CHAPTER 37 DIFFRACTION CHAPTER 37 Answer to Checkpoint Questions 1. (a) expan; (b) expan. (a) secon sie axiu; (b) :5 3. (a) re; (b) violet 4. iinish 5. (a) increase; (b) sae 6. (a) left; (b) less

More information

X-Ray Notes, Part II

X-Ray Notes, Part II Noll X-ra Notes : Page X-Ra Notes Part Source ssues The Parallel X-ra aging Sste Earlier we consiere a parallel ra sste with an incient intensit that passes through a 3D object having a istribution of

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

PARALLEL-PLATE CAPACITATOR

PARALLEL-PLATE CAPACITATOR Physics Department Electric an Magnetism Laboratory PARALLEL-PLATE CAPACITATOR 1. Goal. The goal of this practice is the stuy of the electric fiel an electric potential insie a parallelplate capacitor.

More information

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 017 Saskatchewan High School Physics Scholarship Copetition Wednesday May 10, 017 Tie allowed: 90 inutes This copetition is based

More information

Physics Chapter 6. Momentum and Its Conservation

Physics Chapter 6. Momentum and Its Conservation Physics Chapter 6 Moentu and Its Conservation Linear Moentu The velocity and ass of an object deterine what is needed to change its otion. Linear Moentu (ρ) is the product of ass and velocity ρ =v Unit

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Maximum a Posteriori Decoding of Turbo Codes

Maximum a Posteriori Decoding of Turbo Codes Maxiu a Posteriori Decoing of Turbo Coes by Bernar Slar Introuction The process of turbo-coe ecoing starts with the foration of a posteriori probabilities (APPs) for each ata bit, which is followe by choosing

More information

2. PLASTIC DEFORMATION

2. PLASTIC DEFORMATION . PLASTIC DEFORMATION During the eforation of a soli the easurable acroscopic agnitues are: the force F applie to the saple an linear iensions of the saple. The cobination of these agnitues allows us to

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

(3-3) = (Gauss s law) (3-6)

(3-3) = (Gauss s law) (3-6) tatic Electric Fiels Electrostatics is the stuy of the effects of electric charges at rest, an the static electric fiels, which are cause by stationary electric charges. In the euctive approach, few funamental

More information

Lecture 36: Polarization Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:27 PM) W.J. Dallas

Lecture 36: Polarization Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:27 PM) W.J. Dallas C:\Dallas\_Courses\_OpSci_33\ Lecture Notes\36 Polariation.oc: Page of 6 Lecture 36: Polariation Phsical Optics II (Optical Sciences 33 (Upate: Fria, April 29, 25, 8:27 PM W.J. Dallas Introuction Up to

More information

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS]

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS] SOLUTION & ANSWER FOR KCET-009 VERSION A [PHYSICS]. The number of significant figures in the numbers.8000 ---- 5 an 7.8000 5 significant igits 8000.50 7 significant igits. β-ecay means emission of electron

More information

Physics 115C Homework 4

Physics 115C Homework 4 Physics 115C Homework 4 Problem 1 a In the Heisenberg picture, the ynamical equation is the Heisenberg equation of motion: for any operator Q H, we have Q H = 1 t i [Q H,H]+ Q H t where the partial erivative

More information

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134 Lecture 3 1 Announceent Grader s nae: Qian Qi Office nuber: Phys. 134 -ail: qiang@purdue.edu Office hours: Thursday 4:00-5:00p in Roo 134 2 Millikan s oil Drop xperient Consider an air gap capacitor which

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information