1 Rademacher Complexity Bounds

Size: px
Start display at page:

Download "1 Rademacher Complexity Bounds"

Transcription

1 COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #10 Scribe: Max Goer March 07, Radeacher Coplexity Bounds Recall the following theore fro last lecture: Theore 1. With probability 1 δ, the following two inequalities hold h H: err(h) eˆrr(h) + R (H) + O ln( 1 δ ) err(h) eˆrr(h) + ˆR S (H) + O ln( 1 δ ) (1) 1.1 Bound with respect to H Theore 2. For H < : ˆR S (H) 2 ln( H ) Proof. We will prove this as a corollary of another theore later in the course. This shows that we can bound the Radeacher coplexity with respect to H, which was the first easure of coplexity introduced in this course. Note that if we plug this into (1) we recover the error bound fro previous lectures (up to constant factors). 1.2 Bound with respect to Π H (S) We would like to drop the assuption that H <. Note that ˆR S (H) depends on the x i S only. Thus we only need to see how all h H depend on S. Theore 3. ˆR S (H) 2 ln( ΠH (S) ) Proof. As noted above, we only need to consider behaviors of the hypotheses on S. Let: H {one representative fro H for each behavior on S} Note that H H and H Π H (S) Π H () 2 <.

2 1 ˆR S (H) E σ [sup h H [ 1 E σ sup h H ] σ i h(x i ) ] σ i h(x i ) ˆR S (H ) 2 ln( H ) 2 ln( ΠH (S) ) The second equality follows fro the fact that for the h H that attains the first supreu, there exists h H that attains the sae value. This iplies that the supreu over H is no greater than the supreu over H. Furtherore, the supreu over H is no greater than the supreu over H, as H H. These two observations iply that the suprea are equal. The inequality on the 4 th line follows fro theore 2. The last equality follows by the definition of the growth function and construction of H. Hence we can bound the Radeacher coplexity with respect to the growth function, the second easure of coplexity introduced in this course. 1.3 Bound with respect to the VC Diension We can also bound the Radeacher coplexity by the third coplexity easure the VC diension. Theore 4. Let d V Cdi(H), then for d 1: 2d ln ( ) e d ˆR S (H) Proof. This follows iediately fro Sauer s lea (see lecture #6) and theore 3. 2 Boosting Boosting has its origins in PAC learning. Recall the definition of (strong) PAC learning: Definition 1. We say that C is (strongly) PAC learnable if there exists an algorith A such that for all c C, and for all true distributions D, for all ɛ > 0, for all δ > 0, A gets poly( 1 ɛ, 1 δ ) exaples and finds a hypothesis h A such that: Pr [err(h A ) ɛ] 1 δ. 2

3 But what happens if we can t get the error arbitrarily close to 0? Is learning all or none? To answer these questions, we introduce the notion of weak PAC learning. Definition 2. We say that C is weakly PAC learnable if there exists an algorith A and there exists γ > 0 such that for all c C, and for all true distributions D, for all δ > 0, A gets poly( 1 δ ) exaples and finds a hypothesis h A such that: Pr [err(h A ) 12 ] γ 1 δ. Note the absence of ɛ and the presence of γ in the definition of weak PAC learning. In strong PAC learning, we need to be able to ake errors arbitrarily sall. In weak PAC learning we just require that the error can be brought down to soe threshold. As γ > 0, we still require that we can do better than arbitrary guessing. A natural question to ask is whether strong and weak PAC learning algoriths are equivalent. Moreover, if this is true, we would like to have an algorith to convert a weak PAC learning algorith into a strong PAC learning algorith. We will see that boosting accoplishes this. Definition 3. A boosting algorith is an algorith that converts a weak learning algorith into a strong learning algorith. It is iportant to note that both strong and weak PAC learning are distribution-free. The following exaple will shed ore light on the iportance of this. 2.1 An exaple for learning with a fixed distribution Let C be the set of all concepts over {0, 1} n {z}, where {z} {0, 1} n. Let D be the distribution that assigns ass 1 4 to the point z and has ass 3 4 uniforly distributed over {0, 1} n. That is: { 1 P r x D [x k] 4 if k z if k {0, 1} n n Consider the hypothesis that predicts c(z) if x z and siply flips a coin otherwise. Eventually we will get a saple of z and thus learn c(z) (we can identify such an exaple when x i {0, 1} n ). This hypothesis will always correctly predict all points x i z and predict with 50% accuracy otherwise. Thus its error is: err D (h a ) < 1 2 Hence, (if we drop the distribution-freeness fro the definition) C is weakly PAC learnable for the fixed distribution D. However, V Cdi(C) 2 n hence by theore 1 of lecture #7 C is not strongly PAC learnable (again odifying the definition to a fixed distribution) using any algorith. This is because we would need at least Ω(2 n ) exaples which is not polynoial. Hence we cannot necessarily convert a weak into a strong learning algorith if we fix the distribution. 3

4 2.2 The setup We are given: S {(x 1, y 1 ),..., (x, y )} drawn fro the true distribution D, where x i X, y i { 1, 1}. access to a weak learner A which: D (not necessarily the sae as D) given exaples drawn fro D coputes h H (the hypothesis space of the weak learner) such that: Pr[err D (h) 1 2 γ] 1 δ The following diagra illustrates what the weak learner does. Our goal is to find a final hypothesis H we don t require that H H such that: Pr[err D (H) ɛ] 1 δ Note that we use the true distribution, D and not D for the last probability. 2.3 The ain idea The ain idea behind boosting is to run the weak learning algorith several ties and cobine the hypotheses fro each run. To do this effectively, we need to force the weak algorith to learn by giving it a different D on every run. The following diagra illustrates this: 4

5 2.4 The AdaBoost algorith We will now analyze the AdaBoost algorith. The pseudocode is given below. Algorith 1 AdaBoost procedure AdaBoost(S, T ) D 1 (i) 1 i for t 1,..., T do Construct D t Run A on D t (saple fro D t ) Get h t fro A ɛ t err Dt (h t ) 1 2 γ t Choose α t > 0 { e αt D t+1 (i) Dt(i) if h t (x i ) y i e αt else ( T ) Output H(x) sign α th t (x) In the above algorith, D t (i) weight on (x i, y i ) under D t. We can think of this as a distribution of weight or iportance of the x i S. is siply a noralizing factor to ake D t+1 a probability distribution. Note that the update places ore weight on previously isclassified exaples and less weight on previously correctly classified exaples. α t is unspecified in the code above. We will deterine it later. AdaBoost relies on the weak learning assuption: 2.5 Exaple 2 See slides on course website. γ t γ > Bound on the epirical error of AdaBoost Theore 5. The final hypothesis H output by Adaboost satisfies the following: eˆrr(h) exp exp [ 2 ] ɛ t (1 ɛ t ) ( T [ 1 4γ 2 t ( 2 T ( ) ) 1 RE 2 ɛ t γ 2 t ] ) (Additionally, if the weak learning assuption holds) e 2γ2 T 5

6 Proof. The second line holds by definition. The third line holds as ɛ t 1 2 γ t. The fourth line follows fro the fact that 1 + x e x. The final line follows by the weak learning assuption. Thus it is sufficient to show that the first line holds, which follows fro lea 2 and 3 (stated later). Lea 1. where F (x i ) T α th t (x i ). D T +1 (i) exp( y if (x i )) T Proof. Note D t+1 (i) Dt(i) e αty ih t(x i ) by definition. We can now solve for D T +1 recursively. D T +1 (i) D 1 (i) exp ( α 1y i h 1 (x i )) exp ( α 2y i h 2 (x i )) exp ( α T y i h T (x i )) Z 1 Z 2 Z ( T ) 1 exp y T i α th t (x i ) T exp [ y if (x i )] T Lea 2. eˆrr(h) T Proof. eˆrr(h) {H(xi ) y i } 1 {yi F (x i )0} e y if (x i ) D T +1 (i) D T +1 (i) Line 3 follows fro the fact that e y if (x i ) > 0 if y i F (x i ) > 0 and e y if (x i ) 1 if y i F (x i ) 0. Line 4 follows fro lea 1. The last line follows fro the fact that D T +1 is a probability distribution. 6

7 Lea 3. 2 ɛ t (1 ɛ t ) Proof. D t (i)e y iα th t(x i ) i:y i h t(x i ) D t (i)e αt + i:y i h t(x i ) D t (i)e αt ɛ t e αt + (1 ɛ t )e αt (2) The last equality follows because i:y i h t(x i ) D t(i) Pr[err Dt (h t )] ɛ t. We choose an α t so that the epirical error is iniized. By lea 2, this corresponds to iniizing. This yields: α t 1 ( ) 1 2 ln ɛt ɛ t This is also the α t we use in the algorith. Plugging this into equation (2) we get the desired result. 7

1 Generalization bounds based on Rademacher complexity

1 Generalization bounds based on Rademacher complexity COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #0 Scribe: Suqi Liu March 07, 08 Last tie we started proving this very general result about how quickly the epirical average converges

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

2 Upper-bound of Generalization Error of AdaBoost

2 Upper-bound of Generalization Error of AdaBoost COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #10 Scribe: Haipeng Zheng March 5, 2008 1 Review of AdaBoost Algorithm Here is the AdaBoost Algorithm: input: (x 1,y 1 ),...,(x m,y

More information

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Boosting. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Boosting Mehryar Mohri Courant Institute and Google Research ohri@cis.nyu.edu Weak Learning Definition: concept class C is weakly PAC-learnable if there exists a (weak)

More information

VC Dimension and Sauer s Lemma

VC Dimension and Sauer s Lemma CMSC 35900 (Spring 2008) Learning Theory Lecture: VC Diension and Sauer s Lea Instructors: Sha Kakade and Abuj Tewari Radeacher Averages and Growth Function Theore Let F be a class of ±-valued functions

More information

AdaBoost. S. Sumitra Department of Mathematics Indian Institute of Space Science and Technology

AdaBoost. S. Sumitra Department of Mathematics Indian Institute of Space Science and Technology AdaBoost S. Sumitra Department of Mathematics Indian Institute of Space Science and Technology 1 Introduction In this chapter, we are considering AdaBoost algorithm for the two class classification problem.

More information

Understanding Machine Learning Solution Manual

Understanding Machine Learning Solution Manual Understanding Machine Learning Solution Manual Written by Alon Gonen Edited by Dana Rubinstein Noveber 17, 2014 2 Gentle Start 1. Given S = ((x i, y i )), define the ultivariate polynoial p S (x) = i []:y

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 2: PAC Learning and VC Theory I Fro Adversarial Online to Statistical Three reasons to ove fro worst-case deterinistic

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

Symmetrization and Rademacher Averages

Symmetrization and Rademacher Averages Stat 928: Statistical Learning Theory Lecture: Syetrization and Radeacher Averages Instructor: Sha Kakade Radeacher Averages Recall that we are interested in bounding the difference between epirical and

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

1 Proving the Fundamental Theorem of Statistical Learning

1 Proving the Fundamental Theorem of Statistical Learning THEORETICAL MACHINE LEARNING COS 5 LECTURE #7 APRIL 5, 6 LECTURER: ELAD HAZAN NAME: FERMI MA ANDDANIEL SUO oving te Fundaental Teore of Statistical Learning In tis section, we prove te following: Teore.

More information

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011)

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011) E0 370 Statistical Learning Theory Lecture 5 Aug 5, 0 Covering Nubers, Pseudo-Diension, and Fat-Shattering Diension Lecturer: Shivani Agarwal Scribe: Shivani Agarwal Introduction So far we have seen how

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes Radeacher Coplexity Margin Bounds for Learning with a Large Nuber of Classes Vitaly Kuznetsov Courant Institute of Matheatical Sciences, 25 Mercer street, New York, NY, 002 Mehryar Mohri Courant Institute

More information

Lecture 8. Instructor: Haipeng Luo

Lecture 8. Instructor: Haipeng Luo Lecture 8 Instructor: Haipeng Luo Boosting and AdaBoost In this lecture we discuss the connection between boosting and online learning. Boosting is not only one of the most fundamental theories in machine

More information

1 The Probably Approximately Correct (PAC) Model

1 The Probably Approximately Correct (PAC) Model COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #3 Scribe: Yuhui Luo February 11, 2008 1 The Probably Approximately Correct (PAC) Model A target concept class C is PAC-learnable by

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

Handout 7. and Pr [M(x) = χ L (x) M(x) =? ] = 1.

Handout 7. and Pr [M(x) = χ L (x) M(x) =? ] = 1. Notes on Coplexity Theory Last updated: October, 2005 Jonathan Katz Handout 7 1 More on Randoized Coplexity Classes Reinder: so far we have seen RP,coRP, and BPP. We introduce two ore tie-bounded randoized

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine

Lecture October 23. Scribes: Ruixin Qiang and Alana Shine CSCI699: Topics in Learning and Gae Theory Lecture October 23 Lecturer: Ilias Scribes: Ruixin Qiang and Alana Shine Today s topic is auction with saples. 1 Introduction to auctions Definition 1. In a single

More information

Supplement to: Subsampling Methods for Persistent Homology

Supplement to: Subsampling Methods for Persistent Homology Suppleent to: Subsapling Methods for Persistent Hoology A. Technical results In this section, we present soe technical results that will be used to prove the ain theores. First, we expand the notation

More information

Learnability and Stability in the General Learning Setting

Learnability and Stability in the General Learning Setting Learnability and Stability in the General Learning Setting Shai Shalev-Shwartz TTI-Chicago shai@tti-c.org Ohad Shair The Hebrew University ohadsh@cs.huji.ac.il Nathan Srebro TTI-Chicago nati@uchicago.edu

More information

A Smoothed Boosting Algorithm Using Probabilistic Output Codes

A Smoothed Boosting Algorithm Using Probabilistic Output Codes A Soothed Boosting Algorith Using Probabilistic Output Codes Rong Jin rongjin@cse.su.edu Dept. of Coputer Science and Engineering, Michigan State University, MI 48824, USA Jian Zhang jian.zhang@cs.cu.edu

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #5 Scribe: Allen(Zhelun) Wu February 19, ). Then: Pr[err D (h A ) > ɛ] δ

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #5 Scribe: Allen(Zhelun) Wu February 19, ). Then: Pr[err D (h A ) > ɛ] δ COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #5 Scribe: Allen(Zhelun) Wu February 19, 018 Review Theorem (Occam s Razor). Say algorithm A finds a hypothesis h A H consistent with

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 203 Review of Zero-Sum Games At the end of last lecture, we discussed a model for two player games (call

More information

Computable Shell Decomposition Bounds

Computable Shell Decomposition Bounds Coputable Shell Decoposition Bounds John Langford TTI-Chicago jcl@cs.cu.edu David McAllester TTI-Chicago dac@autoreason.co Editor: Leslie Pack Kaelbling and David Cohn Abstract Haussler, Kearns, Seung

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Improved Guarantees for Agnostic Learning of Disjunctions

Improved Guarantees for Agnostic Learning of Disjunctions Iproved Guarantees for Agnostic Learning of Disjunctions Pranjal Awasthi Carnegie Mellon University pawasthi@cs.cu.edu Avri Blu Carnegie Mellon University avri@cs.cu.edu Or Sheffet Carnegie Mellon University

More information

A Theoretical Framework for Deep Transfer Learning

A Theoretical Framework for Deep Transfer Learning A Theoretical Fraewor for Deep Transfer Learning Toer Galanti The School of Coputer Science Tel Aviv University toer22g@gail.co Lior Wolf The School of Coputer Science Tel Aviv University wolf@cs.tau.ac.il

More information

1 A Lower Bound on Sample Complexity

1 A Lower Bound on Sample Complexity COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #7 Scribe: Chee Wei Tan February 25, 2008 1 A Lower Bound on Sample Complexity In the last lecture, we stopped at the lower bound on

More information

COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017

COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017 COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University BOOSTING Robert E. Schapire and Yoav

More information

Support Vector Machines. Goals for the lecture

Support Vector Machines. Goals for the lecture Support Vector Machines Mark Craven and David Page Coputer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Soe of the slides in these lectures have been adapted/borrowed fro aterials developed

More information

CS446: Machine Learning Spring Problem Set 4

CS446: Machine Learning Spring Problem Set 4 CS446: Machine Learning Spring 2017 Problem Set 4 Handed Out: February 27 th, 2017 Due: March 11 th, 2017 Feel free to talk to other members of the class in doing the homework. I am more concerned that

More information

i=1 = H t 1 (x) + α t h t (x)

i=1 = H t 1 (x) + α t h t (x) AdaBoost AdaBoost, which stands for ``Adaptive Boosting", is an ensemble learning algorithm that uses the boosting paradigm []. We will discuss AdaBoost for binary classification. That is, we assume that

More information

The Boosting Approach to. Machine Learning. Maria-Florina Balcan 10/31/2016

The Boosting Approach to. Machine Learning. Maria-Florina Balcan 10/31/2016 The Boosting Approach to Machine Learning Maria-Florina Balcan 10/31/2016 Boosting General method for improving the accuracy of any given learning algorithm. Works by creating a series of challenge datasets

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Computable Shell Decomposition Bounds

Computable Shell Decomposition Bounds Journal of Machine Learning Research 5 (2004) 529-547 Subitted 1/03; Revised 8/03; Published 5/04 Coputable Shell Decoposition Bounds John Langford David McAllester Toyota Technology Institute at Chicago

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Computational Learning Theory: Probably Approximately Correct (PAC) Learning. Machine Learning. Spring The slides are mainly from Vivek Srikumar

Computational Learning Theory: Probably Approximately Correct (PAC) Learning. Machine Learning. Spring The slides are mainly from Vivek Srikumar Computational Learning Theory: Probably Approximately Correct (PAC) Learning Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 This lecture: Computational Learning Theory The Theory

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

i=1 cosn (x 2 i y2 i ) over RN R N. cos y sin x

i=1 cosn (x 2 i y2 i ) over RN R N. cos y sin x Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 November 16, 017 Due: Dec 01, 017 A. Kernels Show that the following kernels K are PDS: 1.

More information

3.8 Three Types of Convergence

3.8 Three Types of Convergence 3.8 Three Types of Convergence 3.8 Three Types of Convergence 93 Suppose that we are given a sequence functions {f k } k N on a set X and another function f on X. What does it ean for f k to converge to

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Ensemble Learning How to combine multiple classifiers into a single one Works well if the classifiers are complementary This class: two types of

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

A Bernstein-Markov Theorem for Normed Spaces

A Bernstein-Markov Theorem for Normed Spaces A Bernstein-Markov Theore for Nored Spaces Lawrence A. Harris Departent of Matheatics, University of Kentucky Lexington, Kentucky 40506-0027 Abstract Let X and Y be real nored linear spaces and let φ :

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 8: Boosting (and Compression Schemes) Boosting the Error If we have an efficient learning algorithm that for any distribution

More information

Testing Properties of Collections of Distributions

Testing Properties of Collections of Distributions Testing Properties of Collections of Distributions Reut Levi Dana Ron Ronitt Rubinfeld April 9, 0 Abstract We propose a fraework for studying property testing of collections of distributions, where the

More information

Computational Learning Theory: Shattering and VC Dimensions. Machine Learning. Spring The slides are mainly from Vivek Srikumar

Computational Learning Theory: Shattering and VC Dimensions. Machine Learning. Spring The slides are mainly from Vivek Srikumar Computational Learning Theory: Shattering and VC Dimensions Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 This lecture: Computational Learning Theory The Theory of Generalization

More information

Robustness and Regularization of Support Vector Machines

Robustness and Regularization of Support Vector Machines Robustness and Regularization of Support Vector Machines Huan Xu ECE, McGill University Montreal, QC, Canada xuhuan@ci.cgill.ca Constantine Caraanis ECE, The University of Texas at Austin Austin, TX, USA

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

Characterizing the Sample Complexity of Private Learners

Characterizing the Sample Complexity of Private Learners Characterizing the Saple Coplexity of ivate Learners Aos Beiel ept of Coputer Science Ben-Gurion University beiel@csbguacil Kobbi Nissi ept of Coputer Science Ben-Gurion University & Harvard University

More information

1 Review of The Learning Setting

1 Review of The Learning Setting COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #8 Scribe: Changyan Wang February 28, 208 Review of The Learning Setting Last class, we moved beyond the PAC model: in the PAC model we

More information

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution:

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 October 31, 2016 Due: A. November 11, 2016; B. November 22, 2016 A. Boosting 1. Implement

More information

Learnability, Stability and Uniform Convergence

Learnability, Stability and Uniform Convergence Journal of Machine Learning Research (200) 2635-2670 ubitted 4/0; Revised 9/0; Published 0/0 Learnability, tability and Unifor Convergence hai halev-hwartz chool of Coputer cience and Engineering The Hebrew

More information

Support Vector Machines. Maximizing the Margin

Support Vector Machines. Maximizing the Margin Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Background. Adaptive Filters and Machine Learning. Bootstrap. Combining models. Boosting and Bagging. Poltayev Rassulzhan

Background. Adaptive Filters and Machine Learning. Bootstrap. Combining models. Boosting and Bagging. Poltayev Rassulzhan Adaptive Filters and Machine Learning Boosting and Bagging Background Poltayev Rassulzhan rasulzhan@gmail.com Resampling Bootstrap We are using training set and different subsets in order to validate results

More information

4 = (0.02) 3 13, = 0.25 because = 25. Simi-

4 = (0.02) 3 13, = 0.25 because = 25. Simi- Theore. Let b and be integers greater than. If = (. a a 2 a i ) b,then for any t N, in base (b + t), the fraction has the digital representation = (. a a 2 a i ) b+t, where a i = a i + tk i with k i =

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

Computational Learning Theory. Definitions

Computational Learning Theory. Definitions Computational Learning Theory Computational learning theory is interested in theoretical analyses of the following issues. What is needed to learn effectively? Sample complexity. How many examples? Computational

More information

Support recovery in compressed sensing: An estimation theoretic approach

Support recovery in compressed sensing: An estimation theoretic approach Support recovery in copressed sensing: An estiation theoretic approach Ain Karbasi, Ali Horati, Soheil Mohajer, Martin Vetterli School of Coputer and Counication Sciences École Polytechnique Fédérale de

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

New upper bound for the B-spline basis condition number II. K. Scherer. Institut fur Angewandte Mathematik, Universitat Bonn, Bonn, Germany.

New upper bound for the B-spline basis condition number II. K. Scherer. Institut fur Angewandte Mathematik, Universitat Bonn, Bonn, Germany. New upper bound for the B-spline basis condition nuber II. A proof of de Boor's 2 -conjecture K. Scherer Institut fur Angewandte Matheati, Universitat Bonn, 535 Bonn, Gerany and A. Yu. Shadrin Coputing

More information

COMS 4771 Lecture Boosting 1 / 16

COMS 4771 Lecture Boosting 1 / 16 COMS 4771 Lecture 12 1. Boosting 1 / 16 Boosting What is boosting? Boosting: Using a learning algorithm that provides rough rules-of-thumb to construct a very accurate predictor. 3 / 16 What is boosting?

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 2018

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 2018 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 208 Review of Game heory he games we will discuss are two-player games that can be modeled by a game matrix

More information

Fixed-to-Variable Length Distribution Matching

Fixed-to-Variable Length Distribution Matching Fixed-to-Variable Length Distribution Matching Rana Ali Ajad and Georg Böcherer Institute for Counications Engineering Technische Universität München, Gerany Eail: raa2463@gail.co,georg.boecherer@tu.de

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Bayesian Learning. Chapter 6: Bayesian Learning. Bayes Theorem. Roles for Bayesian Methods. CS 536: Machine Learning Littman (Wu, TA)

Bayesian Learning. Chapter 6: Bayesian Learning. Bayes Theorem. Roles for Bayesian Methods. CS 536: Machine Learning Littman (Wu, TA) Bayesian Learning Chapter 6: Bayesian Learning CS 536: Machine Learning Littan (Wu, TA) [Read Ch. 6, except 6.3] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theore MAP, ML hypotheses MAP learners Miniu

More information

Lecture 9 November 23, 2015

Lecture 9 November 23, 2015 CSC244: Discrepancy Theory in Coputer Science Fall 25 Aleksandar Nikolov Lecture 9 Noveber 23, 25 Scribe: Nick Spooner Properties of γ 2 Recall that γ 2 (A) is defined for A R n as follows: γ 2 (A) = in{r(u)

More information

New Bounds for Learning Intervals with Implications for Semi-Supervised Learning

New Bounds for Learning Intervals with Implications for Semi-Supervised Learning JMLR: Workshop and Conference Proceedings vol (1) 1 15 New Bounds for Learning Intervals with Iplications for Sei-Supervised Learning David P. Helbold dph@soe.ucsc.edu Departent of Coputer Science, University

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science A Better Algorith For an Ancient Scheduling Proble David R. Karger Steven J. Phillips Eric Torng Departent of Coputer Science Stanford University Stanford, CA 9435-4 Abstract One of the oldest and siplest

More information

VC Dimension Review. The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces.

VC Dimension Review. The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces. VC Dimension Review The purpose of this document is to review VC dimension and PAC learning for infinite hypothesis spaces. Previously, in discussing PAC learning, we were trying to answer questions about

More information

1. INTRODUCTION AND RESULTS

1. INTRODUCTION AND RESULTS SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS AND LUCAS NUMBERS Wenpeng Zhang Research Center for Basic Science, Xi an Jiaotong University Xi an Shaanxi, People s Republic of China (Subitted August 00

More information

Name (NetID): (1 Point)

Name (NetID): (1 Point) CS446: Machine Learning Fall 2016 October 25 th, 2016 This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam. This exam booklet contains four

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Consistent Multiclass Algorithms for Complex Performance Measures. Supplementary Material

Consistent Multiclass Algorithms for Complex Performance Measures. Supplementary Material Consistent Multiclass Algoriths for Coplex Perforance Measures Suppleentary Material Notations. Let λ be the base easure over n given by the unifor rando variable (say U over n. Hence, for all easurable

More information

arxiv: v3 [cs.lg] 7 Jan 2016

arxiv: v3 [cs.lg] 7 Jan 2016 Efficient and Parsionious Agnostic Active Learning Tzu-Kuo Huang Alekh Agarwal Daniel J. Hsu tkhuang@icrosoft.co alekha@icrosoft.co djhsu@cs.colubia.edu John Langford Robert E. Schapire jcl@icrosoft.co

More information

arxiv: v3 [stat.ml] 9 Aug 2016

arxiv: v3 [stat.ml] 9 Aug 2016 with Specialization to Linear Classifiers Pascal Gerain Aaury Habrard François Laviolette 3 ilie Morvant INRIA, SIRRA Project-Tea, 75589 Paris, France, et DI, École Norale Supérieure, 7530 Paris, France

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

A Theoretical Analysis of a Warm Start Technique

A Theoretical Analysis of a Warm Start Technique A Theoretical Analysis of a War Start Technique Martin A. Zinkevich Yahoo! Labs 701 First Avenue Sunnyvale, CA Abstract Batch gradient descent looks at every data point for every step, which is wasteful

More information

PAC-Bayesian Learning of Linear Classifiers

PAC-Bayesian Learning of Linear Classifiers Pascal Gerain Pascal.Gerain.@ulaval.ca Alexandre Lacasse Alexandre.Lacasse@ift.ulaval.ca François Laviolette Francois.Laviolette@ift.ulaval.ca Mario Marchand Mario.Marchand@ift.ulaval.ca Départeent d inforatique

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

Computational Learning Theory

Computational Learning Theory CS 446 Machine Learning Fall 2016 OCT 11, 2016 Computational Learning Theory Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes 1 PAC Learning We want to develop a theory to relate the probability of successful

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a ournal published by Elsevier. The attached copy is furnished to the author for internal non-coercial research and education use, including for instruction at the authors institution

More information

Hierarchical Boosting and Filter Generation

Hierarchical Boosting and Filter Generation January 29, 2007 Plan Combining Classifiers Boosting Neural Network Structure of AdaBoost Image processing Hierarchical Boosting Hierarchical Structure Filters Combining Classifiers Combining Classifiers

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

A Note on Online Scheduling for Jobs with Arbitrary Release Times

A Note on Online Scheduling for Jobs with Arbitrary Release Times A Note on Online Scheduling for Jobs with Arbitrary Release Ties Jihuan Ding, and Guochuan Zhang College of Operations Research and Manageent Science, Qufu Noral University, Rizhao 7686, China dingjihuan@hotail.co

More information