16 - MAGNETIC EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions )

Size: px
Start display at page:

Download "16 - MAGNETIC EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions )"

Transcription

1 16 - MAGNETIC EFFECTS OF CURRENTS Page 1 1 ) One conducting U tue can slide inside another as shown in the figure, aintaining electrical contacts etween the tues. The agnetic field B is perpendicular to the plane of the figure. If each tue oves towards the other at a constant speed V, then the ef induced in the circuit in ters of B, l and V where l is the width of each tue, will e - BlV BlV BlV zero [ AIEEE 005 ] ) Two thin, long, parallel wires, separated y a distance d c rry a current i A in the sae direction. They will i repel each other with a force of o attract eac other with a force of oi πd πd oi oi repel each other with a force of at ract each other with a force of πd πd [ AIEEE 005 ] 3 ) A charged particle of ass and charge q travels on a circular path of radius r that is perpendicular to a agnetic field B. T e tie taken y the particle to coplete one revolution is πq B πq π πqb ( c [ AIEEE 005 ] B qb 4 ) A unifor electric field and a un or agnetic field are acting along the sae direction in a certain region. If an el ct on is projected along the direction of the fields with a certain velocity, then its velocity will increase its velocity will decrease it will turn owards left of direction of otion it will turn t wards right of direction of otion. [ AIEEE 005 ] 5 ) Two concent ic c ils each of radius equal to π c are placed at right angles to each other. 3 apere and 4 apere are the currents flowing in each coil respectively. The ag etic induction in weer / at the centre of the coils will e ( 0 = 4π 10-7 W / A ) ( a [ AIEEE 005 ] 6 ) A current I apere flows along an infinitely long straight thin walled tue, then the agnetic induction at any point inside the tue is i infinite zero 0 i. tesla tesla [ AIEEE 004 ] 4π r r 7 ) A long wire carries a steady current. It is ent into a circle of one turn and the agnetic field at the centre of the coil is B. It is then ent into a circular loop of n turns. The agnetic field at the centre of the coil will e nb n B nb n B [ AIEEE 004 ]

2 16 - MAGNETIC EFFECTS OF CURRENTS Page 8 ) The agnetic field due to a current carrying circular loop of radius 3 c at a point on the axis at a distance of 4 c fro the centre is 54 T. What will e its value at the centre of the loop? 50 T 150 T 15 T 75 T [ AIEEE 004 ] 9 ) Two long conductors, separated y a distance d carry currents Ι 1 and Ι in th sae direction. They exert a force F on each other. Now the current in one f the is increased to two ties and its direction is reversed. The distance is also increased to 3d. The new value of the force etween the is - F F / 3 - F / 3 - F / 3 [ AIEEE 004 ] 10 ) A particle of ass and charge q oving with velocity v des ries a circular path of radius r when sujected to a unifor transverse agnetic f eld of induction B. The work done y the field, when the particle copletes o e full circle, is zero π v πvqb πrqb [ AIEEE 003 ] 11 ) A part of a long wire carrying a current I is en into a circle of radius r as shown in the f gure. The net agnetic field at the centre O of the circular oop is 0 Ι 0 Ι 0 Ι ( 1+ π ) ( d 0 Ι ( π - 1) 4r r πr πr [ AIEEE 00 ] 1 ) An electron oving with a speed u along the positive x-axis at y = 0 enters a region of unifor agnetic field ^ B = B 0 hich exists to the right of y-axis. The elect on exits fro the region after soe tie with he speed v at ordinate y, then v > u, y < 0 v = u, y > 0 v > u, y > 0 v = u, y < 0 [ IIT 004 ] 13 ) A c nduct ng loop carrying a current I is place in a unifor agnetic field pointing into the plane of the paper as shown. The loop will have a tendency to contract expand ove towards positive x-axis ove towards negative x-axis [ IIT 003 ] 14 ) A short-circuited coil is placed in a tie-varying agnetic field. Electrical power is dissipated due to the current induced in the coil. If the nuer of turns were to e quadrupled and the wire radius halved, the electrical power dissipated would e halved the sae douled quadrupled [ IIT 00 ]

3 16 - MAGNETIC EFFECTS OF CURRENTS Page 3 15 ) A current carrying loop is placed in a unifor agnetic field in four different orientations, I, II, III and IV. Arrange the in a decreasing order of potential energy. I > III > II > IV I > II > III > IV I > IV > II > III III > IV > I > II [ IIT 003 ] 16 ) A particle of ass and charge q oves with a constant vel city v along the positive x-direction. It enters a region containing a unifor agnet c field B directed along the negative z-direction, etending fro x = a to x =. The iniu value of v required so that the particle can just enter the region x > s qb q ( - a ) B qab q ( + a ) B [ IIT 00 ] 17) A long straight wire along the z-axis ca ries a current i in the negative z-direction. The agnetic vector field B at a poin aving coordinates ( x, y ) on the z = 0 plane is 0 i ( y i - x j ) 0 i ( x i j ) 0 i ( x j - y i ) 0 i ( x i - y j ) π ( x ) π ( x ) π ( x ) π ( x ) [ IIT 00 ] 18 ) A non-planar loop of c nducting wire carrying a current I is placed as shown in the figure. Each of the straight sections of the oop i of length a. The agnetic field due to this loop at th po nt P ( a, 0, a ) points in the direction 1 1 ^ ( - j + k ) ( - j + k + i ) 3 1 ^ 1 ( i + j + k ) ( i + k ) 3 [ IIT 001 ] 19 ) A coil having N turns is wound tightly in the for of a spiral with inner and outer radii a and respectively. When a current I passes through the coil, the agnetic field at the centre is 0 N I 0 N I a 0 ( N I - a ) ln a 0 N I ( + a ) 0 ) A etallic square loop ABCD is oving in its own plane with velocity V in a unifor agnetic field perpendicular to its plane as shown in the figure. Electric field is induced in AD, ut not in BC in BC, ut not in AD neither in AD nor in BC in oth AD and BC [ IIT 001 ] ln a [ IIT 001 ]

4 16 - MAGNETIC EFFECTS OF CURRENTS Page 4 1 ) Two particles A and B of asses A and B respectively and having the sae charge are oving in a plane. A unifor agnetic field exists perpendicular to this plane. The speeds of the particles are v A and v B respectively and the trajectories are as shown in the figure. Then A v A < B v B A v A > B v B A < B and v A < v B A = B and v A = v B [ IIT 001 ] ) Two circular coils can e arranged in any of the three situations shown in the figure. Their utual inductance will e axiu in situation axiu in situation axiu in situation the sae in all situations 3 ) A unifor ut tie-varying agnetic fiel B ( ) exists in a circular region of radius a and is direct d in o the plane of the paper as shown. The agnitude of the induced electric field at point P at a distance r fro the centre of he circular region 1 is zero decreas s as r increases as r de reases as 4 ) An infinitely long cond tor PQR is ent to for a right angle as shown. A current I flows through PQR. The agn tic field due to this current at the point M is H Now, another infinitely long conductor QS is connected to Q so that the current is I / in QR as well as in QS, the current in PQ reaining un hanged. The agnetic field at M is now H. T e ratio H 1 / H is given y 1 / 1 / 3 [ IIT 000 ] 1 r [ IIT 000 ] 5 ) A particle of charge q and ass oves in a circular orit of radius r with angular speed ω. The ratio of the agnitude f its agnetic oent to that of its angular oentu depends on ω and q ω, q and q and ω and [ IIT 000 ] 6 ) An ionized gas contains oth positive and negative ions. If it is sujected siultaneously to an electric field along the +x direction and a agnetic field along +z direction, then positive ions deflect towards +y direction and negative ions towards -y direction all ions deflect towards +y direction all ions deflect towards -y direction positive ions deflect towards -y direction and negative ions towards +y direction [ IIT 000 ]

5 16 - MAGNETIC EFFECTS OF CURRENTS Page 5 7 ) Two long parallel wires are at a distance d apart. They carry steady equal currents flowing out of the plane of the paper as shown. The variation of the agnetic field B along the line XX is given y [ IIT 000 ] 8 ) A charged particle is released fro rest in a region of steady and unifor electric and agnetic fields which a e pa allel to each other. The particle will ove in a straight line circle helix cycloid [ IIT 1999 ] 9 ) A circular loop o radius R, carrying current I, lies in x-y plane with its centre at the origin. The total agn tic flux through x-y plane is directly proportional to I directly proportional to R directly proportional to R zero [ IIT 1999 ] 30 ) Two particles, each of ass and charge q, are attached to the two ends of a light rigid rod of length R. The rod is rotated at constant angular speed aout a p rpendicular axis passing through its centre. The ratio of the agnitudes of the gne c oent of the syste and its angular oentu aout the centre of the rod is q / q / q / q / π [ IIT 1998 ] 3 ) Two very long straight parallel wires carry steady currents I and -I respectively. The distance etween the wires id d. At a certain instant of tie, a point charge q is at a point equidistant fro the two wires in the plane of the wires. Its instantaneous velocity v is perpendicular to this plane. The agnitude of the force due to the agnetic field acting on the charge on this instant is o I qv o I qv o I qv 0 [ IIT 1998 ] π d π d π d

6 16 - MAGNETIC EFFECTS OF CURRENTS Page 6 3 ) A proton, a deuteron and an α-particle having the sae kinetic energy are oving in circular trajectories in a constant agnetic field. If r p, r d and r α denote respectively the radii of the trajectories of these particles, then r α = r p < r d r α > r d > r p r α = r d < r p r p = r d = r α [ I T 1997 ] 33 ) H +, He + and O ++ all having the sae kinetic energy pass through a egion in which there is a unifor agnetic field perpendicular to their velocity. The asses of H +, He + and O ++ are 1 au, 4 au and 16 au respectively. Then H + will e deflected ost O ++ will e deflected ost H + and O ++ will e deflected equally all will e defle ted equally [ IIT 1994 ] 34 ) A current I flows along the length of an infinitely long, straight, thin-walled pipe. Then the agnetic field at all points inside the pipe is he sae, ut not zero the agnetic feld at any point inside the pipe s zero the agnetic field is zero only on the axis o the pipe the agnetic field is different at different p ints inside the pipe [ IIT 1993 ] 35 ) A icroeter has a resistance of 100 Ω and full scale range of 50 A. It can e used as a volteter or as a higher range aeter provided a resistance is added to it. Pick the correct range and resistance coination ( s ). 50 V range with 10 k Ω res stance in series 10 V range with 00 k Ω resistance in series 5 A range with 1 Ω res stan e in parallel 10 A range with 1 Ω esistance in parallel [ IIT 1991 ] 36 ) A particle of charge + q and ass oving under the influence of a unifor electric field E ^ i and a unifor agnetic field B k follows a trajectory fro P to Q as shown i the figure. The velocities at P and Q are v ^ i and - v ^. Which of the following stateent ( s ) is / a correct? 3 ( a E = v 3 Rate of work done y the electric field at P is v 3 4 qa 4 a Rate of work done y the electric field at P is zero Rate of work done y oth the fields at Q is zero [ IIT 1991 ] 37 ) Two particles X and Y having equal charges, after eing accelerated through the sae potential difference, enter a region of unifor agnetic field and descrie circular paths of radii R 1 and R respectively. The ratio of the ass of X to that of Y is ( R 1 / R ) 1/ R / R 1 ( R 1 / R ) R 1 / R [ IIT 1988 ]

7 16 - MAGNETIC EFFECTS OF CURRENTS Page 7 38 ) Two thin long parallel ires separated y a distance are carrying a current i ap. each. The agnitude of the force per unit length exerted y one wire on the other is o i i o o o i [ IIT 1986 ] π πi π 39 ) A proton oving with a constant velocity passes through a region of space without any change in its velocity. If E and B represent electric and agne ic fields respectively, this region of space ay have E = 0, B = 0 E = 0, B 0 E 0, B = 0 E 0, B 0 [ IIT 1985 ] 40 ) A rectangular loop carrying a current I is situated near a long straight wire such that the wire is parallel to one of the sides of the loop and is in the plane of the loop. I a steady current I is estalished in the wire as shown in the figure, the loop will rotate aout an axis parallel to the wire ove away fro the wire ov towards the wire reain stationary [ IIT 1985 ] 41 ) A conducting circular loop of adius r carries a constant current i. It is placed in a unifor agnetic field B o such that B o is perpendicular to the plane of the loop. The agnetic force acting o the loop is i r B o π r B o zero π i r B o [ IIT 1983 ] Answers c c d a c a c d c a d c d a c c c c a d a d a a,c c,d,c a,,d c a,,d c 41 c

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions )

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions ) 22 - ELECTRON AND PHOTONS Page 1 1 ) A photocell is illuinated by a sall source placed 1 away. When the sae source of light is placed 1 / 2 away, the nuber of electrons eitted by photocathode would ( a

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1 ( Answers at the end of all questions ) Page ) The self inductance of the motor of an electric fan is 0 H. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of 8 µ F (

More information

MAGNETIC EFFECT OF CURRENT

MAGNETIC EFFECT OF CURRENT MAGNETIC EFFECT OF CURRENT VERY SHORT ANSWER QUESTIONS Q.1 Who designed cyclotron? Q.2 What is the magnetic field at a point on the axis of the current element? Q.3 Can the path of integration around which

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

More information

A) B/2 B) 4B C) B/4 D) 8B E) 2B

A) B/2 B) 4B C) B/4 D) 8B E) 2B A long straight wire carries a current I. If the magnetic field a distance d from the wire has a magnitude B, what is the magnitude of the magnetic field at a distance 2d from the wire? A) B/2 B) 4B C)

More information

Important Formulae & Basic concepts. Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER

Important Formulae & Basic concepts. Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER Iportant Forulae & Basic concepts Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER S. No. Forula Description 1. Magnetic field induction at a point due to current

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field MAGNETIC FIELD DUE TO A CURRENT ELEMENT The relation between current and the magnetic field, produced by it is magnetic effect of currents. The magnetic fields that we know are due to currents or moving

More information

Version The diagram below represents lines of magnetic flux within a region of space.

Version The diagram below represents lines of magnetic flux within a region of space. 1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

More information

Question Bank 4-Magnetic effects of current

Question Bank 4-Magnetic effects of current Question Bank 4-Magnetic effects of current LEVEL A 1 Mark Questions 1) State Biot-Savart s law in vector form. 2) What is the SI unit of magnetic flux density? 3) Define Tesla. 4) A compass placed near

More information

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam Reg.

Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam Reg. Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam. 2016- Reg. 1 Two Parallel Conducting wires carrying current in the same direction attract each other.why? I 1 A B

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

Magnetic field and magnetic poles

Magnetic field and magnetic poles Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and -)are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x Magnetic Fields 3. A particle (q = 4.0 µc, m = 5.0 mg) moves in a uniform magnetic field with a velocity having a magnitude of 2.0 km/s and a direction that is 50 away from that of the magnetic field.

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) NAME: August 2009---------------------------------------------------------------------------------------------------------------------------------

More information

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State 3 1 (a) A straight conductor carrying a current I is at an angle θ to a uniform magnetic field of flux density B, as shown in Fig. 6.1. magnetic field, flux density B θ θ θ θ current I Fig. 6.1 The conductor

More information

ELECTROMAGNETISM. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

ELECTROMAGNETISM. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe ELECTROMGNETISM Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 Fig 31 shows the top view of a current balance. The wire frame CD is supported by the pivots P

More information

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

(a) zero. B 2 l 2. (c) (b)

(a) zero. B 2 l 2. (c) (b) 1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

More information

Physics 106, Section 1

Physics 106, Section 1 Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

Question 6.1: Predict the direction of induced current in the situations described by the following Figs. 6.18(a) to (f ). (a) (b) (c) (d) (e) (f) The direction of the induced current in a closed loop

More information

(D) Blv/R Counterclockwise

(D) Blv/R Counterclockwise 1. There is a counterclockwise current I in a circular loop of wire situated in an external magnetic field directed out of the page as shown above. The effect of the forces that act on this current is

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

AP Physics 2 Electromagnetic Induction Multiple Choice

AP Physics 2 Electromagnetic Induction Multiple Choice Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

More information

Discussion Question 7A P212, Week 7 RC Circuits

Discussion Question 7A P212, Week 7 RC Circuits Discussion Question 7A P1, Week 7 RC Circuits The circuit shown initially has the acitor uncharged, and the switch connected to neither terminal. At time t = 0, the switch is thrown to position a. C a

More information

1) in the direction marked 1 2) in the direction marked 2 3) in the direction marked 3 4) out of the page 5) into the page

1) in the direction marked 1 2) in the direction marked 2 3) in the direction marked 3 4) out of the page 5) into the page Q1) In the figure, the current element i dl, the point P, and the three vectors (1, 2, 3) are all in the plane of the page. The direction of db, due to this current element, at the point P is: 1) in the

More information

Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam III Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

Physics 2B Winter 2012 Final Exam Practice

Physics 2B Winter 2012 Final Exam Practice Physics 2B Winter 2012 Final Exam Practice 1) When the distance between two charges is increased, the force between the charges A) increases directly with the square of the distance. B) increases directly

More information

Chapter 29 Solutions

Chapter 29 Solutions Chapter 29 Solutions 29.1 (a) up out of the page, since the charge is negative. (c) no deflection (d) into the page 29.2 At the equator, the Earth's agnetic field is horizontally north. Because an electron

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question. ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions, designed to see whether you understand the main concepts of the chapter. 1. A charged particle is moving with a constant velocity

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX Magnetic field (-field ): a region of influence where magnetic materials and electric currents are subjected to a magnetic

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in

More information

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An

More information

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current LJPS Gurgaon 1. An electron beam projected along +X axis, experiences a force due to a magnetic field along +Y axis. What is the direction of the magnetic field? Class XII- Physics - Assignment Topic:

More information

1. The property of matter that causes an object to resist changes in its state of motion is called:

1. The property of matter that causes an object to resist changes in its state of motion is called: SPH3U Exa Review 1. The property of atter that causes an object to resist changes in its state of otion is called: A. friction B. inertia C. the noral force D. tension 1. The property of atter that causes

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

Magnetic Field Lines for a Loop

Magnetic Field Lines for a Loop Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings Figure (c) compares the field lines to that of

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions PSI AP Physics C Sources of Magnetic Field Multiple Choice Questions 1. Two protons move parallel to x- axis in opposite directions at the same speed v. What is the direction of the magnetic force on the

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION hapter Si ELETROMGNETI INUTION MQ 1 6.1 square of side L meters lies in the -y plane in a region, where the magnetic field is gien by = ˆ ˆ ˆ o (2 i+ 3j+ 4 k) T, where o is constant. The magnitude of flu

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2006 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)

More information

1. Answer the following questions.

1. Answer the following questions. (06) Physics Nationality No. (Please print full nae, underlining faily nae) Marks Nae Before you start, fill in the necessary details (nationality, exaination nuber, nae etc.) in the box at the top of

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems. Induction PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

More information

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. IIT-JEE5-PH-1 FIITJEE Solutions to IITJEE 5 Mains Paper Tie: hours Physics Note: Question nuber 1 to 8 carries arks each, 9 to 16 carries 4 arks each and 17 to 18 carries 6 arks each. Q1. whistling train

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

dt dt THE AIR TRACK (II)

dt dt THE AIR TRACK (II) THE AIR TRACK (II) References: [] The Air Track (I) - First Year Physics Laoratory Manual (PHY38Y and PHYY) [] Berkeley Physics Laoratory, nd edition, McGraw-Hill Book Copany [3] E. Hecht: Physics: Calculus,

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis. Instructor(s): Acosta, inzler PHYSICS DEPATMENT PHY 048, Spring 04 Final Exa March 4, 04 Nae (print, last first): Signature: On y honor, I have neither given nor received unauthorized aid on this exaination.

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

General Physics Contest 2012

General Physics Contest 2012 General Physics Contest May 6, (9:am-:5am), Total of 5 pages. Some useful constants: Gas constant R = 8.34 J/mol K Electron mass m e = 9.9-3 kg Electron charge e =.6-9 C Electric constant (permittivity)

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

PHY 114 Summer Midterm 2 Solutions

PHY 114 Summer Midterm 2 Solutions PHY 114 Summer 009 - Midterm Solutions Conceptual Question 1: Can an electric or a magnetic field, each constant in space and time, e used to accomplish the actions descried elow? Explain your answers.

More information

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper

More information

Mark Scheme (Final Standardisation) Summer 2007

Mark Scheme (Final Standardisation) Summer 2007 Mark Schee (Final Standardisation) Suer 007 GCE GCE Physics (675/0) Edexcel Liited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH 675 Unit Test PHY 5

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

NEET PAPER -2 PHYSICS

NEET PAPER -2 PHYSICS NEET PPER - PHYSICS Pattern of the Entrance Test:- ) The Entrance Test shall consist of one paper containing 80 objective type questions (four options with single correct answer) fro Physics, Cheistry

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Magnets and Electromagnetism

Magnets and Electromagnetism Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

Homework 6 solutions PHYS 212 Dr. Amir

Homework 6 solutions PHYS 212 Dr. Amir Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude

More information

Module 3: Electromagnetism

Module 3: Electromagnetism Module 3: Electromagnetism Lecture - Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an electromagnetic

More information

REVIEW SESSION. Midterm 2

REVIEW SESSION. Midterm 2 REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field

More information

Astro 7B Midterm 1 Practice Worksheet

Astro 7B Midterm 1 Practice Worksheet Astro 7B Midter 1 Practice Worksheet For all the questions below, ake sure you can derive all the relevant questions that s not on the forula sheet by heart (i.e. without referring to your lecture notes).

More information

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information