A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

Size: px
Start display at page:

Download "A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of"

Transcription

1 Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this assignent. Exercise 14.2 Description: If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced a distance ## fro its equilibriu position and released with zero initial speed. Then after a tie ## s... If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced a distance fro its equilibriu position and released with zero initial speed. Then after a tie s its displaceent is found to be a distance on the opposite side, and it has passed the equilibriu position once during this interval. Find the aplitude. A = = Find the period. T = = 1.61 s Find the frequency. f = = Hz Exercise 14.9 Description: A body of unknown ass is attached to an ideal spring with force constant ## N/. It is found to vibrate with a frequency of ## Hz. (a) Find the period. (b) Find the angular frequency. (c) Find the ass of the body. A body of unknown ass is attached to an ideal spring with force constant 123 N/. It is found to vibrate with a frequency of 5.95 Hz. 1/12

2 Find the period. T = = s Find the angular frequency. ω = = 37.4 rad/s Find the ass of the body. Express your answer using two significant figures. = = kg Exercise Description: An object is undergoing SHM with period T and aplitude At t = 0, the object is at x = and is instantaneously at rest. (a) Calculate the tie it takes the object to go fro x = 0.320, to x = (b) Calculate the tie it... An object is undergoing SHM with period s and aplitude At t = 0, the object is at x = and is instantaneously at rest. Calculate the tie it takes the object to go fro x = 0.320, to x = Express your answer with the appropriate units. t = = /12

3 Calculate the tie it takes the object to go fro x = 0.160, to x = 0. Express your answer with the appropriate units. t = = Exercise Description: A frictionless block of ass ## kg is attached to an ideal spring with force constant ## N/. At t=0 the spring is neither stretched nor copressed and the block is oving in the negative direction at a speed of ## /s. (a) Find the aplitude. (b)... A frictionless block of ass 2.15 kg is attached to an ideal spring with force constant 260 N/. At t = 0 the spring is neither stretched nor copressed and the block is oving in the negative direction at a speed of 12.5 /s. Find the aplitude. A = = 1.14 Find the phase angle. ϕ = 1.57 rad Write an equation for the position as a function of tie. x = ( 1.14 )sin(( 11.0 rad/s )t) x = ( 1.14 )cos(( 11.0 rad/s )t) x = ( 11.0 )sin(( 1.14 rad/s)t) x = ( 11.0 )cos(( 1.14 rad/s)t) Exercise /12

4 Description: A 2.00 kg, frictionless block is attached to an ideal spring with force constant 300 N/. At t = 0 the block has velocity 4.00 /s and displaceent (a) Find (a) the aplitude and (b) the phase angle. (b)... (c) Write an equation for the... A 2.00 kg, frictionless block is attached to an ideal spring with force constant 300 N/. At t = 0 the block has velocity 4.00 /s and displaceent Find (a) the aplitude and (b) the phase angle. A = ϕ = 1.02 rad Write an equation for the position as a function of tie. Assue x (t) in eters and t in seconds. x (t) = Also accepted:, Exercise Description: A ass on a spring has displaceent as a function of tie given by the equation x( t ) = ( (7.40 ( c)) ) cos ( (( (4.16 ( rad/s) ) )t 2.42 (rad)) ). (a) Find the tie for one coplete vibration. (b) Find the force constant of the spring. (c... A 1.30 kg ass on a spring has displaceent as a function of tie given by the equation x(t) = (7.40 c) cos [(4.16 rad/s)t 2.42 rad]. Find the tie for one coplete vibration. T = 1.51 s 4/12

5 Find the force constant of the spring. k = = 22.5 N/ Find the axiu speed of the ass. v ax = /s Part D Find the axiu agnitude of force on the ass. F ax = = 1.67 N Part E Find the position of the ass at t = 1.00 s; x = Part F Find the speed of the ass at t = 1.00 s; v = /s Part G Find the agnitude of acceleration of the ass at t = 1.00 s; 5/12

6 a = /s 2 Part H Find the agnitude of force on the ass at t = 1.00 s; F = = N Also accepted: = Exercise Description: A toy of ass ## kg is undergoing SHM on the end of a horizontal spring with force constant k=## N/. When the toy is a distance ## fro its equilibriu position, it is observed to have a speed of ## /s. (a) What is the toy's total... A toy of ass kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/. When the toy is a distance fro its equilibriu position, it is observed to have a speed of /s. What is the toy's total energy at any point of its otion? Express your answer with the appropriate units. E = = What is the toy's aplitude of the otion? Express your answer with the appropriate units. A = = What is the toy's axiu speed during its otion? Express your answer with the appropriate units. 6/12

7 v ax = = Exercise Description: A certain alar clock ticks four ties each second, with each tick representing half a period. The balance wheel consists of a thin ri with radius r, connected to the balance staff by thin spokes of negligible ass. The total ass of the balance... A certain alar clock ticks four ties each second, with each tick representing half a period. The balance wheel consists of a thin ri with radius 0.56 c, connected to the balance staff by thin spokes of negligible ass. The total ass of the balance wheel is 0.95 g. What is the oent of inertia of the balance wheel about its shaft? Express your answer using two significant figures. I = = kg 2 What is the torsion constant of the hairspring? Express your answer using two significant figures. κ = = N /rad Exercise Description: A certain siple pendulu has a period on the earth of T. (a) What is its period on the surface of Mars, where g = 3.71 ( /s)^2? A certain siple pendulu has a period on the earth of 2.00 s. What is its period on the surface of Mars, where g = 3.71 /s 2? 7/12

8 T M = = 3.25 s Exercise Description: A 1.80 kg onkey wrench is pivoted fro its center of ass and allowed to swing as a physical pendulu. The period for sall angle oscillations is s. (a) What is the oent of inertia of the wrench about an axis through the pivot? (b)... A 1.80 kg onkey wrench is pivoted fro its center of ass and allowed to swing as a physical pendulu. The period for sall angle oscillations is s. What is the oent of inertia of the wrench about an axis through the pivot? I = kg 2 If the wrench is initially displaced rad fro its equilibriu position, what is the angular speed of the wrench as it passes through the equilibriu position? Ω ax = 2.66 rad/s Exercise Description: A holiday ornaent in the shape of a hollow sphere with ass ## kg and radius ## is hung fro a tree lib by a sall loop of wire attached to the surface of the sphere. If the ornaent is displaced a sall distance and released, it swings back and... A holiday ornaent in the shape of a hollow sphere with ass kg and radius is hung fro a tree lib by a sall loop of wire attached to the surface of the sphere. If the ornaent is displaced a sall distance and released, it swings back and forth as a physical pendulu. Calculate its period. (You can ignore friction at the pivot. The oent of inertia of the sphere about the pivot at the tree lib is 5M R 2 /3.) Take the free fall acceleration to be 9.80 /s 2. Express your answer using two significant figures. 8/12

9 T = = 0.61 s Proble Description: A block with ass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (the figure ). A second block with ass rests on top of the first block. The... A block with ass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (the figure ). A second block with ass rests on top of the first block. The coefficient of static friction between the blocks is. μ s Find the axiu aplitude of oscillation such that the top block will not slip on the botto block. Express your answer in ters of the variables, M, k, μ s, and appropriate constants. Proble Description: An object with ass ## kg is acted on by an elastic restoring force with force constant ## N/. The object is set into oscillation with an initial potential energy of ## J and an initial kinetic energy of ## J. (a) What is the aplitude of... An object with ass kg is acted on by an elastic restoring force with force constant 10.7 N/. The object is set into oscillation with an initial potential energy of J and an initial kinetic energy of J. What is the aplitude of oscillation? 9/12

10 A = = What is the potential energy when the displaceent is one half the aplitude? U = = J At what displaceent are the kinetic and potential energies equal? x = = Part D What is the value of the phase angle ϕ if the initial velocity is positive and the initial displaceent is negative? ϕ = = 3.73 rad Also accepted: = 2.55 Proble Description: A partridge of ass ## kg is suspended fro a pear tree by an ideal spring of negligible ass. When the partridge is pulled down below its equilibriu position and released, it vibrates with a period of ## s. (a) What is its speed as it... A partridge of ass 5.10 kg is suspended fro a pear tree by an ideal spring of negligible ass. When the partridge is pulled down below its equilibriu position and released, it vibrates with a period of 4.25 s. What is its speed as it passes through the equilibriu position? 10/12

11 v = = /s What is its acceleration when it is above the equilibriu position? a = = /s 2 When it is oving upward, how uch tie is required for it to ove fro a point below its equilibriu position to a point above it? t = = s Part D The otion of the partridge is stopped, and then it is reoved fro the spring. How uch does the spring shorten? Δl = = 4.48 Proble Description: A rifle bullet with ass and initial horizontal velocity v strikes and ebeds itself in a block with ass _b that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is... A rifle bullet with ass 7.00 g and initial horizontal velocity 250 /s strikes and ebeds itself in a block with ass kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The ipact copresses the spring a axiu distance of 14.0 c. After the ipact, the block oves in SHM. Calculate the period of this otion. Express your answer with the appropriate units. 11/12

12 T = = Copyright 2016 Pearson. All rights reserved. Legal Notice Privacy Policy Perissions 12/12

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

A 2.42 kg ball is attached to an unknown spring and allowed to oscillate. The figure shows a graph of the ball's position x as a function of time t.

A 2.42 kg ball is attached to an unknown spring and allowed to oscillate. The figure shows a graph of the ball's position x as a function of time t. Ch 14 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch 14 Supplemental Due: 6:59pm on Friday, April 28, 2017 To understand how points are awarded, read the Grading

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final?

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final? Chapter 8 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 8 Due: 11:59p on Sunday, October 23, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Name: AP Homework 9.1. Simple Harmonic Motion. Date: Class Period:

Name: AP Homework 9.1. Simple Harmonic Motion. Date: Class Period: AP Homework 9.1 Simple Harmonic Motion (1) If an object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position Physics 3: ecture Today s genda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a spring Vertical spring Energy and siple haronic otion Energy o

More information

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω =

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω = Thur Oct 9 Assignent 10 Mass-Spring Kineatics (x, v, a, t) Dynaics (F,, a) Tie dependence Energy Pendulu Daping and Resonances x Acos( ωt) = v = Aω sin( ωt) a = Aω cos( ωt) ω = spring k f spring = 1 k

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0 AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) 60 F 1 F g (b) F NE(Y) = 0 F1 F1 = g / cos(60) = g (c) When the string is cut it swings fro top to botto, siilar to the diagra for 1974B1

More information

More Oscillations! (Today: Harmonic Oscillators)

More Oscillations! (Today: Harmonic Oscillators) More Oscillations! (oday: Haronic Oscillators) Movie assignent reinder! Final due HURSDAY April 20 Subit through ecapus Different rubric; reeber to chec it even if you got 00% on your draft: http://sarahspolaor.faculty.wvu.edu/hoe/physics-0

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition Physics HW Set Chapter 5 Serway 7 th Edition Conceptual Questions:, 3, 5,, 6, 9 Q53 You can take φ = π, or equally well, φ = π At t= 0, the particle is at its turning point on the negative side of equilibriu,

More information

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page 5/09/06 PHYSICS 13 Exa #1 NAME FEYNMAN Please write down your nae also on the back side of the last page 1 he figure shows a horizontal planks of length =50 c, and ass M= 1 Kg, pivoted at one end. he planks

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Liited Edinburgh Gate Harlow Esse CM0 JE England and Associated Copanies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Liited 04 All rights

More information

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A. Chapter 9 [ Edit ] Chapter 9 Overview Summary View Diagnostics View Print View with Answers Due: 11:59pm on Sunday, October 30, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds)

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds) 05/07/03 HYSICS 3 Exa #1 Use g 10 /s in your calculations. NAME Feynan lease write your nae also on the back side of this exa 1. 1A A unifor thin stick of ass M 0. Kg and length 60 c is pivoted at one

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces

3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces Physics 106 Lecture 10 Kepler s Laws and Planetary Motion-continued SJ 7 th ed.: Chap 1., 1.6 Kepler s laws of planetary otion Orbit Law Area Law Period Law Satellite and planetary orbits Orbits, potential,

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Experient 9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Objectives 1. Verify Hoo s law,. Measure the force constant of a spring, and 3. Measure the period of oscillation of a spring-ass syste and copare it

More information

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13 PHY 4Y FOUNDAIONS OF PHYSICS - utorial Questions #9 Solutions Noveber /3 Conservation of Ener and Sprins. One end of a assless sprin is placed on a flat surface, with the other end pointin upward, as shown

More information

Simple Harmonic Motion of Spring

Simple Harmonic Motion of Spring Nae P Physics Date iple Haronic Motion and prings Hooean pring W x U ( x iple Haronic Motion of pring. What are the two criteria for siple haronic otion? - Only restoring forces cause siple haronic otion.

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

Physics 201 Lecture 29

Physics 201 Lecture 29 Phsics 1 ecture 9 Goals ecture 9 v Describe oscillator otion in a siple pendulu v Describe oscillator otion with torques v Introduce daping in SHM v Discuss resonance v Final Ea Details l Sunda, Ma 13th

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis. Instructor(s): Acosta, inzler PHYSICS DEPATMENT PHY 048, Spring 04 Final Exa March 4, 04 Nae (print, last first): Signature: On y honor, I have neither given nor received unauthorized aid on this exaination.

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy AP Physics Multiple Choice Practice Wor-Energy 1. A ass attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled? Slide 1 / 52 1 A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its velocity is a maximum in magnitude? A 0 B + or - A C

More information

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. IIT-JEE5-PH-1 FIITJEE Solutions to IITJEE 5 Mains Paper Tie: hours Physics Note: Question nuber 1 to 8 carries arks each, 9 to 16 carries 4 arks each and 17 to 18 carries 6 arks each. Q1. whistling train

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

Physics 201, Exam 3 -- Summer 2017

Physics 201, Exam 3 -- Summer 2017 Physics 201, Exam 3 -- Summer 2017 Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. The fill-in-the-blank and multiple-choice

More information

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam.

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Physics 201, Exam 3 Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Name (signed) The multiple-choice problems carry no partial

More information

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018 Physics 161 Lecture 17 Simple Harmonic Motion October 30, 2018 1 Lecture 17: learning objectives Review from lecture 16 - Second law of thermodynamics. - In pv cycle process: ΔU = 0, Q add = W by gass

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz.

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. Chapter 5. (a) During siple haronic otion, the speed is (oentarily) zero when the object is at a turning point (that is, when x = +x or x = x ). Consider that it starts at x = +x and we are told that t

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Page 1. Physics 131: Lecture 22. SHM and Circles. Today s Agenda. Position. Velocity. Position and Velocity. Acceleration. v Asin.

Page 1. Physics 131: Lecture 22. SHM and Circles. Today s Agenda. Position. Velocity. Position and Velocity. Acceleration. v Asin. Physics 3: ecture Today s enda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a sprin Vertical sprin Enery and siple haronic otion Enery o a sprin

More information

CE573 Structural Dynamics [Fall 2008]

CE573 Structural Dynamics [Fall 2008] CE573 Structural Dynaics [Fall 2008] 1) A rigid vehicle weighing 2000 lb, oving horizontally at a velocity of 12 ft/sec, is stopped by a barrier consisting of wire ropes stretched between two rigid anchors

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

FOUNDATION STUDIES EXAMINATIONS January 2016

FOUNDATION STUDIES EXAMINATIONS January 2016 1 FOUNDATION STUDIES EXAMINATIONS January 2016 PHYSICS Seester 2 Exa July Fast Track Tie allowed 2 hours for writing 10 inutes for reading This paper consists of 4 questions printed on 11 pages. PLEASE

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and Vibrations Midter Exaination Tuesday March 8 16 School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You ay bring

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm EN40: Dynaics and Vibrations Final Exaination Monday May 13 013: p-5p School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You

More information

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011 EN40: ynaics and Vibrations Final Exaination Tuesday May 15, 011 School of Engineering rown University NME: General Instructions No collaboration of any ind is peritted on this exaination. You ay use double

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/inzler PHYSICS DEPATMENT PHY 2053 Final Exam April 27, 2013 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ]

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ] L 1 Vibration and Waves [ ] Vibrations (oscillations) resonance pendulu springs haronic otion Waves echanical waves sound waves usical instruents VIBRATING SYSTEMS Mass and spring on air trac Mass hanging

More information

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward.

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward. Unless otherwise instructed, use g = 9.8 m/s 2 Rotational Inertia about an axis through com: Hoop about axis(radius=r, mass=m) : MR 2 Hoop about diameter (radius=r, mass=m): 1/2MR 2 Disk/solid cyllinder

More information

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm.

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm. 1. (a) The aplitude is half the range of the displaceent, or x = 1.0. (b) The axiu speed v is related to the aplitude x by v = ωx, where ω is the angular frequency. Since ω = πf, where f is the frequency,

More information