Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda

Size: px
Start display at page:

Download "Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda"

Transcription

1 SPH4U Agenda Fro Newton Two New Concepts Ipulse & oentu Ipulse Collisions: you gotta consere oentu! elastic or inelastic (energy consering or not) Inelastic collisions in one diension and in two diensions Eplosions Coent on energy conseration Ballistic pendulu Fnet a Fnet t F t net Ipulse J F t net Change In oentu Ipulse = Change in oentu oentu; p oentu is ector in direction o elocity. Ipulse is ector in direction o orce. N s kg s SPH4U: Lecture 4, Pg SPH4U: Lecture 4, Pg Ipulse and Area under Force Tie graph Think Is it possible or a syste o two objects to hae zero total oentu while haing a non-zero total kinetic energy?. YES. NO correct yes, when two objects hae the sae ass and elocities and they push o each other..oentu is zero and kinetic energy is nonezero. J F t area under F s. t cure a balls traeling at the sae speed hit each other head-on. SPH4U: Lecture 4, Pg 3 SPH4U: Lecture 4, Pg 4 Page

2 Change in oentu Question y A 0 kg cart collides with a wall and changes its direction. What is its change in -oentu p? I the bear and the ball hae equal asses, which toy eperiences the greater change in oentu? Change in oentu: p = p ater - p beore Teddy Bear: p = 0-(-) = Bouncing Ball: p = -(-) = SPH4U: Lecture 4, Pg 5 a. -30 kg /s b. -0 kg /s c. 0 kg /s d. 0 kg /s e. 30 kg /s p - pi 0kg - 0kg - 30kg s s s SPH4U: Lecture 4, Pg 6 You drop an egg onto ) the loor ) a thick piece o oa rubber. In both cases, the egg does not bounce. In which case is the ipulse greater? A) Floor B) Foa C) the sae Question I = P Sae change in oentu sae ipulse In which case is the aerage orce greater A) Floor B) Foa C) the sae p = F t F = p/t Saller t = larger F SPH4U: Lecture 4, Pg 7 Pushing O Fred (75 kg) and Jane (50 kg) are at rest on skates acing each other. Jane then pushes Fred w/ a constant orce F = 45 N or a tie t=3 seconds. Who will be oing astest at the end o the push? A) Fred B) Sae C) Jane Fred F = +45 N (positie direct.) I = +45 (3) N-s = 35 N-s I = p = i I/ = - i = 35 N-s / 75 kg =.8 /s Note: P red + P jane = 75 (.8) + 50 (-.7) = 0! Jane F = -45 N Newton s 3 rd law I = -45 (3) N-s = -35 N-s I = p = i I/ = - i = -35 N-s / 50 kg = -.7 /s SPH4U: Lecture 4, Pg 8 Page

3 A 50 g baseball is thrown at a speed o 0 /s. It is hit straight back to the pitcher at a speed o 40 /s. The interaction orce is as shown here. What is the aiu orce F a that the bat eerts on the ball? What is the aerage orce F a that the bat eerts on the ball? Hitting a Baseball Use the ipulse approiation: Neglect all other orces on ball during the brie duration o the collision. p I (area under orce cure) F (6 s) F (.003 s) a Hitting a Baseball a p - ( - ) i i (0.5 kg)(40 /s + 0 /s) 9.0 kg /s Thereore, Fa (9.0 kg /s) / (.003 s) 3,000 N p (9.0 kg /s) F a = =,500 N t (.006 s) SPH4U: Lecture 4, Pg 9 SPH4U: Lecture 4, Pg 0 A Karate Collision With an epert karate blow, you shatter a concrete block. Consider that your hand has a ass o 0.70 kg, is initially oing downward at 5.0 /s, and stops 6.0 beyond the point o contact. (a) What ipulse does the block eert on your hand? (b) What is the approiate collision tie and aerage orce that the block eerts on your hand? 5.0 /s y t i J p (0.70 kg)(5.0 /s) 3.5 N s y (0.006 ) t s 5.0 /s i J (3.5 N s yˆ ) Fa =,500 N t ( s) SPH4U: Lecture 4, Pg dp FEXT dt oentu Conseration dp 0 FEXT 0 dt p The concept o oentu conseration is one o the ost undaental principles in physics. This is a coponent (ector) equation. We can apply it to any direction in which there is no eternal orce applied. You will see that we oten hae oentu conseration (F EXT =0) een when echanical energy is not consered. Elastic collisions don t lose echanical energy In inelastic collisions echanical energy is reduced We will show that linear oentu ust still be consered, F=a SPH4U: Lecture 4, Pg Page 3

4 Elastic s. Inelastic Collisions A collision is said to be elastic when kinetic energy as well as oentu is consered beore and ater the collision. K beore = K ater Carts colliding with a spring in between, billiard balls, etc. A collision is said to be inelastic when kinetic energy is not consered beore and ater the collision, but oentu is consered. K beore K ater Car crashes, collisions where objects stick together, etc. i Inelastic collision in -D: Eaple A block o ass is initially at rest on a rictionless horizontal surace. A bullet o ass is ired at the block with a uzzle elocity (speed). The bullet lodges in the block, and the block ends up with a speed. In ters o,, and : What is the initial speed o the bullet? What is the initial energy o the syste? What is the inal energy o the syste? Is kinetic energy consered? beore ater SPH4U: Lecture 4, Pg 3 SPH4U: Lecture 4, Pg 4 Eaple... Eaple... Consider the bullet & block as a syste. Ater the bullet is shot, there are no eternal orces acting on the syste in the -direction. oentu is consered in the direction! P, i = P, += + =(+) initial inal SPH4U: Lecture 4, Pg 5 Now consider the kinetic energy o the syste beore and ater: Beore: E B Ater: E A So E A E B Kinetic energy is NOT consered! (riction stopped the bullet) Howeer, oentu was consered, and this was useul. SPH4U: Lecture 4, Pg 6 Page 4

5 Inelastic Collision in -D: Eaple = 0 + ice (no riction) Eaple... Use conseration o oentu to ind ater the collision. Beore the collision: Ater the collision: Pi ( 0 ) P ( ) Pi P Conseration o oentu: ( ) =? ( ) ector equation SPH4U: Lecture 4, Pg 7 SPH4U: Lecture 4, Pg 8 ( ) Eaple... Now consider the K.E. o the syste beore and ater: Beore: E BUS Ater: So E A E A E B Kinetic energy is NOT consered in an inelastic collision! Lecture 4, Act oentu Conseration Two balls o equal ass are thrown horizontally with the sae initial elocity. They hit identical stationary boes resting on a rictionless horizontal surace. The ball hitting bo bounces back, while the ball hitting bo gets stuck. Which bo ends up oing aster? (a) Bo (b) Bo (c) sae SPH4U: Lecture 4, Pg 9 SPH4U: Lecture 4, Pg 0 Page 5

6 Lecture 4, Act oentu Conseration Since the total eternal orce in the -direction is zero, oentu is consered along the -ais. In both cases the initial oentu is the sae ( o ball). In case the ball has negatie oentu ater the collision, hence the bo ust hae ore positie oentu i the total is to be consered. The speed o the bo in case is biggest! Lecture 4, Act oentu Conseration init = - in = ( init + in ) / init = (+) = init / (+) nuerator is bigger and its denoinator is saller than that o. > SPH4U: Lecture 4, Pg SPH4U: Lecture 4, Pg Inelastic collision in -D Inelastic collision in -D... Consider a collision in -D (cars crashing at a slippery intersection...no riction). X: There are no net eternal orces acting. Use oentu conseration or both coponents. P, i P, + y: Py, i Py, y y beore ater = (, y ) + SPH4U: Lecture 4, Pg 3 SPH4U: Lecture 4, Pg 4 Page 6

7 Inelastic collision in -D... So we know all about the otion ater the collision! Inelastic collision in -D... We can see the sae thing using oentu ectors: = (, y ) y y P p p P p p y p tan p tan p p SPH4U: Lecture 4, Pg 5 SPH4U: Lecture 4, Pg 6 Eplosion (inelastic un-collision) Eplosion... No eternal orces, so P is consered. Beore the eplosion: Initially: P = 0 Finally: P = + = 0 Ater the eplosion: = - SPH4U: Lecture 4, Pg 7 SPH4U: Lecture 4, Pg 8 Page 7

8 Lecture 4, Act 3 Center o ass A bob eplodes into 3 identical pieces. Which o the ollowing conigurations o elocities is possible? (a) (b) (c) both Lecture 4, Act 3 Center o ass No eternal orces, so P ust be consered. Initially: P = 0 In eplosion () there is nothing to balance the upward oentu o the top piece so P inal 0. () () () SPH4U: Lecture 4, Pg 9 SPH4U: Lecture 4, Pg 30 Lecture 4, Act 3 Center o ass Coent on Energy Conseration No eternal orces, so P ust be consered. All the oenta cancel out. P inal = 0. We hae seen that the total kinetic energy o a syste undergoing an inelastic collision is not consered. echanical Energy is lost: Where does it go??» Heat (bob)» Bending o etal (crashing cars) Kinetic energy is not consered since work is done during the collision! oentu along a certain direction is consered when there are no eternal orces acting in this direction. In general, oentu conseration is easier to satisy than energy conseration. () SPH4U: Lecture 4, Pg 3 SPH4U: Lecture 4, Pg 3 Page 8

9 Question A 4.0 kg ass is oing to the right at.0 /s. It collides with a 0.0 kg ass sitting still. Gien that the collision is perectly elastic, deterine the inal elocities o each o the asses. Solutions Question A 4.0 kg ass is oing to the right at.0 /s. It collides with a 0.0 kg ass sitting still. Gien that the collision is perectly elastic, deterine the inal elocities o each o the asses. Conseration o oentu p p i i i 4.0kg kg 0kg s kg kg 0kg s Conseration o Energy Oh No, we Khae i K unknowns. I only there i was another i equation. 4.0kg kg 0kg s 6.0J 4.0kg 0kg Question A 4.0 kg ass is oing to the right at.0 /s. It collides with a 0.0 kg ass sitting still. Gien that the collision is perectly elastic, deterine the inal elocities o each o the asses. L Ballistic Pendulu L L L =0 kg kg s 0kg 6.0J 4.0kg 0kg kg kg 0kg s kg 8.0-0kg s 4. 0kg kg 8.0-0kg s J kg 0kg 4. 0kg s kg 8.0-0kg.4 s s 4. 0kg -0.8 A projectile o ass oing horizontally with speed strikes a stationary ass suspended by strings o length L. Subsequently, + rise to a height o H. Gien H, what is the initial speed o the projectile? H + SPH4U: Lecture 4, Pg 36 Page 9

10 Two stage process: Ballistic Pendulu.... collides with, inelastically. Both and then oe together with a elocity (beore haing risen signiicantly).. and rise a height H, consering K+U energy E. (no non-conseratie orces acting ater collision) Ballistic Pendulu... Stage : oentu is consered in -direction: ( ) Stage : K+U Energy is consered ( EI EF ) ( ) ( ) gh gh Eliinating gies: gh SPH4U: Lecture 4, Pg 37 SPH4U: Lecture 4, Pg 38 Page 0

Chapter 9 Centre of Mass and Linear Momentum

Chapter 9 Centre of Mass and Linear Momentum Chater 9 Centre o Mass and Linear Moentu Centre o ass o a syste o articles / objects Linear oentu Linear oentu o a syste o articles Newton s nd law or a syste o articles Conseration o oentu Elastic and

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

Physics 1501 Lecture 17

Physics 1501 Lecture 17 Physics 50: Lecture 7 Today s Agenda Homework #6: due Friday Midterm I: Friday only Topics Chapter 9» Momentum» Introduce Collisions Physics 50: Lecture 7, Pg Newton s nd Law: Chapter 9 Linear Momentum

More information

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f CHAPTER 7 IMPULSE AND MOMENTUM PROLEMS. REASONING According to the ipulse-oentu theore, the rocket s inal oentu diers ro its initial oentu by an aount equal to the ipulse ( ΣF ) o the net orce eerted on

More information

Phys101 Lectures 13, 14 Momentum and Collisions

Phys101 Lectures 13, 14 Momentum and Collisions Phs0 Lectures 3, 4 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 7-,,3,4,5,6,7,8,9,0. Page Moentu is a vector:

More information

Physics 211: Lecture 14. Today s Agenda

Physics 211: Lecture 14. Today s Agenda Physics 211: Lecture 14 Today s Agenda Systems of Particles Center of mass Linear Momentum Example problems Momentum Conservation Inelastic collisions in one dimension Ballistic pendulum Physics 211: Lecture

More information

General Physics I Momentum

General Physics I Momentum General Physics I Momentum Linear Momentum: Definition: For a single particle, the momentum p is defined as: p = mv (p is a vector since v is a vector). So p x = mv x etc. Units of linear momentum are

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

Physics Momentum: Collisions

Physics Momentum: Collisions F A C U L T Y O F E D U C A T I O N Departent o Curriculu and Pedagogy Physics Moentu: Collisions Science and Matheatics Education Research Group Supported by UBC Teaching and Learning Enhanceent Fund

More information

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision Physics 131: Lecture 16 Today s Agenda Elastic Collisions Definition Exaples Work and Energy Definition of work Exaples Physics 01: Lecture 10, Pg 1 Collisions Moentu is alost always consered during as

More information

Work and Energy Problems

Work and Energy Problems 09//00 Multiple hoice orce o strength 0N acts on an object o ass 3kg as it oes a distance o 4. I is perpendicular to the 4 displaceent, the work done is equal to: Work and Energy Probles a) 0J b) 60J c)

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE

More information

One Dimensional Collisions

One Dimensional Collisions One Diensional Collisions These notes will discuss a few different cases of collisions in one diension, arying the relatie ass of the objects and considering particular cases of who s oing. Along the way,

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

CHAPTER 7 IMPULSE AND MOMENTUM

CHAPTER 7 IMPULSE AND MOMENTUM CHAPTER 7 IMPULSE AND MOMENTUM PROBLEMS 1. SSM REASONING The ipulse that the olleyball player applies to the ball can be ound ro the ipulse-oentu theore, Equation 7.4. Two orces act on the olleyball while

More information

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 8IDENTIFY and SET U: p = K = EXECUTE: (a) 5 p = (, kg)( /s) = kg /s 5 p kg /s (b) (i) = = = 6 /s (ii) kg =, so T T SUV SUV, kg ( /s) 68 /s T SUV = T = = SUV kg EVALUATE:The SUV ust hae less speed to hae

More information

CHAPTER 7 IMPULSE AND MOMENTUM

CHAPTER 7 IMPULSE AND MOMENTUM CHAPTER 7 IMPULSE AND MOMENTUM CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The linear oentu p o an object is the product o its ass and its elocity. Since the autoobiles are identical, they hae the sae

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

CHAPTER 4. Impulse and momentum. CHAPTER s Objectives

CHAPTER 4. Impulse and momentum. CHAPTER s Objectives 60 CHAPTER 4 Impulse and momentum CHAPTER s Objectives To understand the interaction between objects through the impulse and momentum concepts To introduce the law o conservation o momentum, and apply

More information

UNIT HOMEWORK MOMENTUM ANSWER KEY

UNIT HOMEWORK MOMENTUM ANSWER KEY UNIT HOMEWORK MOMENTUM ANSWER KEY MOMENTUM FORMULA & STUFF FROM THE PAST: p = v, TKE = ½v 2, d = v t 1. An ostrich with a ass of 146 kg is running to the right with a velocity of 17 /s. a. Calculate the

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

Conservation of Momentum

Conservation of Momentum Conseration of Moentu We left off last with the idea that when one object () exerts an ipulse onto another (), exerts an equal and opposite ipulse onto. This happens in the case of a classic collision,

More information

CHAPTER 7: Linear Momentum

CHAPTER 7: Linear Momentum CHAPTER 7: Linear Moentu Solution Guide to WebAssign Probles 7.1 [1] p v ( 0.08 kg) ( 8.4 s) 0.4 kg s 7. [] Fro Newton s second law, p Ft. For a constant ass object, p v. Equate the two expression for

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

A B B A. the speed of the bat doesn t change significantly during the collision. Then the velocity of the baseball after being hit is v

A B B A. the speed of the bat doesn t change significantly during the collision. Then the velocity of the baseball after being hit is v CHPTER 7: Linear oentu nswers to Questions. For oentu to be consered, the syste under analysis ust be closed not hae any forces on it fro outside the syste. coasting car has air friction and road friction

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Physics 231 Lecture 13

Physics 231 Lecture 13 Physics 3 Lecture 3 Mi Main points it o td today s lecture: Elastic collisions in one diension: ( ) v = v0 + v0 + + ( ) v = v0 + v0 + + Multiple ipulses and rocket propulsion. F Δ t = Δ v Δ v propellant

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant JUST IN TIME TEACHING E-ail or bring e your questions prior

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS GeneralPhysics I for the Life Sciences W O R K N D E N E R G Y D R. E N J M I N C H N S S O C I T E P R O F E S S O R P H Y S I C S D E P R T M E N T J N U R Y 0 4 Questions and Probles for Conteplation

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Physics 11 HW #7 Solutions

Physics 11 HW #7 Solutions hysics HW #7 Solutions Chapter 7: Focus On Concepts: 2, 6, 0, 3 robles: 8, 7, 2, 22, 32, 53, 56, 57 Focus On Concepts 7-2 (d) Moentu is a ector quantity that has a agnitude and a direction. The agnitudes

More information

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about!

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about! Collisions (L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details of the

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

before the collision and v 1 f and v 2 f after the collision. Since conservation of the linear momentum

before the collision and v 1 f and v 2 f after the collision. Since conservation of the linear momentum Lecture 7 Collisions Durin the preious lecture we stared our discussion of collisions As it was stated last tie a collision is an isolated eent in which two or ore odies (the collidin odies) exert relatiely

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion AP Physics Mechanics Chapter 6 Momentum and Collisions Text chapter 6 - Reading pp. 141-161 - textbook HW -- #1,3,4,6,9,15,16,20,21,23,26,27,25,34,63,70,71 1 6.1 Momentum and Impulse A. What is momentum?

More information

Tutorial 1 Calculating the Kinetic Energy of a Moving Object

Tutorial 1 Calculating the Kinetic Energy of a Moving Object 5. Energy As you learned in Section 5.1, mechanical work is done by applying orces on objects and displacing them. How are people, machines, and Earth able to do mechanical work? The answer is energy:

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Classical Mechanics Lecture 11

Classical Mechanics Lecture 11 Classical Mechanics Lecture 11 Today s Examples Center of Mass Today s Concept: Conservation of Momentum Inelastic Collisions Mechanics Lecture 11, Slide 1 Unit 10 Homework Problems Mechanics Lecture 10,

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index.

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index. Page 1 of 6 1. A certain string just breaks when it is under 400 N of tension. A boy uses this string to whirl a 10-kg stone in a horizontal circle of radius 10. The boy continuously increases the speed

More information

Today s topic: IMPULSE AND MOMENTUM CONSERVATION

Today s topic: IMPULSE AND MOMENTUM CONSERVATION Today s topic: IMPULSE ND MOMENTUM CONSERVTION Reiew of Last Week s Lecture Elastic Potential Energy: x: displacement from equilibrium x = 0: equilibrium position Work-Energy Theorem: W tot W g W el W

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a Collisions Worksheet Honors: Name: Date: 1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,900-kg truck moving in the same direction

More information

Lesson 27 Conservation of Energy

Lesson 27 Conservation of Energy Physics 0 Lesson 7 Conservation o nergy In this lesson we will learn about one o the ost powerul tools or solving physics probles utilizing the Law o Conservation o nergy. I. Law o Conservation o nergy

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Physics 20 Lesson 18 Pulleys and Systems

Physics 20 Lesson 18 Pulleys and Systems Physics 20 Lesson 18 Pulleys and Systes I. Pulley and syste probles In this lesson we learn about dynaics probles that involve several asses that are connected and accelerating together. Using the pulley

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

We last left off by talking about how the area under a force vs. time curve is impulse.

We last left off by talking about how the area under a force vs. time curve is impulse. Lecture 11 Ipulse and Moentu We last left off by talking about how the area under a force vs. tie curve is ipulse. Recall that for our golf ball we had a strongly peaked force curve: F F avg t You have

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Applied Physics I (Phys 182)

Applied Physics I (Phys 182) Applied Physics I (Phys 182) Dr. Joseph J. Trout E-ail: joseph.trout@drexel.edu Cell: (610)348-6495 Office: Disque 902 1 Moentu Ipulse Conservation of Moentu Explosions Inelastic Collisions Elastic Collisions

More information

1. The 200-kg lunar lander is descending onto the moon s surface with a velocity of 6 m/s when its retro-engine is fired. If the engine produces a

1. The 200-kg lunar lander is descending onto the moon s surface with a velocity of 6 m/s when its retro-engine is fired. If the engine produces a PROLEMS. The -kg lunar lander is descending onto the oon s surface with a elocit of 6 /s when its retro-engine is fired. If the engine produces a thrust T for 4 s which aries with the tie as shown and

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

Conservation of Linear Momentum, Collisions

Conservation of Linear Momentum, Collisions Conseration of Linear Momentum, Collisions 1. 3 kg mass is moing with an initial elocity i. The mass collides with a 5 kg mass m, which is initially at rest. Find the final elocity of the masses after

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Momentum in 1-Dimension

Momentum in 1-Dimension Momentum in 1-Dimension Level : Physics I Date : Warm-up Questions If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack to stop, which would you

More information

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left Momentum A ball bounces off the floor as shown. The direction of the impulse on the ball,, is... A: B: C: D: straight up straight down to the right to the left This is also the direction of Momentum A

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

CHAPTER 9 LINEAR MOMENTUM AND COLLISION CHAPTER 9 LINEAR MOMENTUM AND COLLISION Couse Outline : Linear momentum and its conservation Impulse and Momentum Collisions in one dimension Collisions in two dimension The center of mass (CM) 9.1 Linear

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

Physics 207 Lecture 12. Lecture 12

Physics 207 Lecture 12. Lecture 12 Lecture 12 Goals: Chapter 8: Solve 2D motion problems with friction Chapter 9: Momentum & Impulse v Solve problems with 1D and 2D Collisions v Solve problems having an impulse (Force vs. time) Assignment:

More information

Physics Chapter 6. Momentum and Its Conservation

Physics Chapter 6. Momentum and Its Conservation Physics Chapter 6 Moentu and Its Conservation Linear Moentu The velocity and ass of an object deterine what is needed to change its otion. Linear Moentu (ρ) is the product of ass and velocity ρ =v Unit

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

1. The property of matter that causes an object to resist changes in its state of motion is called:

1. The property of matter that causes an object to resist changes in its state of motion is called: SPH3U Exa Review 1. The property of atter that causes an object to resist changes in its state of otion is called: A. friction B. inertia C. the noral force D. tension 1. The property of atter that causes

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

Lecture 11. Linear Momentum and Impulse. Collisions.

Lecture 11. Linear Momentum and Impulse. Collisions. Lecture 11 Linear Momentum and Impulse. Collisions. Momentum and Newton s Second Law F net = m a= m Δ v Δ t = Δ (m v ) Δ t = Δ p Δ t Linear momentum p = m v Newton s second law in terms of linear momentum:

More information

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem Today Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem System of particles Conservation of Momentum 1 Data : Fatality of a driver in head-on collision

More information

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum Physics 100 Today Finish Chapter 5: Newton s 3 rd Law Chapter 6: Momentum Momentum = inertia in motion Specifically, momentum = mass x velocity = m v Eg. Just as a truck and a roller skate have different

More information

SOLUTIONS TO CONCEPTS CHAPTER 9

SOLUTIONS TO CONCEPTS CHAPTER 9 SOUTIONS TO CONCEPTS CHPTER 9. kg, kg, kg, x 0, x, x / y 0, y 0, y / The position of centre of ass is C. x x x y y y, ( 0) ( ) ( / ) ( 0) ( 0) ( (, 7, fro the point B. / )). et be the origin of the syste

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

T = 2.34x10 6 s = 27.2days.

T = 2.34x10 6 s = 27.2days. Sole the following probles in the space proided Use the back of the page if needed Each proble is worth 10 points You ust show your work in a logical fashion starting with the correctly applied and clearly

More information

Physics Test VI Chapter 7 Impulse and Momentum

Physics Test VI Chapter 7 Impulse and Momentum Physics Test VI Chapter 7 Impulse and Momentum Name: Date: Period: Honor Pledge On my honor as a student I have neither given nor received aid on this test Sign Below HW Grade: Test Grade / Mr. Stark Loudoun

More information

Physics 201: Lecture 14, Pg 1

Physics 201: Lecture 14, Pg 1 Physics 201: Lecture 14, Pg 1 Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant forces Impulse-momentum thm Conservation of Linear

More information

Chapter 7 LINEAR MOMENTUM

Chapter 7 LINEAR MOMENTUM Chapter 7 LINEAR MOMENTUM Conceptual Questions 1 The likelihood of injur resulting fro juping fro a second floor window is priaril deterined b the aerage force acting to decelerate the bod (a) The deceleration

More information

Chap. 8: Collisions and Momentum Conservation

Chap. 8: Collisions and Momentum Conservation Chap. 8: Collisions and Momentum Conservation 1. System in Collision and Explosion C.M. 2. Analysis of Motion of System (C.M.) Kinematics and Dynamics Conservation between Before and After a) b) Energy

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum Chapter 6 Work & Energy

More information

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information