An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

Size: px
Start display at page:

Download "An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement"

Transcription

1 An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian Institute of Science Bangalore August 3, 2015

2 Outline Preliminaries: Optimal auction: An Economics perspective The stochastic Multi-armed bandit problem Motivation Problem statement Main results Empirical evaluations Future work

3 Optimal Auction Simple Economics of Optimal Auctions Optimal Auctions Third Degree Price Discrimination in Monopolistic Market a a Jeremy Bulow and John Roberts. The simple economics of optimal auctions. In: The Journal of Political Economy (1989), pp

4 Monopoly Single Seller Price set by Seller Profit maximization :price vs demand

5 Price Discrimination First Degree:- Maximum price to each customer. Second Degree:- Charge prices based on quantity. Third Degree:- Separate market for different sets of customers, different prices set for different groups.

6 Third Degree Price Discrimination Image Courtesy:

7 Third Degree Price Discrimination Image Courtesy:

8 Third Degree Price Discrimination Image Courtesy:

9 Third Degree Price Discrimination Image Courtesy:

10 Optimal Auction

11 Multi-armed bandits Estimating the bias of a coin confidently Toss a coin with bias p, t times Random variables X 1,, X t {0, 1} Estimator ˆp = i X i/t Hoeffding s Inequality: P ((ˆp p) > ɛ) e 2tɛ2

12 Multi-armed bandits K armed bandit Samples from each arm distributed as a Bernoulli r.v Arm i is equivalent to a coin producing a mean reward µ i N i (t) : No. of times arm i is pulled in total t trials S i (t): sum of the rewards produced by arm i upto t trials ˆµ i = S i (t)/n i (t) Define UCB for ˆµ i + =: ˆµ i + 2 log t N i (t) Arm with highest UCB is pulled(algorithm UCB1 a ) a Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. In: Journal of Machine Learning (2002), pp

13 Motivation A hospital wishes to procure a large number of units of a generic drug from a pool of suppliers. The efficiency of a drug is stochastic and the mean varies across suppliers For each supplier: the cost of production per unit and the capacity is private to him Hospital aims to learn the mean efficiency of the drug from each supplier and minimize its cost

14 Model c 1 q 1 k 1 ^c 1 k^ 1 ^c 2 q 2 c 2 k 2 ^ k 2 c n Supplier Selection Rule i Experience the Quality of the Procured Item Make Payment According to Items procured ^ k n ^q i Update Learnt Qualities c n q n k n Repeat until procurement stops Agents

15 Problem Optimization Problem: n ) max (x i Rq i t i i=1 s.t. x i {0, 1,..., ˆk i }, x i L i Challenges: Unknown qualities q i s, strategic costs c i s and strategic capacities k i s Goal: Design an incentive compatible MAB mechanism, to procure L units of the item while learning the qualities of the suppliers

16 Auctions with known qualities Theorem (BIC and IR characterization) A mechanism is BIC and IR iff i N, 1. X i (ĉ i, ˆk i ; q) is non-increasing in ĉ i, q and ˆk i [k i, k i ] 2. ρ i (ĉ i, ˆk i ; q) is non-negative, and non-decreasing in ˆk i 3. ρ i (ĉ i, ˆk i ; q) = ρ i ( c i, ˆk i ; q) + c i ĉ i X i (z, ˆk i ; q)dz

17 Auctions with known qualities Theorem (Optimal payment structure) Suppose the allocation rule maximizes n c1 cn k1 ( kn ( Rq i c i + F ) ) i(c i k i ) c 1 k 1 f i (c i k i ) i=1 c n k n x i (c i, k i, c i, k i )f 1 (c 1, k 1 )... f n (c n, k n ) dc 1... dc n dk 1... dk n subject to monotonicity condition (1). Also suppose that the payment is given by ci T i (c i, k i ; q) = c i X i (c i, k i ; q) + X i (z, k i ; q)dz c i then such a payment scheme and allocation scheme constitute an optimal auction satisfying BIC and IR.

18 2D-OPT Algorithm 1: 2D-OPT Mechanism Input: i, Bids b i = (ĉ i ˆki ), reward parameter R Output: An optimal, DSIC, IR Mechanism M = (x, t) 1 Allocation is given by x = ALLOC(N, ĉ, ˆk, q, L) 2 for i N && x i 0 do 3 G i := Rq i H i (b i ) 4 y = ALLOC(N \ {i}, ĉ i, (ˆk i x i ), q i, x i ) 5 Payment to i, t i = y k max(g 1 i (Rq k H k (b k )), c i ) + ( x i y k ) ci k 6 end k N\{i}

19 Auctions with unknown qualities Well-behaved allocation Rule An allocation rule x is called a Well Behaved Allocation Rule if: x j i depends only on the agent s bids and the reward realization till j units and is non decreasing in terms of costs For any three distinct agents {α, β, γ} such that j th round unit is allocated to β. A change of bid by agent α should not transfer allocation of j th round unit from β to γ if other quantities are fixed till j units For all reward realizations s, x i (c i, k i ; s) is non-decreasing with increase in capacity k i Theorem For a well behaved allocation rule, there exists a transformation that produces the transformed allocation ( x) and payment ( t) such that the resulting mechanism M = ( x, t) is stochastic BIC and IR.

20 2D-UCB Algorithm 2: 2D-UCB Mechanism Input: i N, bids ĉ i [c i, c i ], ˆk i [k i, k i ], parameter µ (0, 1), Reward parameter R Output: A mechanism M = (x, t) 1 i N, ˆq + i = 1, ˆq i = 0, n i = 1 2 Obtain modified bids as (α, β) 3 = ((α 1 (ĉ 1 ), β 1 (ĉ 1 ),..., (α n(ĉ n), β n(ĉ n)) using resampling 4 Allocate one unit to all agents and estimate empirical quality ˆq 5 ˆq i = q i (i)/n i, ˆq + i = ˆq i + 1 ln(t) 2n i 6 for t = n to L do 7 Compute H i = α i + F i (α i ˆk i ) f i (α i ˆk i ) 8 Let i = arg max {js.t.kj >n j } Rˆq+ j H j and Ĝi = Rˆq + i H i 9 if Ĝj > 0 then 10 Procure the unit from agent i and update ˆq i 11 ˆq + i = ˆq i + 2ni ln(t) 12 else 13 break \\ Don t allocate future units to anyone 14 Make payment to each agent i, T i = ĉ i n i + P i, where, P i = { 1µ n i (c ĉ i ), ifβ i > ĉ i 0, otherwise.

21 Empirical Evaluations Average utility per unit ɛ = L 1 6 ɛ= L 1 3 ɛ= L 1 2 ɛ= L 2 3 2D-UCB 2D-OPT ,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90, Number of units Observations: All the mechanisms approach 2D-OPT The performance of 2D-UCB is superior as it approaches 2D-OPT faster

22 Future Work An extension where allocation happens to subset of agents at any round would be interesting The complete characterization of a learning algorithm in this space is still open A theoretical analysis of regret is also a possible direction of future work

23 THANK YOU

arxiv: v3 [cs.gt] 17 Jun 2015

arxiv: v3 [cs.gt] 17 Jun 2015 An Incentive Compatible Multi-Armed-Bandit Crowdsourcing Mechanism with Quality Assurance Shweta Jain, Sujit Gujar, Satyanath Bhat, Onno Zoeter, Y. Narahari arxiv:1406.7157v3 [cs.gt] 17 Jun 2015 June 18,

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Redistribution Mechanisms for Assignment of Heterogeneous Objects

Redistribution Mechanisms for Assignment of Heterogeneous Objects Redistribution Mechanisms for Assignment of Heterogeneous Objects Sujit Gujar Dept of Computer Science and Automation Indian Institute of Science Bangalore, India sujit@csa.iisc.ernet.in Y Narahari Dept

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 01 Incentive Compatibility and Revelation Theorem Note: This is

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Knapsack Auctions. Sept. 18, 2018

Knapsack Auctions. Sept. 18, 2018 Knapsack Auctions Sept. 18, 2018 aaacehicbvdlssnafj34rpuvdelmsigvskmkoasxbtcuk9ghncfmjpn26gqszibsevojbvwvny4ucevsnx/jpm1cww8mndnnxu69x08ylcqyvo2v1bx1jc3svnl7z3dv3zw47mg4fzi0ccxi0forjixy0lzumdjlbegrz0jxh93kfvebceljfq8mcxejnoa0pbgplxnmwxxs2tu49ho16lagvjl/8hpoua6dckkhrizrtt2zytwtgeaysqtsaqvanvnlbdfoi8ivzkjkvm0lys2qubqzmi07qsqjwim0ih1noyqidlpzqvn4qpuahrhqjys4u393zcischl5ujjfus56ufif109veovmlcepihzpb4upgyqgetowoijgxsaaicyo3hxiiriik51hwydgl568tdqnum3v7bulsvo6ikmejsejqaibxiimuaut0ayypijn8arejcfjxxg3pualk0brcwt+wpj8acrvmze=

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

x ax 1 2 bx2 a bx =0 x = a b. Hence, a consumer s willingness-to-pay as a function of liters on sale, 1 2 a 2 2b, if l> a. (1)

x ax 1 2 bx2 a bx =0 x = a b. Hence, a consumer s willingness-to-pay as a function of liters on sale, 1 2 a 2 2b, if l> a. (1) Answers to Exam Economics 201b First Half 1. (a) Observe, first, that no consumer ever wishes to consume more than 3/2 liters (i.e., 1.5 liters). To see this, observe that, even if the beverage were free,

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Myerson Optimal Auction Note: This is a only a draft version,

More information

Payment Rules for Combinatorial Auctions via Structural Support Vector Machines

Payment Rules for Combinatorial Auctions via Structural Support Vector Machines Payment Rules for Combinatorial Auctions via Structural Support Vector Machines Felix Fischer Harvard University joint work with Paul Dütting (EPFL), Petch Jirapinyo (Harvard), John Lai (Harvard), Ben

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities

Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities 1 / 45 Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities Alejandro Jofré 1 Center for Mathematical Modeling & DIM Universidad

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Truthful Learning Mechanisms for Multi Slot Sponsored Search Auctions with Externalities

Truthful Learning Mechanisms for Multi Slot Sponsored Search Auctions with Externalities Truthful Learning Mechanisms for Multi Slot Sponsored Search Auctions with Externalities Nicola Gatti a, Alessandro Lazaric b, Marco Rocco a, Francesco Trovò a a Politecnico di Milano, piazza Leonardo

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Mechanism Design II. Terence Johnson. University of Notre Dame. Terence Johnson (ND) Mechanism Design II 1 / 30

Mechanism Design II. Terence Johnson. University of Notre Dame. Terence Johnson (ND) Mechanism Design II 1 / 30 Mechanism Design II Terence Johnson University of Notre Dame Terence Johnson (ND) Mechanism Design II 1 / 30 Mechanism Design Recall: game theory takes the players/actions/payoffs as given, and makes predictions

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 11: Ironing and Approximate Mechanism Design in Single-Parameter Bayesian Settings

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 11: Ironing and Approximate Mechanism Design in Single-Parameter Bayesian Settings CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 11: Ironing and Approximate Mechanism Design in Single-Parameter Bayesian Settings Instructor: Shaddin Dughmi Outline 1 Recap 2 Non-regular

More information

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings Instructor: Shaddin Dughmi Administrivia HW1 graded, solutions on website

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

Solution: Since the prices are decreasing, we consider all the nested options {1,..., i}. Given such a set, the expected revenue is.

Solution: Since the prices are decreasing, we consider all the nested options {1,..., i}. Given such a set, the expected revenue is. Problem 1: Choice models and assortment optimization Consider a MNL choice model over five products with prices (p1,..., p5) = (7, 6, 4, 3, 2) and preference weights (i.e., MNL parameters) (v1,..., v5)

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Properties of Social Choice Functions Note: This is a only

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Informed Principal in Private-Value Environments

Informed Principal in Private-Value Environments Informed Principal in Private-Value Environments Tymofiy Mylovanov Thomas Tröger University of Bonn June 21, 2008 1/28 Motivation 2/28 Motivation In most applications of mechanism design, the proposer

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 The Vickrey-Clarke-Groves Mechanisms Note: This is a only a

More information

Microeconomics II Lecture 4: Incomplete Information Karl Wärneryd Stockholm School of Economics November 2016

Microeconomics II Lecture 4: Incomplete Information Karl Wärneryd Stockholm School of Economics November 2016 Microeconomics II Lecture 4: Incomplete Information Karl Wärneryd Stockholm School of Economics November 2016 1 Modelling incomplete information So far, we have studied games in which information was complete,

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Learning Algorithms for Minimizing Queue Length Regret

Learning Algorithms for Minimizing Queue Length Regret Learning Algorithms for Minimizing Queue Length Regret Thomas Stahlbuhk Massachusetts Institute of Technology Cambridge, MA Brooke Shrader MIT Lincoln Laboratory Lexington, MA Eytan Modiano Massachusetts

More information

Algorithmic Game Theory and Applications

Algorithmic Game Theory and Applications Algorithmic Game Theory and Applications Lecture 18: Auctions and Mechanism Design II: a little social choice theory, the VCG Mechanism, and Market Equilibria Kousha Etessami Reminder: Food for Thought:

More information

PAC Subset Selection in Stochastic Multi-armed Bandits

PAC Subset Selection in Stochastic Multi-armed Bandits In Langford, Pineau, editors, Proceedings of the 9th International Conference on Machine Learning, pp 655--66, Omnipress, New York, NY, USA, 0 PAC Subset Selection in Stochastic Multi-armed Bandits Shivaram

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Sandeep Juneja Tata Institute of Fundamental Research Mumbai, India joint work with Peter Glynn Applied

More information

Multi-armed Bandit Problems with Strategic Arms

Multi-armed Bandit Problems with Strategic Arms Multi-armed Bandit Problems with Strategic Arms Mark Braverman Jieming Mao Jon Schneider S. Matthew Weinberg May 11, 2017 Abstract We study a strategic version of the multi-armed bandit problem, where

More information

Microeconomic Theory (501b) Problem Set 10. Auctions and Moral Hazard Suggested Solution: Tibor Heumann

Microeconomic Theory (501b) Problem Set 10. Auctions and Moral Hazard Suggested Solution: Tibor Heumann Dirk Bergemann Department of Economics Yale University Microeconomic Theory (50b) Problem Set 0. Auctions and Moral Hazard Suggested Solution: Tibor Heumann 4/5/4 This problem set is due on Tuesday, 4//4..

More information

Lecture 6: Communication Complexity of Auctions

Lecture 6: Communication Complexity of Auctions Algorithmic Game Theory October 13, 2008 Lecture 6: Communication Complexity of Auctions Lecturer: Sébastien Lahaie Scribe: Rajat Dixit, Sébastien Lahaie In this lecture we examine the amount of communication

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Ordinal Optimization and Multi Armed Bandit Techniques

Ordinal Optimization and Multi Armed Bandit Techniques Ordinal Optimization and Multi Armed Bandit Techniques Sandeep Juneja. with Peter Glynn September 10, 2014 The ordinal optimization problem Determining the best of d alternative designs for a system, on

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

Crowd-Learning: Improving the Quality of Crowdsourcing Using Sequential Learning

Crowd-Learning: Improving the Quality of Crowdsourcing Using Sequential Learning Crowd-Learning: Improving the Quality of Crowdsourcing Using Sequential Learning Mingyan Liu (Joint work with Yang Liu) Department of Electrical Engineering and Computer Science University of Michigan,

More information

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits 1 On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits Naumaan Nayyar, Dileep Kalathil and Rahul Jain Abstract We consider the problem of learning in single-player and multiplayer

More information

Lecture 4. 1 Examples of Mechanism Design Problems

Lecture 4. 1 Examples of Mechanism Design Problems CSCI699: Topics in Learning and Game Theory Lecture 4 Lecturer: Shaddin Dughmi Scribes: Haifeng Xu,Reem Alfayez 1 Examples of Mechanism Design Problems Example 1: Single Item Auctions. There is a single

More information

Tsinghua Machine Learning Guest Lecture, June 9,

Tsinghua Machine Learning Guest Lecture, June 9, Tsinghua Machine Learning Guest Lecture, June 9, 2015 1 Lecture Outline Introduction: motivations and definitions for online learning Multi-armed bandit: canonical example of online learning Combinatorial

More information

Motivation. Game Theory 24. Mechanism Design. Setting. Preference relations contain no information about by how much one candidate is preferred.

Motivation. Game Theory 24. Mechanism Design. Setting. Preference relations contain no information about by how much one candidate is preferred. Motivation Game Theory 24. Mechanism Design Preference relations contain no information about by how much one candidate is preferred. Idea: Use money to measure this. Albert-Ludwigs-Universität Freiburg

More information

An Adaptive Algorithm for Selecting Profitable Keywords for Search-Based Advertising Services

An Adaptive Algorithm for Selecting Profitable Keywords for Search-Based Advertising Services An Adaptive Algorithm for Selecting Profitable Keywords for Search-Based Advertising Services Paat Rusmevichientong David P. Williamson July 6, 2007 Abstract Increases in online searches have spurred the

More information

On Random Sampling Auctions for Digital Goods

On Random Sampling Auctions for Digital Goods On Random Sampling Auctions for Digital Goods Saeed Alaei Azarakhsh Malekian Aravind Srinivasan Saeed Alaei, Azarakhsh Malekian, Aravind Srinivasan Random Sampling Auctions... 1 Outline Background 1 Background

More information

Information Choice in Macroeconomics and Finance.

Information Choice in Macroeconomics and Finance. Information Choice in Macroeconomics and Finance. Laura Veldkamp New York University, Stern School of Business, CEPR and NBER Spring 2009 1 Veldkamp What information consumes is rather obvious: It consumes

More information

Robust Mechanism Design with Correlated Distributions. Michael Albert and Vincent Conitzer and

Robust Mechanism Design with Correlated Distributions. Michael Albert and Vincent Conitzer and Robust Mechanism Design with Correlated Distributions Michael Albert and Vincent Conitzer malbert@cs.duke.edu and conitzer@cs.duke.edu Prior-Dependent Mechanisms In many situations we ve seen, optimal

More information

On the Informed Principal Model with Common Values

On the Informed Principal Model with Common Values On the Informed Principal Model with Common Values Anastasios Dosis ESSEC Business School and THEMA École Polytechnique/CREST, 3/10/2018 Anastasios Dosis (ESSEC and THEMA) Informed Principal with Common

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

Learning Optimal Online Advertising Portfolios with Periodic Budgets

Learning Optimal Online Advertising Portfolios with Periodic Budgets Learning Optimal Online Advertising Portfolios with Periodic Budgets Lennart Baardman Operations Research Center, MIT, Cambridge, MA 02139, baardman@mit.edu Elaheh Fata Department of Aeronautics and Astronautics,

More information

Adaptive Concentration Inequalities for Sequential Decision Problems

Adaptive Concentration Inequalities for Sequential Decision Problems Adaptive Concentration Inequalities for Sequential Decision Problems Shengjia Zhao Tsinghua University zhaosj12@stanford.edu Ashish Sabharwal Allen Institute for AI AshishS@allenai.org Enze Zhou Tsinghua

More information

Welfare Maximization with Production Costs: A Primal Dual Approach

Welfare Maximization with Production Costs: A Primal Dual Approach Welfare Maximization with Production Costs: A Primal Dual Approach Zhiyi Huang Anthony Kim The University of Hong Kong Stanford University January 4, 2015 Zhiyi Huang, Anthony Kim Welfare Maximization

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com Navin Goyal Microsoft Research India navingo@microsoft.com Abstract The multi-armed

More information

Mechanism Design Tutorial David C. Parkes, Harvard University Indo-US Lectures Week in Machine Learning, Game Theory and Optimization

Mechanism Design Tutorial David C. Parkes, Harvard University Indo-US Lectures Week in Machine Learning, Game Theory and Optimization 1 Mechanism Design Tutorial David C. Parkes, Harvard University Indo-US Lectures Week in Machine Learning, Game Theory and Optimization 2 Outline Classical mechanism design Preliminaries (DRMs, revelation

More information

A Contract for Demand Response based on Probability of Call

A Contract for Demand Response based on Probability of Call A Contract for Demand Response based on Probability of Call Jose Vuelvas, Fredy Ruiz and Giambattista Gruosso Pontificia Universidad Javeriana - Politecnico di Milano 2018 1 2 Outline Introduction Problem

More information

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Wei Chen Microsoft Research Asia, Beijing, China Yajun Wang Microsoft Research Asia, Beijing, China Yang Yuan Computer Science

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Multi-armed bandit based policies for cognitive radio s decision making issues

Multi-armed bandit based policies for cognitive radio s decision making issues Multi-armed bandit based policies for cognitive radio s decision making issues Wassim Jouini SUPELEC/IETR wassim.jouini@supelec.fr Damien Ernst University of Liège dernst@ulg.ac.be Christophe Moy SUPELEC/IETR

More information

arxiv: v1 [cs.lg] 7 Sep 2018

arxiv: v1 [cs.lg] 7 Sep 2018 Analysis of Thompson Sampling for Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms Alihan Hüyük Bilkent University Cem Tekin Bilkent University arxiv:809.02707v [cs.lg] 7 Sep 208

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits C&A Workshop 2016, Hangzhou Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction 2 Arms Best Arm Identification

More information

Algorithmic Game Theory Introduction to Mechanism Design

Algorithmic Game Theory Introduction to Mechanism Design Algorithmic Game Theory Introduction to Mechanism Design Makis Arsenis National Technical University of Athens April 216 Makis Arsenis (NTUA) AGT April 216 1 / 41 Outline 1 Social Choice Social Choice

More information

Mechanism Design and Truthful Algorithms

Mechanism Design and Truthful Algorithms Mechanism Design and Truthful Algorithms Ocan Sankur 13/06/2013 Ocan Sankur (ULB) Mechanism Design and Truthful Algorithms June 13, 2013 1 / 25 Mechanism Design Mechanism design is about designing games

More information

Learning and Selecting the Right Customers for Reliability: A Multi-armed Bandit Approach

Learning and Selecting the Right Customers for Reliability: A Multi-armed Bandit Approach Learning and Selecting the Right Customers for Reliability: A Multi-armed Bandit Approach Yingying Li, Qinran Hu, and Na Li Abstract In this paper, we consider residential demand response (DR) programs

More information

CO759: Algorithmic Game Theory Spring 2015

CO759: Algorithmic Game Theory Spring 2015 CO759: Algorithmic Game Theory Spring 2015 Instructor: Chaitanya Swamy Assignment 1 Due: By Jun 25, 2015 You may use anything proved in class directly. I will maintain a FAQ about the assignment on the

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits CAS2016 Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction Optimal PAC Algorithm (Best-Arm, Best-k-Arm):

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

Chapter 2. Equilibrium. 2.1 Complete Information Games

Chapter 2. Equilibrium. 2.1 Complete Information Games Chapter 2 Equilibrium The theory of equilibrium attempts to predict what happens in a game when players behave strategically. This is a central concept to this text as, in mechanism design, we are optimizing

More information

The Monopolist. The Pure Monopolist with symmetric D matrix

The Monopolist. The Pure Monopolist with symmetric D matrix University of California, Davis Department of Agricultural and Resource Economics ARE 252 Optimization with Economic Applications Lecture Notes 5 Quirino Paris The Monopolist.................................................................

More information

Buying Random yet Correlated Wind Power

Buying Random yet Correlated Wind Power Buying Random yet Correlated Wind Power Wenyuan Tang Department of Electrical Engineering University of Southern California Los Angeles, CA 90089, USA wenyuan@usc.edu Rahul Jain EE & ISE Departments University

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

Finite-time Analysis of the Multiarmed Bandit Problem*

Finite-time Analysis of the Multiarmed Bandit Problem* Machine Learning, 47, 35 56, 00 c 00 Kluwer Academic Publishers. Manufactured in The Netherlands. Finite-time Analysis of the Multiarmed Bandit Problem* PETER AUER University of Technology Graz, A-8010

More information

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION c 2015 Chong Jiang ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS BY CHONG JIANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

arxiv: v3 [cs.gt] 13 Aug 2014

arxiv: v3 [cs.gt] 13 Aug 2014 Mechanism Design for Crowdsourcing: An Optimal 1-1/e Competitive Budget-Feasible Mechanism for Large Markets Nima Anari, Gagan Goel, Afshin Nikzad arxiv:1405.2452v3 [cs.gt] 13 Aug 2014 Abstract In this

More information

Implementability, Walrasian Equilibria, and Efficient Matchings

Implementability, Walrasian Equilibria, and Efficient Matchings Implementability, Walrasian Equilibria, and Efficient Matchings Piotr Dworczak and Anthony Lee Zhang Abstract In general screening problems, implementable allocation rules correspond exactly to Walrasian

More information