Problem Set 8 Solutions

Size: px
Start display at page:

Download "Problem Set 8 Solutions"

Transcription

1 Physics 57 Proble Set 8 Solutions Proble The decays in question will be given by soe Hadronic atric eleent: Γ i V f where i is the initial state, V is an interaction ter, f is the final state. The strong interaction preserves isospin, so V ust be an isospin singlet. We apply the Wigner-Eckart theore to copute the required ratios: i V f i f i V f where i V f is an isospin singlet which cancels upon taking ratios of two atrix eleents which differ by an isospin rotation. Thus, we can copute ratios of certain rates by taking ratios of Clebsch-Gordan coefficients. Consider the first ratio: We have: Γ(ρ π π ) Γ(ρ π + π ), ) (,,,, Thus,, (,, ) the nuerator vanishes, so Now consider the second ratio Finally, the third ratio is: Γ(K + K + π ) Γ(K + K π + ) Γ( + p π ) Γ( + n π + ) Γ(ρ π π ) Γ(ρ π + π ) 3 3, (,, (,, (,, (, ), ) /3, /3 ), ) /3, /3 In reality, isopin syetry is broken by a nuber of effects, including electroagnetic interactions (e.g. the proton the neutron have different charges), the weak interaction, the light-quark asses. However, for decays ediated by the strong force, isospin is a good syetry, should be approxiately conserved. For other decays, isospin is not conserved. For instance, isospin conservation would suggest that all the pions are stable with equal asses, since they for an isospin triplet all lighter particles are isospin singlets (apart fro bare quarks). However, the π ± are in fact 5 MeV heavier than the π, all pions are unstable. The π has a lifetie of s decays electroagnetically, whereas the π ± have equal lifeties of 8 s decay via the weak interaction.

2 Physics 57 Proble () The atrix eleents D (R) are defined by, D(R), where D(R) is the operator associated with the spatial rotation R. Now consider the direct product state ;,,. D(R) rotates each factor equally: Therefore, D(R) ; [D(R), ] [D(R), ] ; D(R) ;, D(R),, D(R), D (R) D (R) so () D, D(R), ; D(R) ; ; ; ; D(R) ; ; ;,, ; ; D (R) D (R) ; ; () Since d () (θ)d (R(θ)), where R(θ) is a rotation about the y-axis by an angle θ, we have () d (θ), ; ; d (θ) d (θ) ; ; We are free to choose any, which satisfy +. Thus, to find the spin-3/ atrices, we take /. We find: 3/ d 3/,3/ (θ) 3, 3, ;, / d, / (θ) d /,/ (θ), ;, 3, 3 d, (θ) d /,/ (θ) ( + cos θ) cos θ cos 3 θ 3/ d 3/,/ (θ) 3, 3, ;, d /, (θ) d /, / (θ), ;, 3, 3 +, 3, ;, d /, (θ) d /,/ (θ), ;, 3, d / 3, (θ) d /, / (θ)+ d / 3, (θ) d /,/ (θ) 3 (+cos θ) sin θ sin θ cos θ 3 3 sin θ cos θ

3 Physics 57 3/ 3 d /,/ (θ),, ;, d /, (θ) d /, / (θ), ;, 3, 3 +,, ;, d /, (θ) d /,/ (θ), ;, 3, 3 +,, ;, d /, (θ) d /, / (θ), ;, 3, 3 +,, ;, d /, (θ) d /,/ (θ), ;, 3, 3 d, / (θ) d /, / (θ)+ ( ) d / 3, (θ) d /,/ (θ)+d /, (θ) d /, / (θ) / + 3 d, (θ) d /,/ (θ) 3 cos3 θ 3 sin θ sin θ + 3 cos θ cos θ θ 3 cos3 + 3θ cos 3 The other coponents of d 3/ (θ) can be worked out in a siilar fashion. Proble 3 We can represent V q as a colun vector: V q V V V Vx+iVy V z V x iv y Thus, Ṽ q q d qq (β)v q is given by the atrix equation: +cos β cos β sin β Ṽ q sin β cos β sin β sin β cos β ivy Vx cos β Vz sin β V x sin β + V z cos β ivy + Vx cos β Vz sin β + cos β Vx+iVy V z V x iv y V z cos β V x sin β (Vx cos β + Vz sin β) + ivy (V x cos β + V z sin β) iv y Therefore, Ṽ x V x cos β + V z sin β Ṽ z V z cos β V x sin <nonesep>β Ṽ x Ṽ y Ṽ z cos β sin β V x V y sin β cos β V z 3

4 Physics 57 This is clearly a rotation about the y axis by an angle β; one can even check that the signs are correct using the right-h rule. Proble 4 This proble is a straightforward application of (3..) in Sakurai. a) Given vectors U (U x, U y, U z ) V (V x, V y, V z ), we construct the usual cross product: W U V (U y V z U z V y, U z V x U x V z, U x V y U y V x ) We construct a spherical tensor out of W by the stard procedure, as in the previous proble: W ± W x ± iw y, W W z We then have: T q () (U V ) q i W q i [V z (U x + iu y ) U z (V x + iv y )] (U x V y U y V x ) i [V z (U x iu y ) U z (V x iv y )] Uy Vz Uz Vy + i (Uz Vx Ux Vz) i U x V y U y V x i U y V z U z V y i (U z V x U x V z) i where the overall noralization is erely conventional. c) Fro Saurai (3..), we find: () T ± U ± V ± (U x ± iu y ) (V x ± iv y ) (U x V x U y V y ) ± i (U x V y + U y V x ) () T ± U ± V +U V ± [V z (U x ±iu y )+U z (V x ± iv y )] [V z U x + U z V x ] i [V zu y +U z V y ] T () U + V + U V + U V + U zv z (U x + iu y )(V x iv y )/ (U x iu y )(V x + iv y )/ U zv z U x V x U y V y We recognize various coponents of the syetric/traceless piece of T i U i V i. 4

5 Physics 57 Proble 5 a) We define the spherical tensor: x ± iy X ±, X z Thus, the atrix eleents we are asked to related are those of X ±,. We apply the Wigner-Eckart theore, (3..3), to obtain: n, l, X q n, l, l, ;, q l, M X (n, n, l, l ) where M X (n, n, l, l ) is the rotationally invariant piece of the atrix eleent, independent of, q. The above expression relates the atrix eleents of X q for different q. We see that the atrix eleent vanishes unless: + q, l l l + since the Clebsch-Gordon coefficient vanishes unless these conditions are satisfied by conservation of angular oentu. In certain other special cases the Clebsch-Gordan coefficient will vanish even when these conditions are obeyed, e.g. for l l q. b) Instead of applying the Wigner-Eckart theore, we rewrite the atrix eleent in the position basis by stard ethods: n, l, X q n, l, d 3 x n, l, X q x x n, l, d 3 x n, l, x x n, l, X q (x) d 3 x Ψ n,l, (x) Ψ n,l, (x)x q (x) The wavefunction Ψ n,l, (x) should take the for Ψ n,l, (x) Y l (θ, φ)r nl (r) for soe unknown radial wavefunction R nl (r). Moreover, X q (x) x + iy z x iy r sin θ e iφ r cos θ r sin θ e iφ 3 ry q (θ, φ) Thus, since d 3 xr dr dω, we find n, l, X q n, l, [ 3 ] R n l (r) R nl (r) r 3 dr dω Y l (θ, φ) Y l (θ, φ) Y q (θ, φ) 5

6 Physics 57 We now apply (3.8.73) fro Sakurai, naely dω Y l (θ, φ) Y l (θ, φ) Y l (θ, φ) N l; l,l l l ; l l ; l where N l,l,l is a rotationally invariant nuerical factor which we do not write. Thus, n, l, X q n, l, [ 3 N l ; l, R n l (r) R nl (r) r 3 dr ] l, ;, q l we recover our result fro part (a), where M X (n, n, l, l ) 3 N l ; l, R n l (r) R nl (r) r 3 dr the exact for of N l ;l, is given by Sakurai (3.8.73). Proble a) This is a siple application of proble 4, with U V x. We find: () Q ± () Q ± X ± (x ± iy) (x y ) ± ix y X± X z (x ± iy) xz i yz Q () X X +X + X z (x+iy)(x iy) ( z x y ) Therefore, x y Q + + Q z x y xy i [Q + Q ] xz [Q + Q ] yz i [Q + + Q ] Q b) We have: Q e α,, (3z r ) α,, e α,, Q α,, e, ;,, MQ (α,, α, )

7 Physics 57 e α,, x y α,, e α,, Q + + Q α,, e α,, Q α,, e, ;,, M Q (α,, α, ), ;,, Q, ;,, where the Q + ter vanishes, since + is ipossible. We readily see that the atrix eleent is only nonvanishing for, in which case: e α,, x y α,,, ;,,, ;,, Q Proble 7 a) We find d (β), e i Jy β,, e i Jy β,, e i Jy β,, e i Jy β,, e i Jy β J z e i Jy β, where d (β) is defined as d (β), e i Jy β, we use the fact that, e i Jy β, vanishes for, together with the spectral decoposition of J z : J z,,,,, To interpret the resulting expression, recall that J is the generator of rotations, in that U(nˆ, θ) e i θ (J nˆ) represents a rotation by an angle θ about the axis nˆ, with direction of rotation deterined by the righth rule, e.g. U(ŷ, β) x x, x (x cos β + z sin β) xˆ + y ŷ + (z cos β x sin β)ẑ 7

8 Physics 57 Applying the operator x to both sides, we see that U can also be interpreted as rotating the operator x: x U(ŷ, β) x U(ŷ, β), x (x cos β + z sin β)xˆ+ y ŷ + (z cos β x sin β) ẑ (These two viewpoints are siilar to the active passive interpretations of rotations, respectively, are analogous to the Schrödinger Heisenberg pictures for tie translation.) This result generalizes to other vector operators. Thus, U(ŷ, β) J z U(ŷ, β) e i Jy β J z e i βjy J z cos β J x sin β Alternately, we could have established this identity by brute force, e.g. by applying the Cabell-Baker- Hausdorff equation. Thus, d since, J x, is only nonvanishing for ±. (β), (J z cos β J x sin β), cos β For the special case /, we have / d cos β sin β sin β cos β Thus,,, / d,/ / d, / (β) β sin + β cos cos β (β) β cos + β sin cos β as expected. b) We have d (β), e i Jy β,, e i Jy β,, e i Jy β,, e i Jy β,, e i Jy β J z e i Jy β, siilar to before. Note that e i Jy β J z e i Jy β ( e i Jy β J z e i Jy β) 8

9 Physics 57 siilar to what we found in part (a). Thus, e i Jy β J z e i Jy β J z cos β + J x sin β We then find e i Jy β J z e i Jy β J z cos β + (J x J z +J z J x ) cos β sin β + J x sin β d (β) cos β + sin β, J x, since, J x, as before. To evaluate the last ter, we write J x in ters of ladder operators: Thus, J x (J + + J ), J x, 4, J + J + J J +, since, J +,, J,. However, J + J + J J + (J x + ij y )(J x ij y )+(J x ij y )(J x + ij y ) ( J x + J y ) ( J J z ) Thus,, J x, [ ] ( +) so d which is the desired result. Proble 8 We have where (β) cos β + sin β [ ( + ) ] ( +) sin β + ( 3 cos β ) D (α, β, γ), e i Jz α e i Jy β e i Jz γ, e i ( α+γ)/ d (β) d (β), e i Jy β, Thus, since dα dγ e i ( α+γ)/ δ, δ, 9

10 Physics 57 we obtain dα dγ π sin β dβ D (α, β, γ) δ, δ, d (cos β) d (β) However, d (β) P (cos β) where P (x) is the th Legendre polynoial ( cannot be half-integral, since.) Thus, dα dγ π sin β dβ D (α, β, γ) δ, δ, dx P (x)p (x) where we insert P (x). However, the Legendre polynoials obey the orthogonality condition: dx P (x)p (x) + δ Thus, dα dγ π sin β dβ D (α, β, γ) δ, δ, δ, as desired.

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

(a) As a reminder, the classical definition of angular momentum is: l = r p

(a) As a reminder, the classical definition of angular momentum is: l = r p PHYSICS T8: Standard Model Midter Exa Solution Key (216) 1. [2 points] Short Answer ( points each) (a) As a reinder, the classical definition of angular oentu is: l r p Based on this, what are the units

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield:

What is the instantaneous acceleration (2nd derivative of time) of the field? Sol. The Euler-Lagrange equations quickly yield: PHYSICS 75: The Standard Model Midter Exa Solution Key. [3 points] Short Answer (6 points each (a In words, explain how to deterine the nuber of ediator particles are generated by a particular local gauge

More information

Tensor Operators and the Wigner Eckart Theorem

Tensor Operators and the Wigner Eckart Theorem November 11, 2009 Tensor Operators and the Wigner Eckart Theorem Vector operator The ket α transforms under rotation to α D(R) α. The expectation value of a vector operator in the rotated system is related

More information

EULER EQUATIONS. We start by considering how time derivatives are effected by rotation. Consider a vector defined in the two systems by

EULER EQUATIONS. We start by considering how time derivatives are effected by rotation. Consider a vector defined in the two systems by EULER EQUATIONS We now consider another approach to rigid body probles based on looking at the change needed in Newton s Laws if an accelerated coordinate syste is used. We start by considering how tie

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

On the summations involving Wigner rotation matrix elements

On the summations involving Wigner rotation matrix elements Journal of Matheatical Cheistry 24 (1998 123 132 123 On the suations involving Wigner rotation atrix eleents Shan-Tao Lai a, Pancracio Palting b, Ying-Nan Chiu b and Harris J. Silverstone c a Vitreous

More information

Supporting Information for Supression of Auger Processes in Confined Structures

Supporting Information for Supression of Auger Processes in Confined Structures Supporting Inforation for Supression of Auger Processes in Confined Structures George E. Cragg and Alexander. Efros Naval Research aboratory, Washington, DC 20375, USA 1 Solution of the Coupled, Two-band

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Does the quark cluster model predict any isospin two dibaryon. resonance? (1) Grupo defsica Nuclear

Does the quark cluster model predict any isospin two dibaryon. resonance? (1) Grupo defsica Nuclear FUSAL - 4/95 Does the quark cluster odel predict any isospin two dibaryon resonance? A. Valcarce (1), H. Garcilazo (),F.Fernandez (1) and E. Moro (1) (1) Grupo defsica uclear Universidad de Salaanca, E-37008

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe PROPERTIES OF MULTIVARIATE HOMOGENEOUS ORTHOGONAL POLYNOMIALS Brahi Benouahane y Annie Cuyt? Keywords Abstract It is well-known that the denoinators of Pade approxiants can be considered as orthogonal

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 7 I. A SIMPLE EXAMPLE OF ANGULAR MOMENTUM ADDITION Given two spin-/ angular momenta, S and S, we define S S S The problem is to find the eigenstates of the

More information

Scattering and bound states

Scattering and bound states Chapter Scattering and bound states In this chapter we give a review of quantu-echanical scattering theory. We focus on the relation between the scattering aplitude of a potential and its bound states

More information

Modern Physics Letters A Vol. 24, Nos (2009) c World Scientific Publishing Company

Modern Physics Letters A Vol. 24, Nos (2009) c World Scientific Publishing Company Modern Physics Letters A Vol. 24, Nos. 11 13 (2009) 816 822 c World cientific Publishing Copany TOWARD A THREE-DIMENIONAL OLUTION FOR 3N BOUND TATE WITH 3NFs M. R. HADIZADEH and. BAYEGAN Departent of Physics,

More information

Implications of Time-Reversal Symmetry in Quantum Mechanics

Implications of Time-Reversal Symmetry in Quantum Mechanics Physics 215 Winter 2018 Implications of Time-Reversal Symmetry in Quantum Mechanics 1. The time reversal operator is antiunitary In quantum mechanics, the time reversal operator Θ acting on a state produces

More information

MA304 Differential Geometry

MA304 Differential Geometry MA304 Differential Geoetry Hoework 4 solutions Spring 018 6% of the final ark 1. The paraeterised curve αt = t cosh t for t R is called the catenary. Find the curvature of αt. Solution. Fro hoework question

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

Quantization of the E-M field

Quantization of the E-M field April 6, 20 Lecture XXVI Quantization of the E-M field 2.0. Electric quadrupole transition If E transitions are forbidden by selection rules, then we consider the next term in the expansion of the spatial

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

Lecture 13 Eigenvalue Problems

Lecture 13 Eigenvalue Problems Lecture 13 Eigenvalue Probles MIT 18.335J / 6.337J Introduction to Nuerical Methods Per-Olof Persson October 24, 2006 1 The Eigenvalue Decoposition Eigenvalue proble for atrix A: Ax = λx with eigenvalues

More information

RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS MEMBRANE

RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS MEMBRANE Proceedings of ICIPE rd International Conference on Inverse Probles in Engineering: Theory and Practice June -8, 999, Port Ludlow, Washington, USA : RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS

More information

Homework 3: Group Theory and the Quark Model Due February 16

Homework 3: Group Theory and the Quark Model Due February 16 Homework 3: Group Theory and the Quark Model Due February 16 1. Lorentz Group. From the defining requirement that a Lorentz transformation implemented by a matrix Λ leave the metric invariant: Λ µ ρη ρσ

More information

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters journal of ultivariate analysis 58, 96106 (1996) article no. 0041 The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Paraeters H. S. Steyn

More information

THE RIGID ROTOR. mrmr= + m K = I. r 2 2. I = m 1. m + m K = Diatomic molecule. m 1 r 1. r 2 m 2. I moment of inertia. (center of mass) COM K.E.

THE RIGID ROTOR. mrmr= + m K = I. r 2 2. I = m 1. m + m K = Diatomic molecule. m 1 r 1. r 2 m 2. I moment of inertia. (center of mass) COM K.E. 5.6 Fall 4 Lecture #7-9 page Diatoic olecule THE RIGID ROTOR r r r r rr= (center of ass) COM r K.E. K = r r K = I ( = r r ) I oent of inertia I = r r = µ r µ = (reduced ass) K = µ r = µv z Prob l e reduced

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Examination paper for FY3403 Particle physics

Examination paper for FY3403 Particle physics Department of physics Examination paper for FY3403 Particle physics Academic contact during examination: Jan Myrheim Phone: 900 75 7 Examination date: December 6, 07 Examination time: 9 3 Permitted support

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

PHY307F/407F - Computational Physics Background Material for Expt. 3 - Heat Equation David Harrison

PHY307F/407F - Computational Physics Background Material for Expt. 3 - Heat Equation David Harrison INTRODUCTION PHY37F/47F - Coputational Physics Background Material for Expt 3 - Heat Equation David Harrison In the Pendulu Experient, we studied the Runge-Kutta algorith for solving ordinary differential

More information

Legendre Polynomials and Angular Momentum

Legendre Polynomials and Angular Momentum University of Connecticut DigitalCommons@UConn Chemistry Education Materials Department of Chemistry August 006 Legendre Polynomials and Angular Momentum Carl W. David University of Connecticut, Carl.David@uconn.edu

More information

arxiv: v1 [hep-lat] 27 Aug 2008

arxiv: v1 [hep-lat] 27 Aug 2008 arxiv:883637v [hep-lat] 27 Aug 28 Nucleon structure in ters of OPE with non-perturbative Wilson coefficients a,b, N Cundy b, M Göckeler b, R Horsley c, H Perlt d, D Pleiter a, PEL Rakow e, G Schierholz

More information

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2 1 I iediately have 1 q 1 = f( q )q/ q and q = f( q )q/ q. Multiplying these equations by and 1 (respectively) and then subtracting, I get 1 ( q 1 q ) = ( + 1 )f( q )q/ q. The desired equation follows after

More information

Chapter 6 Aberrations

Chapter 6 Aberrations EE90F Chapter 6 Aberrations As we have seen, spherical lenses only obey Gaussian lens law in the paraxial approxiation. Deviations fro this ideal are called aberrations. F Rays toward the edge of the pupil

More information

All you need to know about QM for this course

All you need to know about QM for this course Introduction to Eleentary Particle Physics. Note 04 Page 1 of 9 All you need to know about QM for this course Ψ(q) State of particles is described by a coplex contiguous wave function Ψ(q) of soe coordinates

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

Feshbach Resonances in Ultracold Gases

Feshbach Resonances in Ultracold Gases Feshbach Resonances in Ultracold Gases Sara L. Capbell MIT Departent of Physics Dated: May 5, 9) First described by Heran Feshbach in a 958 paper, Feshbach resonances describe resonant scattering between

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Classical Mechanics Small Oscillations

Classical Mechanics Small Oscillations Classical Mechanics Sall Oscillations Dipan Kuar Ghosh UM-DAE Centre for Excellence in Basic Sciences, Kalina Mubai 400098 Septeber 4, 06 Introduction When a conservative syste is displaced slightly fro

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo CHAPTER 3 Analytic Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Harmonic Functions 1 Introduction

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

Geometrical approach in atomic physics: Atoms of hydrogen and helium

Geometrical approach in atomic physics: Atoms of hydrogen and helium Aerican Journal of Physics and Applications 014; (5): 108-11 Published online October 0, 014 (http://www.sciencepublishinggroup.co/j/ajpa) doi: 10.11648/j.ajpa.014005.1 ISSN: 0-486 (Print); ISSN: 0-408

More information

AN APPLICATION OF CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE BURGERS EQUATION

AN APPLICATION OF CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE BURGERS EQUATION Aksan, E..: An Applıcatıon of Cubıc B-Splıne Fınıte Eleent Method for... THERMAL SCIECE: Year 8, Vol., Suppl., pp. S95-S S95 A APPLICATIO OF CBIC B-SPLIE FIITE ELEMET METHOD FOR THE BRGERS EQATIO by Eine

More information

Mass Spectrum and Decay Constants of Conventional Mesons within an Infrared Confinement Model

Mass Spectrum and Decay Constants of Conventional Mesons within an Infrared Confinement Model Mass Spectru and Decay Constants of Conventional Mesons within an Infrared Confineent Model Gurjav Ganbold (BLTP, JINR; IPT MAS (Mongolia)) in collaboration with: T. Gutsche (Tuebingen) M. A. Ivanov (Dubna)

More information

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Matheatical Sciences 04,, p. 7 5 ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD M a t h e a t i c s Yu. A. HAKOPIAN, R. Z. HOVHANNISYAN

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

Reed-Muller Codes. m r inductive definition. Later, we shall explain how to construct Reed-Muller codes using the Kronecker product.

Reed-Muller Codes. m r inductive definition. Later, we shall explain how to construct Reed-Muller codes using the Kronecker product. Coding Theory Massoud Malek Reed-Muller Codes An iportant class of linear block codes rich in algebraic and geoetric structure is the class of Reed-Muller codes, which includes the Extended Haing code.

More information

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =...

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =... Physics 606, Quantum Mechanics, Final Exam NAME Please show all your work. (You are graded on your work, with partial credit where it is deserved.) All problems are, of course, nonrelativistic. 1. Consider

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

DERIVING PROPER UNIFORM PRIORS FOR REGRESSION COEFFICIENTS

DERIVING PROPER UNIFORM PRIORS FOR REGRESSION COEFFICIENTS DERIVING PROPER UNIFORM PRIORS FOR REGRESSION COEFFICIENTS N. van Erp and P. van Gelder Structural Hydraulic and Probabilistic Design, TU Delft Delft, The Netherlands Abstract. In probles of odel coparison

More information

Angular Momentum Properties

Angular Momentum Properties Cheistry 460 Fall 017 Dr. Jean M. Standard October 30, 017 Angular Moentu Properties Classical Definition of Angular Moentu In classical echanics, the angular oentu vector L is defined as L = r p, (1)

More information

New upper bound for the B-spline basis condition number II. K. Scherer. Institut fur Angewandte Mathematik, Universitat Bonn, Bonn, Germany.

New upper bound for the B-spline basis condition number II. K. Scherer. Institut fur Angewandte Mathematik, Universitat Bonn, Bonn, Germany. New upper bound for the B-spline basis condition nuber II. A proof of de Boor's 2 -conjecture K. Scherer Institut fur Angewandte Matheati, Universitat Bonn, 535 Bonn, Gerany and A. Yu. Shadrin Coputing

More information

Introduction to Kernel methods

Introduction to Kernel methods Introduction to Kernel ethods ML Workshop, ISI Kolkata Chiranjib Bhattacharyya Machine Learning lab Dept of CSA, IISc chiru@csa.iisc.ernet.in http://drona.csa.iisc.ernet.in/~chiru 19th Oct, 2012 Introduction

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

Supplementary Material for Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion

Supplementary Material for Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion Suppleentary Material for Fast and Provable Algoriths for Spectrally Sparse Signal Reconstruction via Low-Ran Hanel Matrix Copletion Jian-Feng Cai Tianing Wang Ke Wei March 1, 017 Abstract We establish

More information

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data Suppleentary to Learning Discriinative Bayesian Networks fro High-diensional Continuous Neuroiaging Data Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, and Dinggang Shen Proposition. Given a sparse

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

7. Renormalization and universality in pionless EFT

7. Renormalization and universality in pionless EFT Renoralization and universality in pionless EFT (last revised: October 6, 04) 7 7. Renoralization and universality in pionless EFT Recall the scales of nuclear forces fro Section 5: Pionless EFT is applicable

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

p[fm 1 ] The Similarity Renormalization Group for Few-Body 0 Bound States in Three-Dimensions 0.5 M. R. Hadizadeh 1,K.A.Wendt 2,Ch.

p[fm 1 ] The Similarity Renormalization Group for Few-Body 0 Bound States in Three-Dimensions 0.5 M. R. Hadizadeh 1,K.A.Wendt 2,Ch. =f.5 =f =f The Siilarity Renoralization Group for Few-Body Bound States in Three-Diensions.5.5 M. R. Hadizadeh,K.A.Wendt,Ch.Elster =3f =f =.5f.5.5 p[f ] INPP, Departent of Physics and Astronoy, Ohio University,

More information

TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1

TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1 TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1 Aaron D. Aes, 2 Robert D. Gregg, Eric D.B. Wendel and Shankar Sastry Departent of Electrical Engineering and Coputer

More information

Lecture 21 Nov 18, 2015

Lecture 21 Nov 18, 2015 CS 388R: Randoized Algoriths Fall 05 Prof. Eric Price Lecture Nov 8, 05 Scribe: Chad Voegele, Arun Sai Overview In the last class, we defined the ters cut sparsifier and spectral sparsifier and introduced

More information

Eigenvalues of the Angular Momentum Operators

Eigenvalues of the Angular Momentum Operators Eigenvalues of the Angular Moentu Operators Toda, we are talking about the eigenvalues of the angular oentu operators. J is used to denote angular oentu in general, L is used specificall to denote orbital

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Generalized eigenfunctions and a Borel Theorem on the Sierpinski Gasket.

Generalized eigenfunctions and a Borel Theorem on the Sierpinski Gasket. Generalized eigenfunctions and a Borel Theore on the Sierpinski Gasket. Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz May 26, 2006 1 Introduction There is a well developed theory (see [5,

More information

An Exactly Soluble Multiatom-Multiphoton Coupling Model

An Exactly Soluble Multiatom-Multiphoton Coupling Model Brazilian Journal of Physics vol no 4 Deceber 87 An Exactly Soluble Multiato-Multiphoton Coupling Model A N F Aleixo Instituto de Física Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

On a Multisection Style Binomial Summation Identity for Fibonacci Numbers

On a Multisection Style Binomial Summation Identity for Fibonacci Numbers Int J Contep Math Sciences, Vol 9, 04, no 4, 75-86 HIKARI Ltd, www-hiarico http://dxdoiorg/0988/ics0447 On a Multisection Style Binoial Suation Identity for Fibonacci Nubers Bernhard A Moser Software Copetence

More information

Completeness of Bethe s states for generalized XXZ model, II.

Completeness of Bethe s states for generalized XXZ model, II. Copleteness of Bethe s states for generalized XXZ odel, II Anatol N Kirillov and Nadejda A Liskova Steklov Matheatical Institute, Fontanka 27, StPetersburg, 90, Russia Abstract For any rational nuber 2

More information

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015)

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015) Graduate Quantum Mechanics I: Prelims and Solutions (Fall 015 Problem 1 (0 points Suppose A and B are two two-level systems represented by the Pauli-matrices σx A,B σ x = ( 0 1 ;σ 1 0 y = ( ( 0 i 1 0 ;σ

More information

On Certain C-Test Words for Free Groups

On Certain C-Test Words for Free Groups Journal of Algebra 247, 509 540 2002 doi:10.1006 jabr.2001.9001, available online at http: www.idealibrary.co on On Certain C-Test Words for Free Groups Donghi Lee Departent of Matheatics, Uni ersity of

More information

A GENERAL FORM FOR THE ELECTRIC FIELD LINES EQUATION CONCERNING AN AXIALLY SYMMETRIC CONTINUOUS CHARGE DISTRIBUTION

A GENERAL FORM FOR THE ELECTRIC FIELD LINES EQUATION CONCERNING AN AXIALLY SYMMETRIC CONTINUOUS CHARGE DISTRIBUTION A GENEAL FOM FO THE ELECTIC FIELD LINES EQUATION CONCENING AN AXIALLY SYMMETIC CONTINUOUS CHAGE DISTIBUTION BY MUGU B. ăuţ Abstract..By using an unexpected approach it results a general for for the electric

More information

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1 Solutions to exam 6--6: FA35 Quantum Mechanics hp Problem (4 p): (a) Define the concept of unitary operator and show that the operator e ipa/ is unitary (p is the momentum operator in one dimension) (b)

More information

The tensor spherical harmonics

The tensor spherical harmonics Physics 4 Winter 07 The tensor spherical harmonics The Clebsch-Gordon coefficients Consider a system with orbital angular momentum L and spin angular momentum S. The total angular momentum of the system

More information

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005 Hyperbolic Horn Helical Mass Spectroeter (3HMS) Jaes G Hageran Hageran Technology LLC & Pacific Environental Technologies April 5 ABSTRACT This paper describes a new type of ass filter based on the REFIMS

More information

Hee = ~ dxdy\jj+ (x) 'IJ+ (y) u (x- y) \jj (y) \jj (x), V, = ~ dx 'IJ+ (x) \jj (x) V (x), Hii = Z 2 ~ dx dy cp+ (x) cp+ (y) u (x- y) cp (y) cp (x),

Hee = ~ dxdy\jj+ (x) 'IJ+ (y) u (x- y) \jj (y) \jj (x), V, = ~ dx 'IJ+ (x) \jj (x) V (x), Hii = Z 2 ~ dx dy cp+ (x) cp+ (y) u (x- y) cp (y) cp (x), SOVIET PHYSICS JETP VOLUME 14, NUMBER 4 APRIL, 1962 SHIFT OF ATOMIC ENERGY LEVELS IN A PLASMA L. E. PARGAMANIK Khar'kov State University Subitted to JETP editor February 16, 1961; resubitted June 19, 1961

More information

Chapter VI: Motion in the 2-D Plane

Chapter VI: Motion in the 2-D Plane Chapter VI: Motion in the -D Plane Now that we have developed and refined our vector calculus concepts, we can ove on to specific application of otion in the plane. In this regard, we will deal with: projectile

More information

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 3: Linear Multistep Methods: Absolute Stability, Part II 5.7 Linear ultistep ethods: absolute stability At this point, it ay well

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 7 Prof. Steven Errede LECTURE NOTES 7

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 7 Prof. Steven Errede LECTURE NOTES 7 UIUC Physics 435 EM Fields & Sources I Fall Seester, 7 Lecture Notes 7 Prof. Steven Errede LECTURE NOTES 7 LAPLACE S EQUATION As we have seen in previous lectures, very often the priary task in an electrostatics

More information

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2009 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2009 205 Introduction/Aims Symmetries play a central role in particle physics;

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

which together show that the Lax-Milgram lemma can be applied. (c) We have the basic Galerkin orthogonality

which together show that the Lax-Milgram lemma can be applied. (c) We have the basic Galerkin orthogonality UPPSALA UNIVERSITY Departent of Inforation Technology Division of Scientific Coputing Solutions to exa in Finite eleent ethods II 14-6-5 Stefan Engblo, Daniel Elfverson Question 1 Note: a inus sign in

More information