SPH4U. Conservation of Energy. Review: Springs. More Spring Review. 1-D Variable Force Example: Spring. Page 1. For a spring we recall that F x = -kx.

Size: px
Start display at page:

Download "SPH4U. Conservation of Energy. Review: Springs. More Spring Review. 1-D Variable Force Example: Spring. Page 1. For a spring we recall that F x = -kx."

Transcription

1 -D Variable Force Exaple: Spring SPH4U Conseration of Energ For a spring we recall that F x = -kx. F(x) x x x relaxe position -kx F = - k x the ass F = - k x Reiew: Springs Hooke s Law: The force exerte b a spring is proportional to the istance the spring is stretche or copresse fro its relaxe position. F X = -kx Where x is the isplaceent fro the equilibriu an k is the constant of proportionalit. relaxe position F X = 0 x ore Spring Reiew The work one b the spring W s uring a isplaceent fro x to x is the area uner the F(x) s x plot between x an x. F(x) x x W s x -kx In this exaple it is a negatie nuber. The spring oes negatie work on the ass W s x x F( x) x x ( kx) x x kx x x W k x x s Page

2 Proble: Spring pulls on ass. A spring (constant k) is stretche a istance, an a ass is hooke to its en. The ass is release (fro rest). What is the spee of the ass when it returns to the relaxe position if it slies without friction? relaxe position : Spring pulls on ass. First fin the net work one on the ass uring the otion fro x = to x = 0 (onl ue to the spring): Ws k x x k 0 k stretche position (at rest) after release back at relaxe position x x stretche position (at rest) relaxe position r r Proble: Spring pulls on ass. Now fin the change in kinetic energ of the ass: ΔK r 0 r : Spring pulls on ass. Now use work kinetic-energ theore: W net = W S = K. k r k r x x x x stretche position (at rest) stretche position (at rest) relaxe position relaxe position r r Page

3 Springs : Unerstaning A spring with spring constant 40 N/ has a relaxe length of. When the spring is stretche so that it is.5 long, what force is exerte on a block attache to the en of the spring? x = 0 k x = x = 0 k x =.5 Unerstaning Forces an otion A block of ass = 5. kg is supporte on a frictionless rap b a spring haing constant k = 5 N/. When the rap is horizontal the equilibriu position of the ass is at x = 0. When the angle of the rap is change to 30 o what is the new equilibriu position of the block x? (a) x = 0c (b) x = 5c (c) x = 30c F X = -kx (a) -0 N (b) 60 N (c) -60 N F X = - (40N/) (.5) k x = 0 q = 30 o F X = - 0 N Choose the x-axis to be along ownwar irection of rap. FBD: The total force on the block is zero since it s at rest. Consier x-irection: Force of grait on block is F x,g = g sin(q Force of spring on block is F x,s = -kx N Since the total force in the x-irection ust be 0: Μg sin θ g sinq kx 0 x k 5.kg 9.8 x 5 N s x q q g F x,g = g sinq x q Page 3

4 Work b ariable force in 3-D: Nice to know explanation Work W F of a force F acting through an infinitesial isplaceent r is: W = F. r The work of a big isplaceent through a ariable force will be the integral of a set of infinitesial isplaceents: F r W TOT = F. r Work/Kinetic Energ Theore for a Variable Force in 3D r W F r kinetic energ r Su up F.r along path That s the work integral That equals change in KE For conseratie forces, the work is path inepenent an epens onl on starting point an en point Work b ariable force in 3-D: Newton s Graitational Force Integrate W g to fin the total work one b grait in a big isplaceent: R R W g = W g = (-G / R ) R = G (/R - /R ) R R F g (R ) Work b ariable force in 3-D: Newton s Graitational Force Work one epens onl on R an R, not on the path taken. Wg G R R R F g (R ) R R R Page 4

5 Potential Energ For an conseratie force F we can efine a potential energ function U in the following wa: W = The work one b a conseratie force is equal an opposite to the change in the potential energ function. This can be written as: F. r = -U U = U - U = -W = - r F. r r r U r U Graitational Potential Energ So we see that the change in U near the Earth s surface is: U = -W g = g = g( - ). So U = g + U 0 where U 0 is an arbitrar constant. Haing an arbitrar constant U 0 is equialent to saing that we can choose the location where U = 0 to be anwhere we want to. Floor leel of 400 Hazel St Science Office (potential is zero here, for sure!) W g = -g Conseratie Forces: We hae seen that the work one b grait oes not epen on the path taken. Unerstaning Work & Energ A rock is roppe fro a istance R E aboe the surface of the earth, an is obsere to hae kinetic energ K when it hits the groun. An ientical rock is roppe fro twice the height (R E ) aboe the earth s surface an has kinetic energ K when it hits. R E is the raius of the earth. R R Wg G R R What is K / K? (a) The easiest wa to sole this proble is to use the W=K propert. h W g = -gh (b) (c) R E R E R E Be careful! Page 5

6 Since energ is consere, K = W G. R E R E R E W G =G R R Do not use gh forula as this onl works when h is er sall. ΔK=c R R For the first rock: For the secon rock: Where c = G is the sae for both rocks K =c c R E R E R E K =c c R E 3R E 3 R E K = 3 K 4 3 Conseratie Forces: In general, if the work one oes not epen on the path taken (onl epens the initial an final istances between objects), the force inole is sai to be conseratie. Grait is a conseratie force: Grait near the Earth s surface: Wg G R R Wg g A spring prouces a conseratie force: Ws k x x Conseratie Forces: A force that offers the opportunit of two-wa conersion between kinetic an potential energies is calle a conseratie force. The work one b a conseratie force alwas has these properties: It can alwas be expresse as the ifference between the initial an final alues of potential energ function. It is reersible. It is inepenent of the path of the bo an epens onl on the starting an ening points. When the starting an ening points are the sae, the total work is zero. Conseratie Forces: When the onl forces that o work are conseratie forces, then the total echanical energ is E = K + U Conseratie forces hae the nice propert of being able to be efine in ters of a potential energ. The usual efinition of potential energ is through the work-energ theore as for kinetic energ, i.e. W = U i - U f. W U U total total W K K U U K K U K U K Page 6

7 NonConseratie Forces: Not all forces are conseratie. Consier the friction force applie to a crate, the total work one b friction force when sliing the crate up a rap an back own is not zero. (when the irection of the otion reerses so oes the friction force, an the friction oes negatie work in both irections.) Conseratie Forces: We hae seen that the work one b a conseratie force oes not epen on the path taken. W = W Therefore the work one b a conseratie force in a close path is 0. W W W W NET = W - W = W - W = 0 W Potential energ change fro one point to another oes not epen on path Unerstaning Conseratie Forces The pictures below show force ectors at ifferent points in space for two forces. Which one is conseratie? (a) (b) (c) both Consier the work one b force when oing along ifferent paths in each case: No work is one when going perpenicular to force. W A = W B W A > W B x () x () () () Page 7

8 In fact, ou coul ake one on tpe () if it eer existe: Work one b this force in a roun trip is > 0! Free kinetic energ!! W NET = 0 J = K W = 0 Potential Energ Recap: For an conseratie force we can efine a potential energ function U such that: S U = U - U = -W = - F. r S The potential energ function U is alwas efine onl up to an aitie constant. W = 5 J W = -5 J You can choose the location where U = 0 to be anwhere conenient. W = 0 Conseratie Forces & Potential Energies (stuff ou shoul know): Force F Work (one b force) W Change in P.E U = U - U P.E. function U Unerstaning Potential Energ All springs an asses are ientical. (Grait acts own). Which of the sstes below has the ost potential energ store in its spring(s), relatie to the relaxe position? F g = -g -g( - ) g( - ) g + C G F g = G G G C R R R R R R F s = -kx k x x k x x kx (R is the center-to-center istance, x is the spring stretch) C () () (a) (b) (c) sae Page 8

9 The isplaceent of () fro equilibriu will be half of that of () (each spring exerts half of the force neee to balance g) () () 0 The potential energ store in () is: k k The potential energ store in () is: k k The spring P.E. is twice as big in ()! Conseration of echanical Energ If onl conseratie forces are present, the total kinetic plus potential energ of is consere, i.e. the total echanical energ is consere (ef. of E). (note: E=Eechanical throughout this iscussion) E = K + U E = K + U = W + U = W + (-W) = 0 using K = W using U = -W E = K + U is constant!!! Both K an U can change, but E = K + U reains constant. But we ll see that if issipatie forces act, then energ can be lost to other oes (theral, soun, etc) changing E echanical an external forces can change E echanical Exaple: The siple penulu Suppose we release a ass fro rest a istance h aboe its lowest possible point. What is the axiu spee of the ass an where oes this happen? To what height h oes it rise on the other sie? Exaple: The siple penulu Kinetic+potential energ is consere since grait is a conseratie force (E = K + U is constant) Choose = 0 at the botto of the swing, an U = 0 at = 0 (arbitrar choice) E = / + g h h = 0 h h Page 9

10 Exaple: The siple penulu E = / + g. Initiall, = h an = 0, so E = gh. Since E = gh initiall, E = gh alwas since energ is consere. Exaple: The siple penulu / will be axiu at the botto of the swing. So at = 0 / = gh = gh gh = h = 0 = 0 h Exaple: The siple penulu Since E = gh = / + g it is clear that the axiu height on the other sie will be at = h = h an = 0. The ball returns to its original height. Exaple: The siple penulu The ball will oscillate back an forth. The liits on its height an spee are a consequence of the sharing of energ between K an U. E = / + g = K + U = constant. = h = h = 0 Page 0

11 Exaple: Airtrack & Glier A glier of ass is initiall at rest on a horizontal frictionless track. A ass is attache to it with a assless string hung oer a assless pulle as shown. What is the spee of after has fallen a istance? Exaple: Airtrack & Glier Kinetic+potential energ is consere since all forces are conseratie. Choose initial configuration to hae U=0. K = -U g g Proble: Hotwheel A to car slies on the frictionless track shown below. It starts at rest, rops a istance, oes horizontall at spee, rises a istance h, an ens up oing horizontall with spee. Fin an. Proble: Hotwheel... K+U energ is consere, so E = 0 K = - U oing own a istance, U = -g, K = / Soling for the spee: g h h Page

12 Proble: Hotwheel... At the en, we are a istance - h below our starting point. U = -g( - h), K = / Soling for the spee: g h Hooke s Law (reiew) The agnitue of the force exerte b the spring is irectl proportional to the istance the spring has oe fro its equilibriu. Fx kx Force is opposite to the irection spring is oe - h h Fx kx This is the Force applie to the spring Exaple A kg ass is hung fro a ertical spring that is allowe to stretch slowl fro its unstretche equilibriu position until it coes to its new equilibriu position 0.0 below its initial one. a) Deterine the force constant of the spring? b) If the ball is returne to the spring s initial unstreche equilibriu position an then allowe to fall, what is the Net Force on the ass when it has roppe 0.08? c) Deterine the acceleration of the ass at position b) F=-kx F 0 g kx 0 kx g g k x N 0.085kg 9. 8 kg 0.0 F=g N 4.65 a) Deterine the force constant of the spring? Therefore k= 4. N/ Page

13 F=-kx F=g N F g kx b) If the ball is returne to the spring s initial unstreche equilibriu position an then allowe to fall, what is the Net Force on the ass when it has roppe 0.08? N N kg 0.495N 0.085kg Therefore F= 0.49 N F=-kx F=g F a 0.495N a c) Deterine the acceleration of the ass at position b) Therefore a= 5.8 /s own 0.495N a kg 5.78 s Elastic Potential Energ (reiew) The energ store in objects that are stretche, copresse, bent, or twiste. Us kx Unerstaning A 0.0 kg ass is hung fro a ertical spring (k=9.6 N/). The ass is hel so that the spring is at its unstretche equilibriu position. The ass is then allowe to fall. Neglect the ass of the spring. a) How uch elastic potential energ is store in the spring when the ass has fallen c? b) What is the spee of the ass when it has fallen c? Page 3

14 x=0 c x= c U s kx N J a) How uch elastic potential energ is store in the spring when the ass has fallen c? E E i gh kx gh kx f f f x=0 c x= c f gh kx 0kg N s 0. 0kg.0 s b) What is the spee of the ass when it has fallen c? Flash Page 4

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10.

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10. P Physics Multiple Choice Practice Oscillations. ass, attache to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu isplaceent fro its equilibriu position is. What

More information

Phys 207. Announcements. Hwk 6 is posted online; submission deadline = April 4 Exam 2 on Friday, April 8th. Today s Agenda

Phys 207. Announcements. Hwk 6 is posted online; submission deadline = April 4 Exam 2 on Friday, April 8th. Today s Agenda Phs 07 Announcements Hwk 6 is posted online; submission deadline = April 4 Exam on Frida, April 8th Toda s Agenda Freshman Interim Grades eview Work done b variable force in 3-D Newton s gravitational

More information

Work and Kinetic Energy

Work and Kinetic Energy Work Work an Kinetic Energy Work (W) the prouct of the force eerte on an object an the istance the object moes in the irection of the force (constant force only). W = " = cos" (N " m = J)! is the angle

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision Physics 131: Lecture 16 Today s Agenda Elastic Collisions Definition Exaples Work and Energy Definition of work Exaples Physics 01: Lecture 10, Pg 1 Collisions Moentu is alost always consered during as

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Worksheet 4: Energy. 1 Mechanical Energy

Worksheet 4: Energy. 1 Mechanical Energy Name: 3DigitCoe: Worksheet 4: Energy 1 Mechanical Energy ##$%$ A) B) C) D) ##$)$ ##$($ ##$'$ ##$&$ (left) Threeballsarefiresimultaneouslywithequal spees from the same height above the groun. Ball 1 is

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS GeneralPhysics I for the Life Sciences W O R K N D E N E R G Y D R. E N J M I N C H N S S O C I T E P R O F E S S O R P H Y S I C S D E P R T M E N T J N U R Y 0 4 Questions and Probles for Conteplation

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 8IDENTIFY and SET U: p = K = EXECUTE: (a) 5 p = (, kg)( /s) = kg /s 5 p kg /s (b) (i) = = = 6 /s (ii) kg =, so T T SUV SUV, kg ( /s) 68 /s T SUV = T = = SUV kg EVALUATE:The SUV ust hae less speed to hae

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω =

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω = Thur Oct 9 Assignent 10 Mass-Spring Kineatics (x, v, a, t) Dynaics (F,, a) Tie dependence Energy Pendulu Daping and Resonances x Acos( ωt) = v = Aω sin( ωt) a = Aω cos( ωt) ω = spring k f spring = 1 k

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

EXAM 3 REVIEW: hardest problems

EXAM 3 REVIEW: hardest problems PHYS 17: oern echanics Spring 011 xa 3 results: ultiple choice: 4.5/70 = 60.7% Hanwritten: XXX FINAL XA: 1. Coprehensie. About 0-5 ultiple choice questions only. If you hae Final xa conflict: 1. Notify

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about!

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about! Collisions (L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details of the

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy AP Physics Multiple Choice Practice Wor-Energy 1. A ass attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is

More information

Physics 207 Lecture 24

Physics 207 Lecture 24 Physics 7 Lecture 4 Physics 7, Lecture 4, Nov. 7 gena: Mi-Ter 3 Review Elastic Properties of Matter, Mouli Pressure, Wor, rchiees Principle, Flui flow, Bernoulli Oscillatory otion, Linear oscillator, Penulus

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical echanics topics-oents of inertia,

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0 AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) 60 F 1 F g (b) F NE(Y) = 0 F1 F1 = g / cos(60) = g (c) When the string is cut it swings fro top to botto, siilar to the diagra for 1974B1

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram!

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram! Wor Problems Wor and Energy HW#. How much wor is done by the graitational force when a 280-g pile drier falls 2.80 m? W G = G d cos θ W = (mg)d cos θ W = (280)(9.8)(2.80) cos(0) W = 7683.2 W 7.7 0 3 Mr.

More information

One Dimensional Collisions

One Dimensional Collisions One Diensional Collisions These notes will discuss a few different cases of collisions in one diension, arying the relatie ass of the objects and considering particular cases of who s oing. Along the way,

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

T = 2.34x10 6 s = 27.2days.

T = 2.34x10 6 s = 27.2days. Sole the following probles in the space proided Use the back of the page if needed Each proble is worth 10 points You ust show your work in a logical fashion starting with the correctly applied and clearly

More information

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions 015 Question 1 (a) (i) State Newton s secon law of motion. Force is proportional to rate of change of momentum (ii) What is the

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

Physics 11 HW #7 Solutions

Physics 11 HW #7 Solutions hysics HW #7 Solutions Chapter 7: Focus On Concepts: 2, 6, 0, 3 robles: 8, 7, 2, 22, 32, 53, 56, 57 Focus On Concepts 7-2 (d) Moentu is a ector quantity that has a agnitude and a direction. The agnitudes

More information

Physics 207: Lecture 26. Announcements. Make-up labs are this week Final hwk assigned this week, final quiz next week.

Physics 207: Lecture 26. Announcements. Make-up labs are this week Final hwk assigned this week, final quiz next week. Torque due to gravit Rotation Recap Phsics 07: ecture 6 Announceents Make-up labs are this week Final hwk assigned this week, final quiz net week Toda s Agenda Statics Car on a Hill Static Equilibriu Equations

More information

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces Energy Balance, Units & Proble Solving: Mechanical Energy Balance ABET Course Outcoes: 1. solve and docuent the solution of probles involving eleents or configurations not previously encountered (e) (e.g.

More information

Work and Energy Problems

Work and Energy Problems 09//00 Multiple hoice orce o strength 0N acts on an object o ass 3kg as it oes a distance o 4. I is perpendicular to the 4 displaceent, the work done is equal to: Work and Energy Probles a) 0J b) 60J c)

More information

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011 Phsics 18 Spring 2011 Hoework 3 - s Wednesda Februar 2, 2011 Make sure our nae is on our hoework, and please bo our final answer. Because we will be giving partial credit, be sure to attept all the probles,

More information

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically.

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically. NAME : F.5 ( ) MARS: /70 FORM FIVE PHYSICS TEST on MECHANICS Time Allowe: 70 minutes This test consists of two sections: Section A (structure type questions, 50 marks); Section B (multiple choice, 20 marks)

More information

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams Chapter 15 ewton s Laws #2: inds of s, Creating ree Body Diagras 15 ewton s Laws #2: inds of s, Creating ree Body Diagras re is no force of otion acting on an object. Once you have the force or forces

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy Springs and Conservation of Energy Most drivers try to avoid collisions, but not at a deolition derby like the one shown in Figure 1. The point of a deolition derby is to crash your car into as any other

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F.

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F. Power Power is the time rate at which work W is done by a force Aerage power P ag = W/ t Instantaneous power (energy per time) P = dw/dt = (Fcosφ dx)/dt = F cosφ= F. Unit: watt 1 watt = 1 W = 1 J/s 1 horsepower

More information

Problem Set 7: Potential Energy and Conservation of Energy AP Physics C Supplementary Problems

Problem Set 7: Potential Energy and Conservation of Energy AP Physics C Supplementary Problems Proble Set 7: Potential Energy and Conservation of Energy AP Pysics C Suppleentary Probles 1. Approxiately 5.5 x 10 6 kg of water drops 50 over Niagara Falls every second. (a) Calculate te aount of potential

More information

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 )

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 ) Chapter Seenteen: Electric Potential and Electric Energy Key Ter Electric Potential electrical potential energy per unit charge (JC -1 ) Page 1 of Electrical Potential Difference between two points is

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

CHAPTER 7 IMPULSE AND MOMENTUM

CHAPTER 7 IMPULSE AND MOMENTUM CHAPTER 7 IMPULSE AND MOMENTUM PROBLEMS 1. SSM REASONING The ipulse that the olleyball player applies to the ball can be ound ro the ipulse-oentu theore, Equation 7.4. Two orces act on the olleyball while

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

Solution. ANSWERS - AP Physics Multiple Choice Practice Kinematics. Answer

Solution. ANSWERS - AP Physics Multiple Choice Practice Kinematics. Answer NSWRS - P Physics Multiple hoice Practice Kinematics Solution nswer 1. Total istance = 60 miles, total time = 1.5 hours; average spee = total istance/total time 2. rea boune by the curve is the isplacement

More information

Ch.7 #4 7,11,12,18 21,24 27

Ch.7 #4 7,11,12,18 21,24 27 Ch.7 #4 7,,,8,4 7 4. Picture the Problem: The farmhan pushes the hay horizontally. 88 N Strategy: Multiply the force by the istance because in this case the two point along the same irection. 3.9 m Solution:

More information

Introduction to Mechanics Work and Energy

Introduction to Mechanics Work and Energy Introuction to Mechanics Work an Energy Lana Sherian De Anza College Mar 15, 2018 Last time non-uniform circular motion an tangential acceleration energy an work Overview energy work a more general efinition

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

SOLUTIONS TO CONCEPTS CHAPTER 9

SOLUTIONS TO CONCEPTS CHAPTER 9 SOUTIONS TO CONCEPTS CHPTER 9. kg, kg, kg, x 0, x, x / y 0, y 0, y / The position of centre of ass is C. x x x y y y, ( 0) ( ) ( / ) ( 0) ( 0) ( (, 7, fro the point B. / )). et be the origin of the syste

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page)

PHYSICS ADVANCED LABORATORY I UNIVERSAL GRAVITATIONAL CONSTANT Spring 2001 (additions for Spring 2005 on last page) PHYSICS 334 - ADVANCED LABOATOY I UNIVESAL GAVITATIONAL CONSTANT Spring 001 (aitions for Spring 005 on last page) Purposes: Deterine the value of the universal gravitation constant G. Backgroun: Classical

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda SPH4U Agenda Fro Newton Two New Concepts Ipulse & oentu Ipulse Collisions: you gotta consere oentu! elastic or inelastic (energy consering or not) Inelastic collisions in one diension and in two diensions

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions

CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions ****ALL QUESTIONS-ANSWERS ARE HIGHER LEVEL*** Solutions 015 Question 6 (i) Explain what is meant by centripetal force. The force - acting in

More information

14 - OSCILLATIONS Page 1

14 - OSCILLATIONS Page 1 14 - OSCILLATIONS Page 1 14.1 Perioic an Osciator otion Motion of a sste at reguar interva of tie on a efinite path about a efinite point is known as a perioic otion, e.g., unifor circuar otion of a partice.

More information

Simple Harmonic Motion of Spring

Simple Harmonic Motion of Spring Nae P Physics Date iple Haronic Motion and prings Hooean pring W x U ( x iple Haronic Motion of pring. What are the two criteria for siple haronic otion? - Only restoring forces cause siple haronic otion.

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically.

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically. NAME : F.5 ( ) MARS: /70 FORM FIVE PHYSICS TEST on MECHANICS Time Allowe: 70 minutes This test consists of two sections: Section A (structure type questions, 50 marks); Section B (multiple choice, 20 marks)

More information

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f CHAPTER 7 IMPULSE AND MOMENTUM PROLEMS. REASONING According to the ipulse-oentu theore, the rocket s inal oentu diers ro its initial oentu by an aount equal to the ipulse ( ΣF ) o the net orce eerted on

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Physics 120. Exam #2. May 23, 2014

Physics 120. Exam #2. May 23, 2014 Physics 10 Exa # May 3, 014 Nae Please read and follow these instructions carefully: ead all probles carefully before attepting to solve the. Your work ust be legible, and the organization clear. You ust

More information