Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Size: px
Start display at page:

Download "Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett"

Transcription

1 Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights strategy. 1

2 Adversarial bandits Repeated game: strategy chooses I t, then adversary chooses (x 1,t,...,x k,t ). Aim to minimize regret, R n = max j x j,t x It,t, or pseudo-regret R n = max j E x j,t E x It,t, 2

3 Adversarial bandits Some scenarios: I t deterministic. Hopeless. Must have I t randomized: strategy plays a distribution. Regret is random. Could consider expected regret, or high probability regret bounds. Adversary chooses x j,t independent of strategy s previous random outcomes I t. Oblivious adversary. Adversary chooses x j,t with knowledge of strategy s previous random outcomes I t. Adaptive adversary or nonoblivious adversary. But then what does regret mean? 3

4 Adversarial bandits: Lower bounds It s clear that R n ER n. So a lower bound on pseudo-regret gives lower bounds on expected regret. Lower bounds in the stochastic setting suffice here (the adversary can certainly choose a sequence randomly). Theorem: For any strategy and any n, there is an oblivious adversary playingx j,t {0,1} for which R n 1 18 min{ nk,n}. In particular, it suffices for the adversary to play i.i.d. Bernoulli rewards to achieve a pseudo-regret that is this large. 4

5 Adversarial bandit strategies How should a strategy choose the distribution over I t in the adversarial setting? Exploration vs exploitation remains an important issue. Exploitation appears to be even more dangerous. Let s digress and consider the corresponding full information game. It s standard (and, we ll see, convenient) to pose it in terms of losses, rather than rewards. For x i,t in[0,1], think of l i,t = 1 x i,t, so that l i,t is in[0,1]. 5

6 An aside: A full information prediction game Consider the following repeated game: at timet, 1. strategy chooses a distributionp t over k experts (I t p t ), 2. adversary chooses a loss vector l t = (l 1,t,...,l k,t ) [0,1] k, 3. strategy sees l t. The aim is to ensure that, for all choices of the adversary, R n = El It,t min j l j,t is not too large. 6

7 An aside: A full information prediction game Exponential Weights Strategy (with parameter η) set p 1,1 = = p k,1 = 1/k. for t = 1,2,...,n, choose I t p t, observe l t. L i,t = p i,t+1 = t l i,s, s=1 exp( ηl i,t ) k j=1 exp( ηl j,t). 7

8 An aside: A full information prediction game Theorem: incurs regret The exponential weights strategy with parameter η R n nη 8 + logk η. Choosing η = 8logk/n givesr n nlogk/2. 8

9 An aside: A full information prediction game Proof idea: For this choice ofp t, Φ t = 1 η log ( k i=1 exp( ηl i,t ) ) is a measure of progress. WhenEl It,t is big, there is a big increase from Φ t 1 toφ t. But Φ n min j L j,n. 9

10 An aside: A full information prediction game For l i,t [0,1], Hoeffding s inequality shows that that is, logeexp( η(l It,t El It,t)) η2 8, El It,t η 8 1 η logeexp( ηl I t,t). But the choice ofp t means that the sum of these c.g.f.s telescopes: ( k ) i=1 logeexp( ηl It,t) = log exp( ηl i,t) k i=1 exp( ηl i,t 1) ( k ) = log exp( ηl i,n ) logk. i=1 10

11 An aside: A full information prediction game Thus, El It,t ηn 8 + logk η ηn 8 + logk η ) ( k 1 η log exp( ηl i,n ) i=1 }{{} exp( ηl j,n ) +min j L j,n. R n = El It,t min j l j,t ηn 8 + logk η. 11

12 Back to bandits What can the strategy do when it only sees l It,t? Importance sampling: in the strategy, replace l i,t by l i,t = l i,t p i,t 1[I t = i]. This is an unbiased estimate of the unseen losses: l j,t = E l j,t. 12

13 Exp3: Exponential weights Strategy Exp3 set p 1 uniform on{1,...,k}. for t = 1,2,...,n, choose I t p t, observe l It,t. l i,t = l i,t p i,t 1[I t = i], L i,t = p i,t+1 = t s=1 l i,s, ) exp ( η L i,t ). k j=1 ( η L exp j,t 13

14 Back to bandits Then the regret involves t (l I t,t l j,t ), and l It,t = k p i,t li,t l j,t = E l j,t. i=1 But we can no longer appeal to Hoeffding s inequality, because l i,t is unbounded. Happily, we only need an upper bound on the c.g.f. Γ(λ) for negative values ofλ = η. This corresponds to a lower tail concentration inequality for the non-negative random variable l It,t. But non-negative random variables with finite variance have sub-gaussian lower tails: 14

15 Sub-Gaussian lower tails for non-negative r.v.s Lemma: ForX 0 and λ > 0, hence logee λx λ2 2 EX2 λex, EX 1 λ logee λx + λ 2 EX2. Proof. logeexp( λ(x EX)) = logeexp( λx)+λex Eexp( λx) 1+λEX E λ2 X 2 2 because logy y 1 for all y and e x 1 x+x 2 /2 for x 0., 15

16 Exp3: Exponential weights Theorem: Exp3 with parameter η incurs regret R n nηk 2 + logk η. Choosing η = 2logk/(nk) givesr n 2nklogk. (Recall the lower boundr n = Ω( nk). This strategy matches it to within a logk factor.) 16

17 Exp3: Exponential weights l It,t = k i=1 ( λ 2 p i,t li,t k i=1p i,t l2 i,t 1 λ log( k i=1 For the first term, we can bound the variance byk: E k i=1 p i,t l2 i,t = E l2 I t,t p It,t E 1 p It,t p i,t exp( λ l i,t ) = k. For the second, as in the full information case, for λ = η and any j, ( 1 k ) log p i,t exp( λ l i,t ) logk +E L j,n. η η i=1 )). 17

18 Exp3: Exponential weights Hence, R n = E = E l It,t min j E ηnk 2 + logk η. l It,t min j E L j,n l j,t 18

19 Exp3: Exponential weights Auer, Cesa-Bianchi, Freund and Schapire introduced Exp3 (but with a uniform distribution mixed in, to keep 1/p It,t bounded). Stoltz showed that the uniform distribution is not necessary, through the sub-gaussian lower tails idea. (See the Readings page on the website.) Notice that the η parameter is set using the time horizon n. There are two approaches to avoiding this: Run Exp3 in multiple epochs, doublingnin each epoch, and then the regret is no more than the sum of the regrets, which grows like the square root of the total time horizon. Set η t on a decreasing schedule: η t = logk/(tk). Sinceη t is decreasing, the telescoping sum becomes a sum that is no more than 0, and the knη/2 becomes k t η t/2 = O( nklogk). 19

20 Exp3: Exponential weights High probability? Variances of the losses are big (E l 2 j,t = l 2 j,t /p j,t). Mixing the uniform distribution does not help (for a small regret, the uniform component must be as small as n 1/2 ). Need a new strategy. Instead, use a biased estimate in place of l j,t : subtract a small offset so L j,t becomes a lower confidence bound on the cumulative expected lossl j,t (or, in the case of gains, an upper confidence bound on the cumlative expected reward). Log factor? Can eliminate the logk factor. One approach is to replace exponential weights with a generalization, mirror descent, with an appropriate potential function. Other comparisons? Can compete with sequences of actions, with a bounded number of switches. 20

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Applications of on-line prediction. in telecommunication problems

Applications of on-line prediction. in telecommunication problems Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1 Outline On-line prediction; Some

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Gambling in a rigged casino: The adversarial multi-armed bandit problem

Gambling in a rigged casino: The adversarial multi-armed bandit problem Gambling in a rigged casino: The adversarial multi-armed bandit problem Peter Auer Institute for Theoretical Computer Science University of Technology Graz A-8010 Graz (Austria) pauer@igi.tu-graz.ac.at

More information

Online learning with feedback graphs and switching costs

Online learning with feedback graphs and switching costs Online learning with feedback graphs and switching costs A Proof of Theorem Proof. Without loss of generality let the independent sequence set I(G :T ) formed of actions (or arms ) from to. Given the sequence

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Stat 260/CS Learning in Sequential Decision Problems.

Stat 260/CS Learning in Sequential Decision Problems. Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Exponential families. Cumulant generating function. KL-divergence. KL-UCB for an exponential

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

Linear Bandits. Peter Bartlett

Linear Bandits. Peter Bartlett Linear Bandits. Peter Bartlett Linear bandits. Exponential weights with unbiased loss estimates. Controlling loss estimates and their variance. Barycentric spanner. Uniform distribution. John s distribution.

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Online learning CMPUT 654. October 20, 2011

Online learning CMPUT 654. October 20, 2011 Online learning CMPUT 654 Gábor Bartók Dávid Pál Csaba Szepesvári István Szita October 20, 2011 Contents 1 Shooting Game 4 1.1 Exercises...................................... 6 2 Weighted Majority Algorithm

More information

A Second-order Bound with Excess Losses

A Second-order Bound with Excess Losses A Second-order Bound with Excess Losses Pierre Gaillard 12 Gilles Stoltz 2 Tim van Erven 3 1 EDF R&D, Clamart, France 2 GREGHEC: HEC Paris CNRS, Jouy-en-Josas, France 3 Leiden University, the Netherlands

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Explore no more: Improved high-probability regret bounds for non-stochastic bandits

Explore no more: Improved high-probability regret bounds for non-stochastic bandits Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu SequeL team INRIA Lille Nord Europe gergely.neu@gmail.com Abstract This work addresses the problem of regret

More information

arxiv: v3 [cs.lg] 30 Jun 2012

arxiv: v3 [cs.lg] 30 Jun 2012 arxiv:05874v3 [cslg] 30 Jun 0 Orly Avner Shie Mannor Department of Electrical Engineering, Technion Ohad Shamir Microsoft Research New England Abstract We consider a multi-armed bandit problem where the

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Learning with Exploration

Learning with Exploration Learning with Exploration John Langford (Yahoo!) { With help from many } Austin, March 24, 2011 Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Explore no more: Improved high-probability regret bounds for non-stochastic bandits

Explore no more: Improved high-probability regret bounds for non-stochastic bandits Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu SequeL team INRIA Lille Nord Europe gergely.neu@gmail.com Abstract This work addresses the problem of regret

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

The on-line shortest path problem under partial monitoring

The on-line shortest path problem under partial monitoring The on-line shortest path problem under partial monitoring András György Machine Learning Research Group Computer and Automation Research Institute Hungarian Academy of Sciences Kende u. 11-13, Budapest,

More information

Lecture 10: Contextual Bandits

Lecture 10: Contextual Bandits CSE599i: Online and Adaptive Machine Learning Winter 208 Lecturer: Lalit Jain Lecture 0: Contextual Bandits Scribes: Neeraja Abhyankar, Joshua Fan, Kunhui Zhang Disclaimer: These notes have not been subjected

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Online Prediction Peter Bartlett

Online Prediction Peter Bartlett Online Prediction Peter Bartlett Statistics and EECS UC Berkeley and Mathematical Sciences Queensland University of Technology Online Prediction Repeated game: Cumulative loss: ˆL n = Decision method plays

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

An adaptive algorithm for finite stochastic partial monitoring

An adaptive algorithm for finite stochastic partial monitoring An adaptive algorithm for finite stochastic partial monitoring Gábor Bartók Navid Zolghadr Csaba Szepesvári Department of Computing Science, University of Alberta, AB, Canada, T6G E8 bartok@ualberta.ca

More information

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm CS61: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm Tim Roughgarden February 9, 016 1 Online Algorithms This lecture begins the third module of the

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Nicolò Cesa-Bianchi Università degli Studi di Milano Joint work with: Noga Alon (Tel-Aviv University) Ofer Dekel (Microsoft Research) Tomer Koren (Technion and Microsoft

More information

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting On Minimaxity of Follow the Leader Strategy in the Stochastic Setting Wojciech Kot lowsi Poznań University of Technology, Poland wotlowsi@cs.put.poznan.pl Abstract. We consider the setting of prediction

More information

Bandits with Delayed, Aggregated Anonymous Feedback

Bandits with Delayed, Aggregated Anonymous Feedback Ciara Pike-Burke 1 Shipra Agrawal 2 Csaba Szepesvári 3 4 Steffen Grünewälder 1 Abstract We study a variant of the stochastic K-armed bandit problem, which we call bandits with delayed, aggregated anonymous

More information

Introduction to Reinforcement Learning Part 3: Exploration for sequential decision making

Introduction to Reinforcement Learning Part 3: Exploration for sequential decision making Introduction to Reinforcement Learning Part 3: Exploration for sequential decision making Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe

More information

Online Learning with Predictable Sequences

Online Learning with Predictable Sequences JMLR: Workshop and Conference Proceedings vol (2013) 1 27 Online Learning with Predictable Sequences Alexander Rakhlin Karthik Sridharan rakhlin@wharton.upenn.edu skarthik@wharton.upenn.edu Abstract We

More information

Better Algorithms for Benign Bandits

Better Algorithms for Benign Bandits Better Algorithms for Benign Bandits Elad Hazan IBM Almaden 650 Harry Rd, San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Microsoft Research One Microsoft Way, Redmond, WA 98052 satyen.kale@microsoft.com

More information

Piecewise-stationary Bandit Problems with Side Observations

Piecewise-stationary Bandit Problems with Side Observations Jia Yuan Yu jia.yu@mcgill.ca Department Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada. Shie Mannor shie.mannor@mcgill.ca; shie@ee.technion.ac.il Department Electrical

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

Minimax strategy for prediction with expert advice under stochastic assumptions

Minimax strategy for prediction with expert advice under stochastic assumptions Minimax strategy for prediction ith expert advice under stochastic assumptions Wojciech Kotłosi Poznań University of Technology, Poland otlosi@cs.put.poznan.pl Abstract We consider the setting of prediction

More information

Combinatorial Bandits

Combinatorial Bandits Combinatorial Bandits Nicolò Cesa-Bianchi Università degli Studi di Milano, Italy Gábor Lugosi 1 ICREA and Pompeu Fabra University, Spain Abstract We study sequential prediction problems in which, at each

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Toward a Classification of Finite Partial-Monitoring Games

Toward a Classification of Finite Partial-Monitoring Games Toward a Classification of Finite Partial-Monitoring Games Gábor Bartók ( *student* ), Dávid Pál, and Csaba Szepesvári Department of Computing Science, University of Alberta, Canada {bartok,dpal,szepesva}@cs.ualberta.ca

More information

Regret Minimization for Branching Experts

Regret Minimization for Branching Experts JMLR: Workshop and Conference Proceedings vol 30 (2013) 1 21 Regret Minimization for Branching Experts Eyal Gofer Tel Aviv University, Tel Aviv, Israel Nicolò Cesa-Bianchi Università degli Studi di Milano,

More information

Internal Regret in On-line Portfolio Selection

Internal Regret in On-line Portfolio Selection Internal Regret in On-line Portfolio Selection Gilles Stoltz (gilles.stoltz@ens.fr) Département de Mathématiques et Applications, Ecole Normale Supérieure, 75005 Paris, France Gábor Lugosi (lugosi@upf.es)

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Online Learning Repeated game: Aim: minimize ˆL n = Decision method plays a t World reveals l t L n l t (a

More information

Adaptive Learning with Unknown Information Flows

Adaptive Learning with Unknown Information Flows Adaptive Learning with Unknown Information Flows Yonatan Gur Stanford University Ahmadreza Momeni Stanford University June 8, 018 Abstract An agent facing sequential decisions that are characterized by

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Anytime optimal algorithms in stochastic multi-armed bandits

Anytime optimal algorithms in stochastic multi-armed bandits Rémy Degenne LPMA, Université Paris Diderot Vianney Perchet CREST, ENSAE REMYDEGENNE@MATHUNIV-PARIS-DIDEROTFR VIANNEYPERCHET@NORMALESUPORG Abstract We introduce an anytime algorithm for stochastic multi-armed

More information

Adaptive Online Prediction by Following the Perturbed Leader

Adaptive Online Prediction by Following the Perturbed Leader Journal of Machine Learning Research 6 (2005) 639 660 Submitted 10/04; Revised 3/05; Published 4/05 Adaptive Online Prediction by Following the Perturbed Leader Marcus Hutter Jan Poland IDSIA, Galleria

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Restart Schedules for Ensembles of Problem Instances

Restart Schedules for Ensembles of Problem Instances Restart Schedules for Ensembles of Problem Instances Matthew Streeter Daniel Golovin Stephen F. Smith School of Computer Science Carnegie Mellon University Pittsburgh, PA 523 {matts,dgolovin,sfs}@cs.cmu.edu

More information

A. Notation. Attraction probability of item d. (d) Highest attraction probability, (1) A

A. Notation. Attraction probability of item d. (d) Highest attraction probability, (1) A A Notation Symbol Definition (d) Attraction probability of item d max Highest attraction probability, (1) A Binary attraction vector, where A(d) is the attraction indicator of item d P Distribution over

More information

Chapter 2 Stochastic Multi-armed Bandit

Chapter 2 Stochastic Multi-armed Bandit Chapter 2 Stochastic Multi-armed Bandit Abstract In this chapter, we present the formulation, theoretical bound, and algorithms for the stochastic MAB problem. Several important variants of stochastic

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Experts in a Markov Decision Process

Experts in a Markov Decision Process University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 2004 Experts in a Markov Decision Process Eyal Even-Dar Sham Kakade University of Pennsylvania Yishay Mansour Follow

More information

arxiv: v2 [cs.lg] 3 Nov 2012

arxiv: v2 [cs.lg] 3 Nov 2012 arxiv:1204.5721v2 [cs.lg] 3 Nov 2012 Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck 1 and Nicolò Cesa-Bianchi 2 1 Department of Operations Research and Financial

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

Partial monitoring classification, regret bounds, and algorithms

Partial monitoring classification, regret bounds, and algorithms Partial monitoring classification, regret bounds, and algorithms Gábor Bartók Department of Computing Science University of Alberta Dávid Pál Department of Computing Science University of Alberta Csaba

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

CS264: Beyond Worst-Case Analysis Lecture #20: From Unknown Input Distributions to Instance Optimality

CS264: Beyond Worst-Case Analysis Lecture #20: From Unknown Input Distributions to Instance Optimality CS264: Beyond Worst-Case Analysis Lecture #20: From Unknown Input Distributions to Instance Optimality Tim Roughgarden December 3, 2014 1 Preamble This lecture closes the loop on the course s circle of

More information

Regret Bounds for Sleeping Experts and Bandits

Regret Bounds for Sleeping Experts and Bandits Regret Bounds for Sleeping Experts and Bandits Robert D. Kleinberg Department of Computer Science Cornell University Ithaca, NY 4853 rdk@cs.cornell.edu Alexandru Niculescu-Mizil Department of Computer

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information