Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Size: px
Start display at page:

Download "Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett"

Transcription

1 Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1

2 Bayesian bandit strategies Thompson sampling: Simple strategy: only requires ability to sample a parameter from the posterior and maximize the expected reward under the sampled parameter. Applicable for more complex problems (dependent priors, complex actions, dependent rewards) Performs well in practice. Strong (frequentist) regret bounds. Gittins index has shortcomings: only applicable to infinite horizon and independent arm priors; complex to compute. 2

3 Bayesian Bernoulli bandits At timet, armj gives X j,t Bernoulli(µ j ) reward. Suppose we have fixed, unknown parameters µ j, and we wish to choose a sequence of armsi 1,I 2,..., so as to minimize regret R n = (µ j µ It ). t=1 3

4 Thompson s idea Frequentist setting, Bayesian strategy: Uniform prior onp j. Pick action j with probability that increases with the probability (under posterior distributions) that j is optimal. Typically, Thompson sampling refers to probability matching. That is, the probability of choosing j is set to the probability that j is optimal: Pr(I t = j) = Pr(p j is the max). 4

5 Thompson sampling Given priorπ j,0 = π 0 : Fort = 1,2,..., 1. Draw p 1,t,...,p k,t from posteriors π j,t Play the arm j with maximump j,t. 3. Observe reward X j,t. 4. Update posterior: π j,t (p) p X j,t (1 p) 1 X j,t π j,t 1 (p). }{{}}{{} likelihood prior Note that Pr(I t = j) = Pr(p j,t is max). 5

6 Thompson sampling For Beta(1,1) prior: Fort = 1,2,..., 1. Draw p j,t Beta(S j,t +1,F j,t +1) for j = 1,...,k. 2. Play I t = j for j with maximum p j,t. 3. Observe reward X It,t. 4. Update posterior: Set S It,t+1 = S It,t +X It,t. Set F It,t+1 = F It,t +1 X It,t. 6

7 Regret of Thompson sampling Theorem: [Agrawal and Goyal] For every µ 1,...,µ k, there is a constant C such that for all ǫ > 0, R n (1+ǫ) j: j >0 j logn d(µ j,µ ) + Ck ǫ 2, where d(µ j,µ ) is the KL-divergence between Bernoulli distributions. 7

8 As always, R n = k j=1 ET j(n) j, where T j (n) = n t=1 1[I t = j]. For UCB strategies, we were able to bound regret by showing that the upper bounds are (whp) valid, and that, after enough mistakes, they are sufficiently tight that subsequent mistakes are unlikely. Here, we don t have bounds, we re just sampling from distributions that get more concentrated as we sample more. 8

9 Fix a suboptimal armj j. Split according to ˆµ j (t 1) andp j,t : ET j (n) = = Pr(I t = j) t=1 [Pr(I t = j, ˆµ j (t 1) x j, p j,t y j ) t=1 +Pr(I t = j, ˆµ j (t 1) x j, p j,t > y j ) +Pr(I t = j, ˆµ j (t 1) > x j )], where we choose µ j < x j < y j < µ as follows: 9

10 µ j < x j < µ s.t. d(x j,µ ) = d(µ j,µ ) 1+ǫ x j < y j < µ s.t. d(x j,y j ) = d(x j,µ ) 1+ǫ = d(µ j,µ ) (1+ǫ) 2. This ensures that the relevant divergences are only a constant factor different fromd(µ j,µ ). 10

11 Consider those three probabilities: 1. Pr(I t = j, ˆµ j (t 1) x j, p j,t y j ) counts the times when both the empirical mean ˆµ j (t 1) and the sampled p j,t are not too far above their expectations. For this to be small, we need to be sure that j is pulled a lot. 2. Pr(I t = j, ˆµ j (t 1) x j, p j,t > y j ) counts the times when p j,t is far above its expectation. AsT j grows, the distribution of p j,t gets more concentrated, so this sum is O(logn/d(x j,y j )). 3. Pr(I t = j, ˆµ j (t 1) > x j ) counts the times when the empirical mean ˆµ j (t 1) is far above its expectation. Its sum iso(1). 11

12 For the 3rd probability: ifτ j,k is the kth time when I t = j, then Pr(I t = j, ˆµ j (t 1) > x j ) 1+E t= n 1 k=1 n 1 k=1 1[ˆµ j (τ j,k ) > x j ] exp( kd(x j,µ j )) 1 d(x j,µ j ) = O(1). 12

13 For the 2nd probability: Pr(I t = j, ˆµ j (t 1) x j, p j,t > y j ) t=1 Pr(I t = j, p j,t > y j ˆµ j (t 1) x j ) t=1 m+e t=τ j,m +1 Pr(I t = j, p j,t > y j ˆµ j (t 1) x j, F t 1 ), for any choice of m. (Recall that τ j,k is the kth time when I t = j and F t 1 is everything up tot 1.) 13

14 Pr(I t = j, ˆµ j (t 1) x j, p j,t > y j ) t=1 m+e t=τ j,m +1 logn d(x j,y j ) +E logn d(x j,y j ) +1, exp( T j (t 1)d(x j,y j )) n t=τ j,m +1 where we choose m = logn/d(x j,y j ) so that 1 n exp( T j (t 1)d(x j,y j )) 1 n. 14

15 For the 1st probability, define α j,t = Pr(p j,t > y j F t 1 ). Then Pr(I t = j, ˆµ j (t 1) x j, p j,t y j ) t=1 (*) E t=1 n 1 k=0 n 1 k=0 E [ 1 αj,t [ E ] 1[I t = j, ˆµ j (t 1) x j, p j,t y j ] α j,t 1 α j,τ j,k +1 α j,τj,k +1 1 α j,τj,k +1 τ j,k+1 t=τ j,k +1 1[I t = j ] ] 1 = = O(1). (Recall τ j,k is the kth time when I t = j.) 15

16 (*) Crucial fact: For a bad arm, when its sample average and sampled parameter aren t too large, the probability it s chosen is bounded linearly by the probability that the best arm is chosen. Lemma: For suboptimal j, Pr(I t = j, ˆµ j (t 1) x j, p j,t y j F t 1 ) 1 α j,t α j,t Pr(I t = j, ˆµ j (t 1) x j, p j,t y j F t 1 ), where α j,t = Pr(p j,t > y j F t 1 ). 16

17 First, notice that, conditioned onf t 1, ˆµ j (t 1) is determined. So assume ˆµ j (t 1) x j. Define the event W j (t) = { j j, p j,t p j,t} (j is the suboptimal winner ). Then Pr(I t = j p j,t y j, F t 1 ) Pr(I t = j, W j (t) p j,t y j, F t 1 ) = Pr(W j (t) p j,t y j, F t 1 )Pr(I t = j W j (t), p j,t y j, F t 1 ) Pr(W j (t) p j,t y j, F t 1 )Pr(p j,t > y j W j (t), p j,t y j, F t 1 ) Pr(W j (t) p j,t y j, F t 1 )Pr(p j,t > y j F t 1 ) = Pr(W j (t) p j,t y j, F t 1 )α j,t. 17

18 On the other side: Pr(I t = j p j,t y j, F t 1 ) Pr(W j (t), p j,t y j p j,t y j, F t 1 ) = Pr(W j (t) p j,t y j, F t 1 )Pr(p j,t y j F t 1 ) = Pr(W j (t) p j,t y j, F t 1 )(1 α j,t ). 18

19 Thompson sampling for bounded rewards For X j,t [0,1], can use an identical approach. But the only analysis applies to Bernoulli-sampled rewards (which introduce a little extra variance): Fort = 1,2,..., 1. Draw p j,t Beta(S j,t +1,F j,t +1) for j = 1,...,k. 2. Play I t = j for j with maximum p j,t. 3. Observe reward X It,t. 4. Sample R t Bernoulli(X It,t). 5. Update posterior: Set S It,t+1 = S It,t +R t. Set F It,t+1 = F It,t +1 R t. 19

20 Thompson sampling One of the advantages of a Bayesian strategy (even in a frequentist setting, where the parameters are fixed but unknown) is that it is easy to generalize it to settings with rewards and (other) outcomes, where the distributions depend on parameters θ. This allows: Complex actions (e.g., choose four advertisements on a web page; multi-commodity flow with random capacities). Limited observations (e.g., only see rewards for complex actions, not for simple ones). Dependent rewards. 20

21 Thompson sampling Given parameter space Θ, action space A, outcome space Y, prior π 0 on Θ, likelihoodl(y;a,θ), and reward distribution: Fort = 1,2,..., 1. Draw θ t from posterior π t Play action a t that maximizes E θt R a. 3. Observe outcome Y t. 4. Update posterior: π t (θ) l(y t ;a t,θ)π t 1 (θ). 21

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Stat 260/CS Learning in Sequential Decision Problems.

Stat 260/CS Learning in Sequential Decision Problems. Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Exponential families. Cumulant generating function. KL-divergence. KL-UCB for an exponential

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Complex Bandit Problems and Thompson Sampling

Complex Bandit Problems and Thompson Sampling Complex Bandit Problems and Aditya Gopalan Department of Electrical Engineering Technion, Israel aditya@ee.technion.ac.il Shie Mannor Department of Electrical Engineering Technion, Israel shie@ee.technion.ac.il

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Lecture 4 January 23

Lecture 4 January 23 STAT 263/363: Experimental Design Winter 2016/17 Lecture 4 January 23 Lecturer: Art B. Owen Scribe: Zachary del Rosario 4.1 Bandits Bandits are a form of online (adaptive) experiments; i.e. samples are

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights

More information

arxiv: v1 [cs.lg] 7 Sep 2018

arxiv: v1 [cs.lg] 7 Sep 2018 Analysis of Thompson Sampling for Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms Alihan Hüyük Bilkent University Cem Tekin Bilkent University arxiv:809.02707v [cs.lg] 7 Sep 208

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com Navin Goyal Microsoft Research India navingo@microsoft.com Abstract The multi-armed

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Learning Algorithms for Minimizing Queue Length Regret

Learning Algorithms for Minimizing Queue Length Regret Learning Algorithms for Minimizing Queue Length Regret Thomas Stahlbuhk Massachusetts Institute of Technology Cambridge, MA Brooke Shrader MIT Lincoln Laboratory Lexington, MA Eytan Modiano Massachusetts

More information

A Structured Multiarmed Bandit Problem and the Greedy Policy

A Structured Multiarmed Bandit Problem and the Greedy Policy A Structured Multiarmed Bandit Problem and the Greedy Policy Adam J. Mersereau Kenan-Flagler Business School, University of North Carolina ajm@unc.edu Paat Rusmevichientong School of Operations Research

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit European Worshop on Reinforcement Learning 14 (2018 October 2018, Lille, France. Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit Réda Alami Orange Labs 2 Avenue Pierre Marzin 22300,

More information

Bayesian Analysis for Natural Language Processing Lecture 2

Bayesian Analysis for Natural Language Processing Lecture 2 Bayesian Analysis for Natural Language Processing Lecture 2 Shay Cohen February 4, 2013 Administrativia The class has a mailing list: coms-e6998-11@cs.columbia.edu Need two volunteers for leading a discussion

More information

Exploration and exploitation of scratch games

Exploration and exploitation of scratch games Mach Learn (2013) 92:377 401 DOI 10.1007/s10994-013-5359-2 Exploration and exploitation of scratch games Raphaël Féraud Tanguy Urvoy Received: 10 January 2013 / Accepted: 12 April 2013 / Published online:

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed CS 683 Learning, Games, and Electronic Markets Spring 007 Notes from Week 9: Multi-Armed Bandit Problems II Instructor: Robert Kleinberg 6-30 Mar 007 1 Information-theoretic lower bounds for multiarmed

More information

arxiv: v2 [math.oc] 29 Aug 2015

arxiv: v2 [math.oc] 29 Aug 2015 Parameter estimation in softmax decision-making models with linear objective functions Paul Reverdy and Naomi E. Leonard 2 arxiv:52.4635v2 [math.oc] 29 Aug 25 Abstract With an eye towards human-centered

More information

Thompson Sampling for the MNL-Bandit

Thompson Sampling for the MNL-Bandit JMLR: Workshop and Conference Proceedings vol 65: 3, 207 30th Annual Conference on Learning Theory Thompson Sampling for the MNL-Bandit author names withheld Editor: Under Review for COLT 207 Abstract

More information

Thompson Sampling for Complex Online Problems

Thompson Sampling for Complex Online Problems 1 3 6 7 8 9 1 11 1 13 1 1 16 17 18 19 1 3 6 7 8 9 3 31 3 33 3 3 36 37 38 39 1 3 6 7 8 9 1 3 Thompson Sampling for Complex Online Problems Anonymous Author(s) Affiliation Address email Abstract We study

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Chapter 2 Stochastic Multi-armed Bandit

Chapter 2 Stochastic Multi-armed Bandit Chapter 2 Stochastic Multi-armed Bandit Abstract In this chapter, we present the formulation, theoretical bound, and algorithms for the stochastic MAB problem. Several important variants of stochastic

More information

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION c 2015 Chong Jiang ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS BY CHONG JIANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

Support Vector Machines and Bayes Regression

Support Vector Machines and Bayes Regression Statistical Techniques in Robotics (16-831, F11) Lecture #14 (Monday ctober 31th) Support Vector Machines and Bayes Regression Lecturer: Drew Bagnell Scribe: Carl Doersch 1 1 Linear SVMs We begin by considering

More information

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conugate Priors Yichi Zhou 1 Jun Zhu 1 Jingwe Zhuo 1 Abstract Thompson sampling has impressive empirical performance for many multi-armed

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

arxiv: v7 [cs.lg] 7 Jul 2017

arxiv: v7 [cs.lg] 7 Jul 2017 Learning to Optimize Via Information-Directed Sampling Daniel Russo 1 and Benjamin Van Roy 2 1 Northwestern University, daniel.russo@kellogg.northwestern.edu 2 Stanford University, bvr@stanford.edu arxiv:1403.5556v7

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Junya Honda Akimichi Takemura The University of Tokyo {honda, takemura}@stat.t.u-tokyo.ac.jp Abstract In stochastic bandit problems,

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Optimistic Gittins Indices

Optimistic Gittins Indices Optimistic Gittins Indices Eli Gutin Operations Research Center, MIT Cambridge, MA 0242 gutin@mit.edu Vivek F. Farias MIT Sloan School of Management Cambridge, MA 0242 vivekf@mit.edu Abstract Starting

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Thompson sampling for web optimisation. 29 Jan 2016 David S. Leslie

Thompson sampling for web optimisation. 29 Jan 2016 David S. Leslie Thompson sampling for web optimisation 29 Jan 2016 David S. Leslie Plan Contextual bandits on the web Thompson sampling in bandits Selecting multiple adverts Plan Contextual bandits on the web Thompson

More information

Models of collective inference

Models of collective inference Models of collective inference Laurent Massoulié (Microsoft Research-Inria Joint Centre) Mesrob I. Ohannessian (University of California, San Diego) Alexandre Proutière (KTH Royal Institute of Technology)

More information

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang Presentation by Terry Lam 02/2011 Outline The Contextual Bandit Problem Prior Works The Epoch Greedy Algorithm

More information

Estimation Considerations in Contextual Bandits

Estimation Considerations in Contextual Bandits Estimation Considerations in Contextual Bandits Maria Dimakopoulou Zhengyuan Zhou Susan Athey Guido Imbens arxiv:1711.07077v4 [stat.ml] 16 Dec 2018 Abstract Contextual bandit algorithms are sensitive to

More information

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Mingxi Li (s1720554) First Advisor: Dr. Wouter M.Koolen Secondary Advisor: Dr. Tim van Erven master thesis Defended on October

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

Bayesian reinforcement learning

Bayesian reinforcement learning Bayesian reinforcement learning Markov decision processes and approximate Bayesian computation Christos Dimitrakakis Chalmers April 16, 2015 Christos Dimitrakakis (Chalmers) Bayesian reinforcement learning

More information

Multi armed bandit problem: some insights

Multi armed bandit problem: some insights Multi armed bandit problem: some insights July 4, 20 Introduction Multi Armed Bandit problems have been widely studied in the context of sequential analysis. The application areas include clinical trials,

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 10 Class Summary Last time... We began our discussion of adaptive clinical trials Specifically,

More information

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation Machine Learning CMPT 726 Simon Fraser University Binomial Parameter Estimation Outline Maximum Likelihood Estimation Smoothed Frequencies, Laplace Correction. Bayesian Approach. Conjugate Prior. Uniform

More information

Statistical Decision Theory II: Costs, Rewards, & Ideal Actors

Statistical Decision Theory II: Costs, Rewards, & Ideal Actors Statistical Decision Theory II: Costs, Rewards, & Ideal Actors Loss Functions Statistical decision theory involves determining which decisions (or actions) are best It formalizes good versus bad outcomes

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian

More information

Stochastic Regret Minimization via Thompson Sampling

Stochastic Regret Minimization via Thompson Sampling JMLR: Workshop and Conference Proceedings vol 35:1 22, 2014 Stochastic Regret Minimization via Thompson Sampling Sudipto Guha Department of Computer and Information Sciences, University of Pennsylvania,

More information

Multiple Identifications in Multi-Armed Bandits

Multiple Identifications in Multi-Armed Bandits Multiple Identifications in Multi-Armed Bandits arxiv:05.38v [cs.lg] 4 May 0 Sébastien Bubeck Department of Operations Research and Financial Engineering, Princeton University sbubeck@princeton.edu Tengyao

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Bayesian Methods Machine Learning CSE546 Kevin Jamieson University of Washington November 1, 2018 2018 Kevin Jamieson 2 MLE Recap - coin flips Data:

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, 2016

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 CS students: don t forget to re-register in CS-535D. Even if you just audit this course, please do register.

More information