Chapter 3 Motion in a Plane

Size: px
Start display at page:

Download "Chapter 3 Motion in a Plane"

Transcription

1 Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related to the ector s magnitude. Scalars onl hae magnitude. We write = B if the ectors hae the same magnitude and point in the same direction. Scalars can hae magnitude, algebraic sign, and units. dding scalars is er familiar. You add 10 grams to 15 grams and get 5 grams. You hae $0 and gie $5 to friend and ou hae $15 remaining. Vector addition is different since ectors hae direction as well as magnitude. How do we add ectors? We alread know how to add ectors in one dimension (along the -ais for eample). B +B What happened? The ector B is positioned so that the tail of B is positioned at the head of. The ector sum is drawn from the tail of to the head of B. If is 8 m long and B is 10 m long, the magnitude of +B is 18 m. What if B is reersed? B +B What is the magnitude of +B? Here we see a hint of the problem. Vector do not add like scalars. How do we add ectors that do not point along the same direction?

2 1. Draw the first ector in the correct direction and with the appropriate magnitude.. Draw the second ector with the correct direction and magnitude so that its tail is placed at the head of the first ector. 3. If there is a third ector, draw it with the correct direction and magnitude to that its tail is placed at the head of the second ector. 4. When finished with all the ectors, find the ector sum b drawing a ector that starts at the tail of the first ector and ends at the head of the last ector. How do we subtract ectors? Use B = +( B). What is a reasonable definition for B? The negatie of a ector has the same magnitude as the original ector but points in the opposite direction. The idea of ectors is built from the idea of displacement. In the diagram aboe, imagine that ou are in a forest. is our walk to a tree and B is our walk from the first tree to a friend ou see across the forest. +B is our net displacement from our starting point. nother eample: This procedure is called the graphical addition of ectors. You need to understand this procedure. Howeer, it is too slow and imprecise to be used in soling problems.

3 We add ectors b taking their components. The process is summarized in this figure. We are adding two ectors that are not collinear. We replace each ector with two ectors (called its components). We then add like components together, giing the components of the ector sum. What happens net? C C C We add C and C to find C. Since the - and -aes are perpendicular, we can find the magnitude of C from the Pthagorean theorem, C C C The direction is normall measured counterclockwise from the +-ais. For this ector in the nd quadrant, first find arctan C C and then subtract from 180º. (Wh?) How do we find the components of a ector? s an eample suppose has magnitude 0 N and it points at 40º. s the following diagram shows, we are dealing with a right triangle. To find the components we need to use trigonometr. Recall, cos adjacent hpotenuse sin opposite hpotenuse tan opposite adjacent

4 =40 o Using the definitions of cosine and sine, cos sin adjacent hpotenuse cos (0N) cos40 opposite hpotenuse sin (0N)sin N 1.9 N Wh is >? When are the equal? Suppose we had this picture. What would ou do? =50 o (0N)sin50 (0N) cos N 1.9 N Usuall we hae cosine associated with -components and sine associated with -components, but not alwas. You hae to look at the diagram. ( er common remark for this semester!) Problem-Soling Strateg: Finding the - and -components of a Vector from its Magnitude and Direction (page 60) 1. Draw a right triangle with the ector as the hpotenuse and the other two sides parallel to the - and -aes.. Determine one of the unknown angles in the triangle. 3. Use trigonometric functions to find the magnitudes of the components. Make sure our calculator is in degree mode to ealuate trigonometric functions of angles in degrees and in radian mode for angles in radians. 4. Determine the correct algebraic sign for each component.

5 Problem-Soling Strateg: Finding the Magnitude and Direction of a Vector from its - and -components (page 60) 1. Sketch the ector on a set of - and -aes in the correct quadrant, according to the signs of the components.. Draw a right triangle with the ector as the hpotenuse and the other two sides parallel to the - and -aes. 3. In the right triangle, choose which of the unknown angles ou want to determine. 4. Use the inerse tangent function to find the angle. The lengths of the sides of the triangle represent and. If is opposite the side parallel the side perpendicular to the - ais, then tan = opposite/adjacent = /. If is opposite the side parallel the side perpendicular to the -ais, then tan = opposite/adjacent = /. If our calculator is in degree mode, then the result of the inerse tangent will be in degrees. [In general, the inerse tangent has has two possible alues between 0 and 360º because tan = tan ( + 180º). Howeer, when the inerse tangent is used to find one of the angles in a right triangle, the result can neer be greater than 90º, so the alue the calculator returns is the one ou want. 5. Interpret the angle: specif whether it is the angle below the horizontal, or the angle west of south, or the angle clockwise from the negatie -ais, etc. 6. Use the Pthagorean theorem to find the magnitude of the ector. Problem-Soling Strateg: dding Vectors Using Components (page 61) 1. Find the - and -components of each ector to be added.. dd the -components (with their algebraic signs) of the ectors to find the -component of the sum. (If the signs are not correct, the sum will not be correct. 3. dd the -components (with their algebraic signs) of the ectors to find the -component of the sum. 4. If necessar, use the - and -components of the sum to find the magnitude and direction of the sum. Een when using the component method to add ectors, the graphical method is an important first step. Graphical addition gies ou a mental picture of what is going on. problem can be made easier to sole with a good choice of aes. Common choices are -ais horizontal and -ais ertical, when the ectors all lie in the ertical plane; -ais east and -ais north, when the ectors lie in a horizontal plane; and -ais parallel to an inclined surface and -ais perpendicular to it. Read the section on unit ectors on pages We will not use the unit ector approach, but ou ma be familiar with it. Now let s use the concept of ectors to etend the kinematical ariables to more dimensions.

6 erage elocit is the displacement oer the time, a r t Instantaneous elocit is r lim t 0 t The elocit is tangent to the path of the particle. The aerage acceleration is a a t Instantaneous acceleration is a lim t 0 t For straight-line motion the acceleration is alwas along the same line as the elocit. For motion in two dimensions, the acceleration ector can make an angle with the elocit ector because the elocit ector and change in magnitude, in direction, or both. The direction of the during a er short time. The aboe definitions look good, but the are not useful. We call these formal definitions. The are not used in soling problems. Instead we need a set of definitions for the - and - components. The basic rule is WE DO NOT DEL WITH VECTORS. WE DEL WITH THEIR COMPONENTS. For the elocit, we hae

7 , a, t a t with similar definitions for the other parameters. (See pages ) We can now generalize the equations at the top of these notes to two dimensions. It is generall easiest to choose the aes so that the acceleration has onl one non-zero component. We choose the -ais along the direction of acceleration. This means a = 0. f i a t becomes 0 and f i a t 1 ( ) t f i becomes 1 t and ( f i) t t i 1 ) a ( t becomes t and t 1 ) a ( t f a i becomes f 0 and a i Summar: -ais : a = 0 -ais: constant a Equation 0 a t (3-19) f t ( f i) t (3-0) 1 ) t a ( t (3-1) i f i a (3-) f i

8 Projectiles are a good eample of this tpe of motion. Here a = g. This motion is simultaneous constant elocit in the -direction and constant acceleration in the -direction. Relatie elocit is a great eample of adding ectors. Hae ou eer had this happen to ou? While sitting in our car at a red traffic light, the car beside ou slowl drifts forward. You mash on the brake to stop our car from rolling backwards, but our car is not moing. Within our enironment, there is no wa to distinguish between our car moing backwards and the car besides ou moing forward. The elocit is relatie. We need a reference frame (the traffic light, for eample) to define who is moing.

9 The train moes at 10 m/s and Wanda can walk at 1 m/s. How fast will Greg see Wanda walk? Wanda s elocit relatie to Greg is the sum of the elocit of the Wanda relatie to the train plus the elocit of train relatie to Greg. WG Notice the order of the subscripts. We hae the Ts cancelling from the two terms on the right. This equation will alwas hold, but how do we use it? What is our rule about ectors? WT WE DO NOT DEL WITH VECTORS. WE DEL WITH THEIR COMPONENTS. Take the -component: WG WT 11m/s TG TG ( 1m/s) ( 10m/s) Greg sees Wanda walking to the right at 11 m/s. What happens when she walks back to her seat? WG WT ( 1m/s) ( 10m/s) 9m/s ccording to Greg, Wanda is walking at 9 m/s to the right. Hopefull, this is prett eas. But what about this? From Eample Jack wants to row directl across the rier from the east shore to a point on the west shore. The current 0.60 m/s and Jack can row at 0.90 m/s. What direction must he point the boat and what is his elocit across the rier? The elocit of the rowboat relatie to the shore is equal to the elocit of the rowboat relatie to the water plus the elocit of the water relatie to the shore. RS The rowboat is to head directl to the west. WS TG

10 Take components. RS and WS RS WS The diagram is the ke to soling relatie elocit problems. For the -component, RS RS WS cos 0 cos The -component, RS 0 WS WS sin sin WS Our unknowns are and RS. From the -component equation, WS sin WS 0.6 m/s 0.9 m/s sin From the -component equation. RS cos (0.90m/s)cos m/s

11 The boat must point 41.8º N of W upstream. Its speed across the water is 0.67 m/s.

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions Pearson Phsics Leel 0 Unit I Kinematics: Chapter Solutions Student Book page 71 Skills Practice Students answers will ar but ma consist of: (a) scale 1 cm : 1 m; ector will be 5 cm long scale 1 m forward

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Introduction to vectors

Introduction to vectors Lecture 4 Introduction to vectors Course website: http://facult.uml.edu/andri_danlov/teaching/phsicsi Lecture Capture: http://echo360.uml.edu/danlov2013/phsics1fall.html 95.141, Fall 2013, Lecture 3 Outline

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric Trigonometric equations 6 sllabusref eferenceence Topic: Periodic functions and applications In this cha 6A 6B 6C 6D 6E chapter Simple trigonometric equations Equations using radians Further trigonometric

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Trigonometric Functions

Trigonometric Functions TrigonometricReview.nb Trigonometric Functions The trigonometric (or trig) functions are ver important in our stud of calculus because the are periodic (meaning these functions repeat their values in a

More information

Vectors. An Introduction

Vectors. An Introduction Vectors An Introduction There are two kinds of quantities Scalars are quantities that have magnitude only, such as position speed time mass Vectors are quantities that have both magnitude and direction,

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Lecture 3. Motion in more than one dimension

Lecture 3. Motion in more than one dimension 4/9/19 Phsics 2 Olga Dudko UCSD Phsics Lecture 3 Toda: The vector description of motion. Relative Motion. The principle of Galilean relativit. Motion in more than one dimension 1D: position is specified

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Motion In Two Dimensions. Vectors in Physics

Motion In Two Dimensions. Vectors in Physics Motion In Two Dimensions RENE DESCARTES (1736-1806) GALILEO GALILEI (1564-1642) Vectors in Physics All physical quantities are either scalars or ectors Scalars A scalar quantity has only magnitude. In

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

CHAPTER-OPENING QUESTION

CHAPTER-OPENING QUESTION g B This snowboarder fling through the air shows an eample of motion in two dimensions. In the absence of air resistance, the path would be a perfect parabola. The gold arrow represents the downward acceleration

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

Physics 20 Lesson 11 Vector Addition Components

Physics 20 Lesson 11 Vector Addition Components Phsics 20 Lesson 11 Vector ddition Components In Lesson 10 we learned how to add vectors which were perpendicular to one another using vector diagrams, Pthagorean theor, and the tangent function. What

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Chapter 8 Scalars and vectors

Chapter 8 Scalars and vectors Chapter 8 Scalars and vectors Heinemann Physics 1 4e Section 8.1 Scalars and vectors Worked example: Try yourself 8.1.1 DESCRIBING VECTORS IN ONE DIMENSION west east + 50 N Describe the vector using: a

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( )

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( ) Main points of toda s lecture: Eample: addition of elocities Trajectories of objects in dimensions: Phsic 31 Lecture 5 ( ) t g gt t t gt o 1 1 downwards 9.8 m/s g Δ Δ Δ + Δ Motion under Earth s graitational

More information

Radian Measure and Angles on the Cartesian Plane

Radian Measure and Angles on the Cartesian Plane . Radian Measure and Angles on the Cartesian Plane GOAL Use the Cartesian lane to evaluate the trigonometric ratios for angles between and. LEARN ABOUT the Math Recall that the secial triangles shown can

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems Phsics for Scientists and Engineers Chapter 3 Vectors and Coordinate Sstems Spring, 2008 Ho Jung Paik Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists of a

More information

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S.

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S. PHYS 100: Lecture 3 VECTORS A C B r r r C = A + B j i A i C B i B y j A y j C = A + B C = A + B y y y RELATIVE MOTION in 2- W S W W S SG uuur uur uur = + SG S W Physics 100 Lecture 3, Slide 1 Who is the

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Chapter 3 MOTION IN A PLANE

Chapter 3 MOTION IN A PLANE Chapter 3 MOTION IN A PLANE Conceptual Questions 1. No; to be equal the must also hae the same direction. If the magnitudes are different, the cannot be equal.. (a) Yes, since the direction matters. One

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3 Solutions to Phsics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTE 3 1. We choose the west and south coordinate sstem shown. For the components of the resultant we have W W = D 1 + D cos

More information

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3.

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3. Chapter Reiew, pages 90 95 Knowledge 1. (b). (d) 3. (b) 4. (a) 5. (b) 6. (c) 7. (c) 8. (a) 9. (a) 10. False. A diagram with a scale of 1 cm : 10 cm means that 1 cm on the diagram represents 10 cm in real

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER CHAPTER 3 VECTORS 3-1 What is Physics? Physics deals with a great many quantities that have both size and direction, and it needs a special mathematical language the language of vectors to describe those

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions This section reviews radian measure and the basic trigonometric functions. C ' θ r s ' ngles ngles are measured in degrees or radians. The number of radians in the central angle

More information

Lecture #4: Vector Addition

Lecture #4: Vector Addition Lecture #4: Vector Addition ackground and Introduction i) Some phsical quantities in nature are specified b onl one number and are called scalar quantities. An eample of a scalar quantit is temperature,

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

sin! =! d y =! d T ! d y = 15 m = m = 8.6 m cos! =! d x ! d x ! d T 2 =! d x 2 +! d y =! d x 2 +! d y = 27.2 m = 30.0 m tan! =!

sin! =! d y =! d T ! d y = 15 m = m = 8.6 m cos! =! d x ! d x ! d T 2 =! d x 2 +! d y =! d x 2 +! d y = 27.2 m = 30.0 m tan! =! Section. Motion in Two Dimensions An Algebraic Approach Tutorial 1 Practice, page 67 1. Gien d 1 = 7 m [W]; d = 35 m [S] Required d T Analysis d T = d 1 + d Solution Let φ represent the angle d T with

More information

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013 Eam Review Practice Questions for Midterm - Math 060Q - Fall 0 The following is a selection of problems to help prepare ou for the second midterm eam. Please note the following: anthing from Module/Chapter

More information

Lesson 4: Relative motion, Forces, Newton s laws (sections )

Lesson 4: Relative motion, Forces, Newton s laws (sections ) Lesson 4: Relate moton, Forces, Newton s laws (sectons 3.6-4.4) We start wth a projectle problem. A olf ball s ht from the round at 35 m/s at an anle of 55º. The round s leel.. How lon s the ball n the

More information

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension Phsics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension What concepts did ou find most difficult, or what would ou like to be sure we discuss in lecture? Acceleration vectors. Will ou go over

More information

Lesson 6.2 Exercises, pages

Lesson 6.2 Exercises, pages Lesson 6.2 Eercises, pages 448 48 A. Sketch each angle in standard position. a) 7 b) 40 Since the angle is between Since the angle is between 0 and 90, the terminal 90 and 80, the terminal arm is in Quadrant.

More information

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS The moment of truth has arrived! To discuss objects that move in something other than a straight line we need vectors. VECTORS Vectors

More information

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4. Chapter 3 Solutions *3.1 = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.76 m 3.2 (a) d = ( 2 1 ) 2 + ( 2 1 ) 2 = (2.00 [ 3.00] 2 ) + ( 4.00 3.00)

More information

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y Assessment Chapter Test B Teacher Notes and Answers Two-Dimensional Motion and Vectors CHAPTER TEST B (ADVANCED) 1. b 2. d 3. d x 1 = 3.0 10 1 cm east y 1 = 25 cm north x 2 = 15 cm west x tot = x 1 + x

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

Vectors in Two Dimensions

Vectors in Two Dimensions Vectors in Two Dimensions Introduction In engineering, phsics, and mathematics, vectors are a mathematical or graphical representation of a phsical quantit that has a magnitude as well as a direction.

More information

Vector Addition and Subtraction: Graphical Methods

Vector Addition and Subtraction: Graphical Methods Vector Addition and Subtraction: Graphical Methods Bởi: OpenStaxCollege Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai i to

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

Blue and purple vectors have same magnitude and direction so they are equal. Blue and green vectors have same direction but different magnitude.

Blue and purple vectors have same magnitude and direction so they are equal. Blue and green vectors have same direction but different magnitude. A ector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the ector represents the magnitude and the arrow indicates the direction of the ector. Blue and

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

Vectors v Scalars. Physics 1 st Six Weeks

Vectors v Scalars. Physics 1 st Six Weeks Vectors v Scalars Physics 1 st Six Weeks An Appetizer to Start... Vectors vs. Scalars In Physics all quantities are in two categories: scalars & vectors. Scalar quantities are described by magnitude (i.e.

More information

8.0 Definition and the concept of a vector:

8.0 Definition and the concept of a vector: Chapter 8: Vectors In this chapter, we will study: 80 Definition and the concept of a ector 81 Representation of ectors in two dimensions (2D) 82 Representation of ectors in three dimensions (3D) 83 Operations

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

Space Coordinates and Vectors in Space. Coordinates in Space

Space Coordinates and Vectors in Space. Coordinates in Space 0_110.qd 11//0 : PM Page 77 SECTION 11. Space Coordinates and Vectors in Space 77 -plane Section 11. -plane -plane The three-dimensional coordinate sstem Figure 11.1 Space Coordinates and Vectors in Space

More information

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ?

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ? VECTOS EVIEW Solve the following geometric problems. a. Line touches the circle at a single point. Line etends through the center of the circle. i. What is line in reference to the circle? ii. How large

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces 2-9. The plate is subjected to the forces acting on members A and B as shown. If θ 60 o, determine the magnitude of the resultant of these forces and its direction measured clockwise from the positie x

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

different formulas, depending on whether or not the vector is in two dimensions or three dimensions.

different formulas, depending on whether or not the vector is in two dimensions or three dimensions. ectors The word ector comes from the Latin word ectus which means carried. It is best to think of a ector as the displacement from an initial point P to a terminal point Q. Such a ector is expressed as

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Vocabulary. The Pythagorean Identity. Lesson 4-3. Pythagorean Identity Theorem. Mental Math

Vocabulary. The Pythagorean Identity. Lesson 4-3. Pythagorean Identity Theorem. Mental Math Lesson 4-3 Basic Basic Trigonometric Identities Identities Vocabular identit BIG IDEA If ou know cos, ou can easil fi nd cos( ), cos(90º - ), cos(180º - ), and cos(180º + ) without a calculator, and similarl

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 3-7: PROJECTILE MOTION IS PARABOLIC LSN 3-8: RELATIVE VELOCITY Questions From Reading Actiity? Big Idea(s): The interactions of an object with other

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 00 Lecture #6 Monday, Feb. 4, 008 Examples for 1-Dim kinematic equations Free Fall Motion in Two Dimensions Maximum ranges and heights Today s homework is homework #3, due 9pm, Monday,

More information