Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Size: px
Start display at page:

Download "Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon"

Transcription

1 Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential behavior), and then choose the ost appropriate odel by deterining which odel fits best. Before discussing criteria on which to base curve-fitting decisions, we first will look at sources and types of errors. Forulation errrors. These errors result fro the assuption that certain variables are negligible or fro siplifications in describing interrelationships aong the variables in the various subodels constructed as part of the odeling process. Truncation errors. These errors are attributable to nuerical ethods used to solve a atheatical proble. An exaple is the use of a Taylor polynoial to approxiate a function. Round-off errors. These errors are caused by using finite-digit achines for coputations. Each nuber can be represented in a coputer with a nuber having only finite precision. Thus, each arithetic operation that is perfored, each with its own roundoff, causes an accuulated round-off error. Such an error can significantly alter the results of a odel s solution. Measureent errors. These errors are caused by iprecision in the data collection. This ay result fro huan error in recording data or fro liitations in the accuracy of easuring equipent. Analytic Methods of Model Fitting There are actually several ethods for fitting curves to a set of data points, based on different sets of criterion. We will briefly exaine soe of these, before focusing on the ost coon. The ajority of the aterial in this handout is taken directly fro A First Course in Matheatical Modeling by Frank Giordano, et al. 1

2 Note that this ay also be found in Section 4.1 of the textbook. Least-Squares Criterion Currently, the ost frequently used curve-fitting criterion is the least-squares criterion. In this case, given soe function type y = f(x) and a set of data points (x i, y i ), i = 1,,...,, we seek to iniize the su y i f(x i ). (1) In other words, we are iniizing the standard deviation of the function f(x) fro the data set. One of the advantages of the least-squares ethod (also known as regression) is that the resulting optiization proble can be solved only using the calculus of several variables. Miniizing the Su of the Absolute Deviations In this case, given soe function type y = f(x) and a set of data points (x i, y i ), i = 1,,...,, we seek to iniize y i f(x i ). Again, in general, this presents soe probles because, in order to solve, we ust differentiate the above su with respect to the paraeters in f(x i ) to find the critical points. However, because of the absolute values, the derivatives are not continuous. Chebyshev Approxiation Criterion Given soe function type y = f(x) and a set of data points (x i, y i ), i = 1,,...,, iniize the largest absolute deviation y i f(x i ) over the entire set. The difficulty with the Chebyshev criterion is that it is often difficult to apply in practice, because application of the criterion results in an optiization proble that ay require advanced atheatical procedures or nuerical algoriths to solve. Relating the Criteria The geoetric interpretations of the three curve-fitting criteria help provide a qualitative description coparing the criteria. Miniizing the su of the absolute deviations tends

3 to treat each data point with equal weight and to average the deviations. The Chevyshev criterion gives ore weight to a single point potentially having a large deviation. The leastsquares criterion, in ters of weighting individual points, is soewhat in between both of these criteria. The following also ay be found in Section 4.3 of the tetbook. Now, we will copare the Chebyshev and least-squares approaches. Suppose the Chebyshev criterion is applied and the resulting optiization proble solved to give the function f 1 (x). The absolute deviations resulting fro the fit are defined as follows: y i f 1 (x i ) = c i, i = 1,,...,. Define c ax as the largest of the absolute deviations c i. Since the paraeters of f 1 (x) are deterined so as to iniize c ax, it is the inial largest absolute deviation obtainable. Suppose, instead, that the least-squares criterion is applied and the resulting optiization proble solved to yield the function f (x). The absolute deviations resulting fro this fit are given by y i f (x i ) = d i, i = 1,,...,. Define d ax as the largest of the absolute deviations d i. Clearly, d ax c ax. Since the su of the squares of d i is the sallest such su obtainable, we know that d 1 + d + + d c 1 + c + + c. However, c i c ax for i = 1,,...,. Therefore, or Thus, D = d 1 + d + + d c ax, d 1 + d + + d D c ax d ax. c ax. This gives an effective bound on the axiu absolute deviation c ax. So, if there is a considerable difference between D and d ax, it ight be better to apply the Chebyshev criterion. 3 Obtaining a Least-Squares Fit (or Regression) Linear Regression Suppose a odel of the for y = ax + b is expected, and it has been decided to use the data points (x i, y i ), i = 1,,..., to estiate a and b. Applying the least-squares criterion in equation (1), we find that we ust iniize E = [y i f(x i )] = (y i ax i b). 3

4 In order to iniize E, we need to copute and set to 0 the partial derivatives of E with respect to both a and b: E a = (y i ax i b) x i = 0 E b = (y i ax i b) = 0 Rewriting these equations, we obtain the following syste of two equations in two unknowns a x i + b x i = a x i + b = x i y i y i, which ay easily be solved to yield and a = x i y i x i yi x i ( x i ) () b = x i yi x i y i xi x i ( x i ) (3) Maple can be used to deterine the linear least-squares fit for any set of data. Exaple: The following table shows the average age versus height for children. The data is copied fro An Introduction to the Matheatics of Biology, with Coputer Algebra Models by Yeargers, Shonkwiler, and Herod. A plot of the data (height vs. age) reveals that the height (c) age data appears to be linear in nature, so we will perfor a linear regression to deterine the least-squares best linear fit, letting x i represent the age and y i represent the height. Working out the necessary sus, we find that xi = 49 x i = 455 yi = 83 xi y i = Applying the forulas in () and (3), we obtain a = and b = Therefore, the data is approxiated by the curve y = x See also the Maple exaple regression.w under Linear Regression. 4

5 4 Plotting the Residuals for a Least Squares Fit We plot the residuals in the y-axis and the independent variable on the x-axis. The deviations should be randoly distributed and contained in a reasonably sall band that is consistent with the accuracy required by the odel. If the residual is excessively large, this eans that the data point in question should be exained to discover the cause of the large deviation (i.e., did we iss an outlier or is soething else going on). A pattern or trend in the residuals indicates that a predictable effect reains to be odeled, and the nature of hte pattern gives a hint as to how to refine the odel. If the residual is increasing in absolute value, then that is an indication that our odel is unacceptable. We will use a Maple exaple to illustrate this. 5 Fitting a Power Curve Suppose we think that the curve will be of the for y = Ax N, where we know what N is (usually unlikely). Applying the least-squares ethod to fit the curve to a set of data points requires iniization of E = [y i f(x i )] = ( yi Ax N i ). A necessary condition for optiality is that the derivative of E with respect to A equals 0, giving de da = x N i (y i Ax n i ) = 0, sor A = x N i y i. x N i However, it is not likely that we know the value of N in advance. What if we do not know N? In other words, now assue that we seek a least-squares estiate of the for y = ax n, where both a and n are paraeters to be deterined. In this case, we will first need to transfor the function by taking the logarith of both sides to obtain ln y = ln a + n ln x. (4) Then, we siply transfor the data by taking the natural log of both x i and y i, then apply linear regression to obtain ln a and n. The paraeter a is then found by a = e ln a. Exaple: The following table shows the ideal weights for ediu built ales. The data is copied fro An Introduction to the Matheatics of Biology, with Coputer Algebra Models by Yeargers, Shonkwiler, and Herod. This exaple is worked out on the Maple worksheet, regression.w. 5

6 Height (in) Weight (lb) First, we try a linear least-squares fit. As we can see fro the plot of the residuals, the residual is increasing as the height increases. Therefore, this odel does not see to be acceptable. However, since we know that in any geoetric solids, the volue changes with the cube of the height, we will try to find a cubic fit for the data. The results fro the cubic fit are uch better: the residual is not large, and it decreases as the height increases. We would like to know if we can do better. So, we will try to find a fit of the for weight = A(height 60) n. Ideally, n is an integer. However, we discover that n Since the atheatics behind our approach does not require n to be an integer, this is okay. If we wish to ake n a rational nuber, then the nearest rational nuber to the value of n we obtained is 1. So, we also 6 look at the results with this value of n. 6 Multiple Regression In any real probles, there are ore than two variables to be considered. For exaple, (1) The pressure of a gas depends on the volue V and the teperature T : P V = kt. () The relationship between the surface area of a huan as a function of height and weight: SA = c(wt) α (ht) β. (3) Deterination of percent body fat fro body ass index and skin fold: % body fat = a(bmi) + b(skinfold) + c. 6

7 Look at (), for exaple. Taking the natural log of both sides gives ln(sa) = a ln(wt) + b ln(ht) + ln c, so we obtain an expression siilar to that in (3). In general, we have a relation of the for Y = a 1 X 1 + a X + + a r X r. Suppose that we have n data points, (X 1,i, X,i,..., X r,i, Y i ), i = 1,,..., n. Our goal is to iniize the least-squared error: E = (Y i (a 1 X 1,i + a X,i + + a r X r,i )) Differentiating with respect to each paraeter a i and setting the derivatives to zero gives the following syste of equations a 1 a 1 X 1,i X 1,i + + a r X r,i X 1,i + + a r X 1,i X r,i =. X r,i X r,i = X 1,i Y i X r,i Y i. Solve by writing the equations in atrix for. algebra systes, such as Maple. This is easily done in various coputer Maple code for exaples is in the file regression.w. 7

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words) 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME 04469 Tel (07) 866-3540 Eail: farlow@ath.uaine.edu

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

A Note on the Applied Use of MDL Approximations

A Note on the Applied Use of MDL Approximations A Note on the Applied Use of MDL Approxiations Daniel J. Navarro Departent of Psychology Ohio State University Abstract An applied proble is discussed in which two nested psychological odels of retention

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method)

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method) Projectile Motion with Air Resistance (Nuerical Modeling, Euler s Method) Theory Euler s ethod is a siple way to approxiate the solution of ordinary differential equations (ode s) nuerically. Specifically,

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Homework 3 Solutions CSE 101 Summer 2017

Homework 3 Solutions CSE 101 Summer 2017 Hoework 3 Solutions CSE 0 Suer 207. Scheduling algoriths The following n = 2 jobs with given processing ties have to be scheduled on = 3 parallel and identical processors with the objective of iniizing

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

A method to determine relative stroke detection efficiencies from multiplicity distributions

A method to determine relative stroke detection efficiencies from multiplicity distributions A ethod to deterine relative stroke detection eiciencies ro ultiplicity distributions Schulz W. and Cuins K. 2. Austrian Lightning Detection and Inoration Syste (ALDIS), Kahlenberger Str.2A, 90 Vienna,

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Bipartite subgraphs and the smallest eigenvalue

Bipartite subgraphs and the smallest eigenvalue Bipartite subgraphs and the sallest eigenvalue Noga Alon Benny Sudaov Abstract Two results dealing with the relation between the sallest eigenvalue of a graph and its bipartite subgraphs are obtained.

More information

C na (1) a=l. c = CO + Clm + CZ TWO-STAGE SAMPLE DESIGN WITH SMALL CLUSTERS. 1. Introduction

C na (1) a=l. c = CO + Clm + CZ TWO-STAGE SAMPLE DESIGN WITH SMALL CLUSTERS. 1. Introduction TWO-STGE SMPLE DESIGN WITH SMLL CLUSTERS Robert G. Clark and David G. Steel School of Matheatics and pplied Statistics, University of Wollongong, NSW 5 ustralia. (robert.clark@abs.gov.au) Key Words: saple

More information

When Short Runs Beat Long Runs

When Short Runs Beat Long Runs When Short Runs Beat Long Runs Sean Luke George Mason University http://www.cs.gu.edu/ sean/ Abstract What will yield the best results: doing one run n generations long or doing runs n/ generations long

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Research in Area of Longevity of Sylphon Scraies

Research in Area of Longevity of Sylphon Scraies IOP Conference Series: Earth and Environental Science PAPER OPEN ACCESS Research in Area of Longevity of Sylphon Scraies To cite this article: Natalia Y Golovina and Svetlana Y Krivosheeva 2018 IOP Conf.

More information

On Rough Interval Three Level Large Scale Quadratic Integer Programming Problem

On Rough Interval Three Level Large Scale Quadratic Integer Programming Problem J. Stat. Appl. Pro. 6, No. 2, 305-318 2017) 305 Journal of Statistics Applications & Probability An International Journal http://dx.doi.org/10.18576/jsap/060206 On Rough Interval Three evel arge Scale

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Introduction to Machine Learning. Recitation 11

Introduction to Machine Learning. Recitation 11 Introduction to Machine Learning Lecturer: Regev Schweiger Recitation Fall Seester Scribe: Regev Schweiger. Kernel Ridge Regression We now take on the task of kernel-izing ridge regression. Let x,...,

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

MSEC MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL SOLUTION FOR MAINTENANCE AND PERFORMANCE

MSEC MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL SOLUTION FOR MAINTENANCE AND PERFORMANCE Proceeding of the ASME 9 International Manufacturing Science and Engineering Conference MSEC9 October 4-7, 9, West Lafayette, Indiana, USA MSEC9-8466 MODELING OF DEGRADATION PROCESSES TO OBTAIN AN OPTIMAL

More information

Least squares fitting with elliptic paraboloids

Least squares fitting with elliptic paraboloids MATHEMATICAL COMMUNICATIONS 409 Math. Coun. 18(013), 409 415 Least squares fitting with elliptic paraboloids Heluth Späth 1, 1 Departent of Matheatics, University of Oldenburg, Postfach 503, D-6 111 Oldenburg,

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS ISSN 1440-771X AUSTRALIA DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS An Iproved Method for Bandwidth Selection When Estiating ROC Curves Peter G Hall and Rob J Hyndan Working Paper 11/00 An iproved

More information

Figure 1: Equivalent electric (RC) circuit of a neurons membrane

Figure 1: Equivalent electric (RC) circuit of a neurons membrane Exercise: Leaky integrate and fire odel of neural spike generation This exercise investigates a siplified odel of how neurons spike in response to current inputs, one of the ost fundaental properties of

More information

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Soft Coputing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Beverly Rivera 1,2, Irbis Gallegos 1, and Vladik Kreinovich 2 1 Regional Cyber and Energy Security Center RCES

More information

The Methods of Solution for Constrained Nonlinear Programming

The Methods of Solution for Constrained Nonlinear Programming Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 01-06 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.co The Methods of Solution for Constrained

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

REDUCTION OF FINITE ELEMENT MODELS BY PARAMETER IDENTIFICATION

REDUCTION OF FINITE ELEMENT MODELS BY PARAMETER IDENTIFICATION ISSN 139 14X INFORMATION TECHNOLOGY AND CONTROL, 008, Vol.37, No.3 REDUCTION OF FINITE ELEMENT MODELS BY PARAMETER IDENTIFICATION Riantas Barauskas, Vidantas Riavičius Departent of Syste Analysis, Kaunas

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 3: Linear Multistep Methods: Absolute Stability, Part II 5.7 Linear ultistep ethods: absolute stability At this point, it ay well

More information

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS

MODIFICATION OF AN ANALYTICAL MODEL FOR CONTAINER LOADING PROBLEMS MODIFICATIO OF A AALYTICAL MODEL FOR COTAIER LOADIG PROBLEMS Reception date: DEC.99 otification to authors: 04 MAR. 2001 Cevriye GECER Departent of Industrial Engineering, University of Gazi 06570 Maltepe,

More information

Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5,

Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 31 11 Motif Finding Sources for this section: Rouchka, 1997, A Brief Overview of Gibbs Sapling. J. Buhler, M. Topa:

More information

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS. Introduction When it coes to applying econoetric odels to analyze georeferenced data, researchers are well

More information

16 Independence Definitions Potential Pitfall Alternative Formulation. mcs-ftl 2010/9/8 0:40 page 431 #437

16 Independence Definitions Potential Pitfall Alternative Formulation. mcs-ftl 2010/9/8 0:40 page 431 #437 cs-ftl 010/9/8 0:40 page 431 #437 16 Independence 16.1 efinitions Suppose that we flip two fair coins siultaneously on opposite sides of a roo. Intuitively, the way one coin lands does not affect the way

More information

CHAPTER ONE. Physics and the Life Sciences

CHAPTER ONE. Physics and the Life Sciences Solution anual for Physics for the Life Sciences 2nd Edition by Allang Link download full: http://testbankair.co/download/solution-anual-forphysics-for-the-life-sciences-2nd-edition-by-allang/ CHAPTER

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

Research Article Approximate Multidegree Reduction of λ-bézier Curves

Research Article Approximate Multidegree Reduction of λ-bézier Curves Matheatical Probles in Engineering Volue 6 Article ID 87 pages http://dxdoiorg//6/87 Research Article Approxiate Multidegree Reduction of λ-bézier Curves Gang Hu Huanxin Cao and Suxia Zhang Departent of

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Measures of average are called measures of central tendency and include the mean, median, mode, and midrange.

Measures of average are called measures of central tendency and include the mean, median, mode, and midrange. CHAPTER 3 Data Description Objectives Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance,

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

A Model for the Selection of Internet Service Providers

A Model for the Selection of Internet Service Providers ISSN 0146-4116, Autoatic Control and Coputer Sciences, 2008, Vol. 42, No. 5, pp. 249 254. Allerton Press, Inc., 2008. Original Russian Text I.M. Aliev, 2008, published in Avtoatika i Vychislitel naya Tekhnika,

More information

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Matheatical Sciences 04,, p. 7 5 ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD M a t h e a t i c s Yu. A. HAKOPIAN, R. Z. HOVHANNISYAN

More information

On Constant Power Water-filling

On Constant Power Water-filling On Constant Power Water-filling Wei Yu and John M. Cioffi Electrical Engineering Departent Stanford University, Stanford, CA94305, U.S.A. eails: {weiyu,cioffi}@stanford.edu Abstract This paper derives

More information

Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments

Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments Geophys. J. Int. (23) 155, 411 421 Optial nonlinear Bayesian experiental design: an application to aplitude versus offset experients Jojanneke van den Berg, 1, Andrew Curtis 2,3 and Jeannot Trapert 1 1

More information

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science A Better Algorith For an Ancient Scheduling Proble David R. Karger Steven J. Phillips Eric Torng Departent of Coputer Science Stanford University Stanford, CA 9435-4 Abstract One of the oldest and siplest

More information

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm Acta Polytechnica Hungarica Vol., No., 04 Sybolic Analysis as Universal Tool for Deriving Properties of Non-linear Algoriths Case study of EM Algorith Vladiir Mladenović, Miroslav Lutovac, Dana Porrat

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approxiation in Stochastic Scheduling: The Power of -Based Priority Policies Rolf Möhring, Andreas Schulz, Marc Uetz Setting (A P p stoch, r E( w and (B P p stoch E( w We will assue that the processing

More information

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval Unifor Approxiation and Bernstein Polynoials with Coefficients in the Unit Interval Weiang Qian and Marc D. Riedel Electrical and Coputer Engineering, University of Minnesota 200 Union St. S.E. Minneapolis,

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS Jochen Till, Sebastian Engell, Sebastian Panek, and Olaf Stursberg Process Control Lab (CT-AST), University of Dortund,

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

Biostatistics Department Technical Report

Biostatistics Department Technical Report Biostatistics Departent Technical Report BST006-00 Estiation of Prevalence by Pool Screening With Equal Sized Pools and a egative Binoial Sapling Model Charles R. Katholi, Ph.D. Eeritus Professor Departent

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

Explicit solution of the polynomial least-squares approximation problem on Chebyshev extrema nodes

Explicit solution of the polynomial least-squares approximation problem on Chebyshev extrema nodes Explicit solution of the polynoial least-squares approxiation proble on Chebyshev extrea nodes Alfredo Eisinberg, Giuseppe Fedele Dipartiento di Elettronica Inforatica e Sisteistica, Università degli Studi

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Hybrid System Identification: An SDP Approach

Hybrid System Identification: An SDP Approach 49th IEEE Conference on Decision and Control Deceber 15-17, 2010 Hilton Atlanta Hotel, Atlanta, GA, USA Hybrid Syste Identification: An SDP Approach C Feng, C M Lagoa, N Ozay and M Sznaier Abstract The

More information

INTELLECTUAL DATA ANALYSIS IN AIRCRAFT DESIGN

INTELLECTUAL DATA ANALYSIS IN AIRCRAFT DESIGN INTELLECTUAL DATA ANALYSIS IN AIRCRAFT DESIGN V.A. Koarov 1, S.A. Piyavskiy 2 1 Saara National Research University, Saara, Russia 2 Saara State Architectural University, Saara, Russia Abstract. This article

More information

Determining OWA Operator Weights by Mean Absolute Deviation Minimization

Determining OWA Operator Weights by Mean Absolute Deviation Minimization Deterining OWA Operator Weights by Mean Absolute Deviation Miniization Micha l Majdan 1,2 and W lodziierz Ogryczak 1 1 Institute of Control and Coputation Engineering, Warsaw University of Technology,

More information

MODULAR HYPERBOLAS AND THE CONGRUENCE ax 1 x 2 x k + bx k+1 x k+2 x 2k c (mod m)

MODULAR HYPERBOLAS AND THE CONGRUENCE ax 1 x 2 x k + bx k+1 x k+2 x 2k c (mod m) #A37 INTEGERS 8 (208) MODULAR HYPERBOLAS AND THE CONGRUENCE ax x 2 x k + bx k+ x k+2 x 2k c (od ) Anwar Ayyad Departent of Matheatics, Al Azhar University, Gaza Strip, Palestine anwarayyad@yahoo.co Todd

More information

The Wilson Model of Cortical Neurons Richard B. Wells

The Wilson Model of Cortical Neurons Richard B. Wells The Wilson Model of Cortical Neurons Richard B. Wells I. Refineents on the odgkin-uxley Model The years since odgkin s and uxley s pioneering work have produced a nuber of derivative odgkin-uxley-like

More information

Convex Programming for Scheduling Unrelated Parallel Machines

Convex Programming for Scheduling Unrelated Parallel Machines Convex Prograing for Scheduling Unrelated Parallel Machines Yossi Azar Air Epstein Abstract We consider the classical proble of scheduling parallel unrelated achines. Each job is to be processed by exactly

More information

PROXSCAL. Notation. W n n matrix with weights for source k. E n s matrix with raw independent variables F n p matrix with fixed coordinates

PROXSCAL. Notation. W n n matrix with weights for source k. E n s matrix with raw independent variables F n p matrix with fixed coordinates PROXSCAL PROXSCAL perfors ultidiensional scaling of proxiity data to find a leastsquares representation of the obects in a low-diensional space. Individual differences odels can be specified for ultiple

More information

Bootstrapping Dependent Data

Bootstrapping Dependent Data Bootstrapping Dependent Data One of the key issues confronting bootstrap resapling approxiations is how to deal with dependent data. Consider a sequence fx t g n t= of dependent rando variables. Clearly

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

The Transactional Nature of Quantum Information

The Transactional Nature of Quantum Information The Transactional Nature of Quantu Inforation Subhash Kak Departent of Coputer Science Oklahoa State University Stillwater, OK 7478 ABSTRACT Inforation, in its counications sense, is a transactional property.

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate The Siplex Method is Strongly Polynoial for the Markov Decision Proble with a Fixed Discount Rate Yinyu Ye April 20, 2010 Abstract In this note we prove that the classic siplex ethod with the ost-negativereduced-cost

More information