Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Size: px
Start display at page:

Download "Physician Performance Assessment / Spatial Inference of Pollutant Concentrations"

Transcription

1 Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

2 Outline 1 Physician Performance Assessment Performance Metrics 2 Spatial Inference of Pollutant Concentrations Statistical Approaches for Pollutant Estimation Bayesian Moving-Average Models Application to Nitrates Data Conclusions and Future Work 2

3 Physician Performance Assessment Joint work with A. Gelfand, B. Barlow, J. Elmore, and the Breast Cancer Surveillance Consortium There is concern about large differences in false positive and false negative rates between radiologists in screening mammography Database of 500,000+ mammograms Demographic characteristics of the patient Outcome of the mammogram (false +, false -, true +, or true -) Radiologist surveys Demographic & practice characteristics Level of concern about malpractice 4

4 Physician Performance Assessment Goal: assess physician performance while accounting for: 1. Differences in patients (case mix) 2. Differences in sample size (e.g. few cancer cases for some radiologists)?. Differences in radiologist attributes 5

5 Physician Performance Assessment Can adjust for case mix (e.g. Salem-Schatz et al. 1994) Can test whether a physician is significantly above or below average Tests invalid for small sample sizes Not clear how to compare one physician to another We build on Normand, Glickman, Gatsonis (1997): performance metrics for hospitals based on patient survival rate We extend to metrics for sens. & spec. of physicians We use a Bayesian hierarchical modeling approach to estimate and explain accuracy differences among radiologists 6

6 Modeling Accuracy Logistic regression: logit(s ij )=X ij β + τ i τ i = W i γ + φ i φ i N(0,ψ) S ij = sensitivity or specificity on mammogram i,j X ij = risk factors of patient i,j W i = attributes of radiologist i i = 1,...,I radiologists j = 1,...,n i mammograms of radiologist i with cancer present 7

7 Performance on a Hypothetical Patient Predict the sensitivity and specificity of each radiologist for a typical patient Or a high-risk or low-risk patient For a hypothetical patient with attributes X 0, the measure is S(X 0,β,τ i )=logit 1 (X 0 β + τ i ) 9

8 Performance on a Hypothetical Patient Sensitivity and specificity on a typical patient: Sensitivity (%) Specificity (%) Radiologist ID Radiologist ID These measures do not adjust for differences in radiologist attributes 10

9 Performance Relative to a Standard Alternatively, take the predicted average accuracy (sensitivity or specificity) of a particular radiologist on her patients: μ i = 1 n i Σ n i j=1 S(X ij,β,τ i ) Compare to that expected for a radiologist with the same attributes and case mix: Take μ i μ i μ i = 1 n i Σ n i j=1 S(X ij,β,w i ) S(X ij,β,w i )=E τ Wi {S(X ij,β,τ)} Performance is evaluated while adjusting for radiologist attributes 11

10 Performance Relative to a Standard Sensitivity Difference Specificity Difference Radiologist Index Radiologist Index Many radiologists had predicted specificity significantly above or below that expected; not so for sensitivity 12

11 Conclusion Bayesian modeling of patient-level sensitivity and specificity provides estimates of performance measures while fully accounting for uncertainty 13

12 Spatial Inference of Pollutant Concentrations Joint work with R. Wolpert and M. O Connell. Measurements of nitrates in groundwater have been obtained from wells in the mid-atlantic states (Ator 1998): > 8.3 mg/l mid range < 0.75 mg/l 15

13 Spatial Inference of Pollutant Concentrations Desire geographic interpolation of nitrate levels Distinct regulatory goals require inference at distinct, non-nested geographic scales... fine-scale, regulatory units (e.g. counties), hydrologic units (e.g. watersheds)....as well as distinct risk measures average nitrate concentration, probability of exceeding a threshold, averaged by region, maximum nitrate concentration occurring in each region. 16

14 Spatial Inference of Pollutant Concentrations We utilize a nonparametric spatial statistical model for nitrate concentrations at all locations Bayesian approach: uncertainty about the nitrate concentration and its average over various regions are all random variables......for which we can compute expected values (best overall estimates) and probabilities of exceeding specified thresholds 17

15 Existing Approaches When inference is desired at a single spatial partition (e.g. counties) or nested partitions, lattice models can be used. Kriging allows smooth spatial interpolation: models the pollutant concentration Λ(x) at x X as: log Λ(x) = JX X j (x)β j + Z (x) j=1 where Z (x) is a mean-zero Gaussian process. 19

16 Existing Approaches A kriged surface with only an intercept term β 0 : > 8.3 mid range < Latitude Longitude 20

17 Existing Approaches The confidence intervals are very wide in many locations, even where there is much data: Lower Bound: Upper Bound: > 8.3 mid range < > 8.3 mid range < Latitude Latitude Longitude Longitude 21

18 Moving-Average Models Ickstadt and Wolpert (1997) and Wolpert and Ickstadt (1998) introduced methods for interpolating intensities of spatial point processes by modeling the intensity Λ(x) as a moving average of an unobserved stochastic process The approach has been used in non-point-process applications: identifying proteins in mass spectroscopy (House, Clyde, and Wolpert 2006) spatio-temporal inference of sulfur dioxide air pollution (Tu 2006) We apply this model to obtain inferences of multiple risk measures, at multiple spatial scales 23

19 Moving-Average Models The concentration Λ(x) at location x X is modeled as: Λ(x) = JX X j (x)β j + j=1 MX k(x, s m )γ m m=1 for k(x, s) a kernel function on X S. The parameters s m are taken to be the centers of the mixture components, so that S = X The number M, locations s m, and magnitudes γ m > 0ofthe components are uncertain The ith measurement Y i is assumed to follow: log Y i N(log Λ(x i ),σ 2 ) 24

20 Moving-Average Models Interpretation of the spatial portion of the model, m k(x, s m)γ m, for pollutant level estimation: the pollutant surface is the sum of an unknown number of point sources with unknown locations and magnitudes......where the concentration decreases with distance from each source in a manner consistent with the kernel k(, ) 25

21 Moving-Average Models The kernel form is specified as: where d > 0 is a constant k(x, s) =exp j 1 ff x s 2 2d 2 Can be generalized to use unknown scale, eccentricity, and asymmetry For the nitrates analysis we do not include covariates, so β is not in the model 26

22 Prior Specification The spatial term in the model can be rewritten MX Z k(x, s m )γ m = m=1 S k(x, s)γ(ds) where MX Γ(ds) = γ m δ sm (ds) is a discrete measure on S. m=1 Γ is given a Lévy random field prior: Parameterized by a measure ν(dγ,ds) on R + S M Pois(ν + ) where ν + = ν(r + S) Conditional on M, (γ m, s m ) iid ν(dγ,ds)/ν + 27

23 Prior Specification We use the gamma random field on a bounded set S R 2 Its Levy density is ν(γ,s) =αγ 1 e ργ for α, ρ > 0 For A Swe have Γ(A) Ga(α A,ρ) In order for ν + <, must truncate ν(γ,s) by setting to zero for γ<ɛwhere ɛ>0 28

24 Prior Specification This prior implies that: The number of mixture components M satisfies: M Pois(α S E 1 (ρɛ)) where E 1 is the exponential integral function Conditional on M, the locations s m are independently uniformly distributed on S......and the magnitudes γ m are independently distributed according to the density f (γ) γ 1 e ργ 1(γ >ɛ) 29

25 Prior Specification These choices lead to prior surfaces Λ(x) like this one: Latitude Longitude 30

26 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 31

27 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 32

28 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 33

29 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 34

30 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 35

31 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 36

32 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 37

33 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 38

34 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 39

35 Prior Specification The areas with high concentrations have random (unknown) locations a priori: Latitude Longitude 40

36 Computation Computation is performed using reversible jump Markov chain Monte Carlo (Green 1995), wherein samples ω t of the parameter vector ω are obtained approximately from the posterior distribution Each iteration updates a single parameter, or adds, deletes, or updates a single mixture component A posterior estimate can be obtained for any function g(ω) of the parameters ω, since E[g(ω)] = lim T 1 T X g(ω t ) t T Ex: for the average of Λ(x,ω) P over x A, sample {a i } K i=1 uniformly in A and use the estimate 1 Λ(a TK i,ω t ) i,t 41

37 Nitrate Inferences The posterior mean of the concentration: Latitude > 8.3 mid range < Longitude 43

38 Nitrate Inferences The posterior standard deviation of the concentration: Latitude > 8.3 mid range < Longitude 44

39 Nitrate Inferences This is a measure of estimation uncertainty. Latitude > 8.3 mid range < Longitude 45

40 Nitrate Inferences Most areas with numerous measurements have low uncertainty. Latitude > 8.3 mid range < Longitude 46

41 Nitrate Inferences Average nitrate concentrations over counties: Latitude > 5 mg/l mid range < 1 mg/l Longitude 47

42 Nitrate Inferences The probability that the nitrate concentration exceeds the regulatory limit, averaged by county: Latitude > 8 % mid range < 2 % Longitude 48

43 Conclusions The Bayesian moving-average model allows inference of a variety of risk measures at a variety of spatial scales. Uncertainty measures are available for all these estimates. The model is nonparametric. It has a desirable interpretation in the context of pollutant level estimation. 50

44 Conclusions The moving-average model has a computational advantage over kriging for large data sets Likelihood evaluation for the moving-average model is O(NM), where N is the number of data points and M is the number of mixture components. Likelihood evaluation is O(N 3 ) for kriging. 51

45 Future Work Covariates such as climatic, geologic, and land use factors could be added. The fixed kernels could be replaced with kernels that have priors on the scale, eccentricity, and asymmetry. This would allow the model to capture, e.g., pollutant point sources that have spread out more in one direction than another due to flow patterns. 52

46 Published in Woodard, Gelfand, Barlow, and Elmore (2007, Statistics in Medicine) and Woodard, Wolpert, and O Connell (2009, JABES). More details (references, this talk in.pdf, related work) available at or on request from dbw59@cornell.edu 53

Spatial Inference of Nitrate Concentrations in Groundwater

Spatial Inference of Nitrate Concentrations in Groundwater Spatial Inference of Nitrate Concentrations in Groundwater Dawn Woodard Operations Research & Information Engineering Cornell University joint work with Robert Wolpert, Duke Univ. Dept. of Statistical

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle

Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle Statistical Analysis of Spatio-temporal Point Process Data Peter J Diggle Department of Medicine, Lancaster University and Department of Biostatistics, Johns Hopkins University School of Public Health

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Michael J. Daniels and Chenguang Wang Jan. 18, 2009 First, we would like to thank Joe and Geert for a carefully

More information

Chapter 2. Data Analysis

Chapter 2. Data Analysis Chapter 2 Data Analysis 2.1. Density Estimation and Survival Analysis The most straightforward application of BNP priors for statistical inference is in density estimation problems. Consider the generic

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 1 Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 2 MOVING AVERAGE SPATIAL MODELS Kernel basis representation for spatial processes z(s) Define m basis functions

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Spatial Misalignment

Spatial Misalignment Spatial Misalignment Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Spatial Misalignment Spring 2013 1 / 28 Objectives By the end of today s meeting, participants should be able to:

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

A Spatio-Temporal Point Process Model for Ambulance Demand

A Spatio-Temporal Point Process Model for Ambulance Demand A Spatio-Temporal Point Process Model for Ambulance Demand David S. Matteson Department of Statistical Science Department of Social Statistics Cornell University matteson@cornell.edu http://www.stat.cornell.edu/~matteson/

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Variable Selection in Structured High-dimensional Covariate Spaces

Variable Selection in Structured High-dimensional Covariate Spaces Variable Selection in Structured High-dimensional Covariate Spaces Fan Li 1 Nancy Zhang 2 1 Department of Health Care Policy Harvard University 2 Department of Statistics Stanford University May 14 2007

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Longitudinal breast density as a marker of breast cancer risk

Longitudinal breast density as a marker of breast cancer risk Longitudinal breast density as a marker of breast cancer risk C. Armero (1), M. Rué (2), A. Forte (1), C. Forné (2), H. Perpiñán (1), M. Baré (3), and G. Gómez (4) (1) BIOstatnet and Universitat de València,

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information

Bayesian Areal Wombling for Geographic Boundary Analysis

Bayesian Areal Wombling for Geographic Boundary Analysis Bayesian Areal Wombling for Geographic Boundary Analysis Haolan Lu, Haijun Ma, and Bradley P. Carlin haolanl@biostat.umn.edu, haijunma@biostat.umn.edu, and brad@biostat.umn.edu Division of Biostatistics

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Learning Bayesian Networks for Biomedical Data

Learning Bayesian Networks for Biomedical Data Learning Bayesian Networks for Biomedical Data Faming Liang (Texas A&M University ) Liang, F. and Zhang, J. (2009) Learning Bayesian Networks for Discrete Data. Computational Statistics and Data Analysis,

More information

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract Bayesian Estimation of A Distance Functional Weight Matrix Model Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies Abstract This paper considers the distance functional weight

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

An Overview of Methods for Applying Semi-Markov Processes in Biostatistics.

An Overview of Methods for Applying Semi-Markov Processes in Biostatistics. An Overview of Methods for Applying Semi-Markov Processes in Biostatistics. Charles J. Mode Department of Mathematics and Computer Science Drexel University Philadelphia, PA 19104 Overview of Topics. I.

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Statistics for extreme & sparse data

Statistics for extreme & sparse data Statistics for extreme & sparse data University of Bath December 6, 2018 Plan 1 2 3 4 5 6 The Problem Climate Change = Bad! 4 key problems Volcanic eruptions/catastrophic event prediction. Windstorms

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Bayesian Modeling of Conditional Distributions

Bayesian Modeling of Conditional Distributions Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007 Outline Motivation Model description Methods of inference Earnings

More information

Normalized kernel-weighted random measures

Normalized kernel-weighted random measures Normalized kernel-weighted random measures Jim Griffin University of Kent 1 August 27 Outline 1 Introduction 2 Ornstein-Uhlenbeck DP 3 Generalisations Bayesian Density Regression We observe data (x 1,

More information

Resolving GRB Light Curves

Resolving GRB Light Curves Resolving GRB Light Curves Robert L. Wolpert Duke University wolpert@stat.duke.edu w/mary E Broadbent (Duke) & Tom Loredo (Cornell) 2014 August 03 17:15{17:45 Robert L. Wolpert Resolving GRB Light Curves

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

XXV ENCONTRO BRASILEIRO DE ECONOMETRIA Porto Seguro - BA, 2003 REVISITING DISTRIBUTED LAG MODELS THROUGH A BAYESIAN PERSPECTIVE

XXV ENCONTRO BRASILEIRO DE ECONOMETRIA Porto Seguro - BA, 2003 REVISITING DISTRIBUTED LAG MODELS THROUGH A BAYESIAN PERSPECTIVE XXV ENCONTRO BRASILEIRO DE ECONOMETRIA Porto Seguro - BA, 2003 REVISITING DISTRIBUTED LAG MODELS THROUGH A BAYESIAN PERSPECTIVE Romy R. Ravines, Alexandra M. Schmidt and Helio S. Migon 1 Instituto de Matemática

More information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information p. 1/27 Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Shengde Liang, Bradley

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Spatio-Temporal Modelling of Credit Default Data

Spatio-Temporal Modelling of Credit Default Data 1/20 Spatio-Temporal Modelling of Credit Default Data Sathyanarayan Anand Advisor: Prof. Robert Stine The Wharton School, University of Pennsylvania April 29, 2011 2/20 Outline 1 Background 2 Conditional

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Spatio-Temporal Threshold Models for Relating UV Exposures and Skin Cancer in the Central United States

Spatio-Temporal Threshold Models for Relating UV Exposures and Skin Cancer in the Central United States Spatio-Temporal Threshold Models for Relating UV Exposures and Skin Cancer in the Central United States Laura A. Hatfield and Bradley P. Carlin Division of Biostatistics School of Public Health University

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Optimisation séquentielle et application au design

Optimisation séquentielle et application au design Optimisation séquentielle et application au design d expériences Nicolas Vayatis Séminaire Aristote, Ecole Polytechnique - 23 octobre 2014 Joint work with Emile Contal (computer scientist, PhD student)

More information

Dynamic Scheduling of the Upcoming Exam in Cancer Screening

Dynamic Scheduling of the Upcoming Exam in Cancer Screening Dynamic Scheduling of the Upcoming Exam in Cancer Screening Dongfeng 1 and Karen Kafadar 2 1 Department of Bioinformatics and Biostatistics University of Louisville 2 Department of Statistics University

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

False Discovery Control in Spatial Multiple Testing

False Discovery Control in Spatial Multiple Testing False Discovery Control in Spatial Multiple Testing WSun 1,BReich 2,TCai 3, M Guindani 4, and A. Schwartzman 2 WNAR, June, 2012 1 University of Southern California 2 North Carolina State University 3 University

More information

Cluster Analysis using SaTScan. Patrick DeLuca, M.A. APHEO 2007 Conference, Ottawa October 16 th, 2007

Cluster Analysis using SaTScan. Patrick DeLuca, M.A. APHEO 2007 Conference, Ottawa October 16 th, 2007 Cluster Analysis using SaTScan Patrick DeLuca, M.A. APHEO 2007 Conference, Ottawa October 16 th, 2007 Outline Clusters & Cluster Detection Spatial Scan Statistic Case Study 28 September 2007 APHEO Conference

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 15-7th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Mixture and composition of kernels. Hybrid algorithms. Examples Overview

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

A spatio-temporal model for extreme precipitation simulated by a climate model

A spatio-temporal model for extreme precipitation simulated by a climate model A spatio-temporal model for extreme precipitation simulated by a climate model Jonathan Jalbert Postdoctoral fellow at McGill University, Montréal Anne-Catherine Favre, Claude Bélisle and Jean-François

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Kernel density estimation in R

Kernel density estimation in R Kernel density estimation in R Kernel density estimation can be done in R using the density() function in R. The default is a Guassian kernel, but others are possible also. It uses it s own algorithm to

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Represent processes and observations that span multiple levels (aka multi level models) R 2

Represent processes and observations that span multiple levels (aka multi level models) R 2 Hierarchical models Hierarchical models Represent processes and observations that span multiple levels (aka multi level models) R 1 R 2 R 3 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N i = true abundance on a

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

Spatial Dynamic Factor Analysis

Spatial Dynamic Factor Analysis Spatial Dynamic Factor Analysis Esther Salazar Federal University of Rio de Janeiro Department of Statistical Methods Sixth Workshop on BAYESIAN INFERENCE IN STOCHASTIC PROCESSES Bressanone/Brixen, Italy

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

UQ, Semester 1, 2017, Companion to STAT2201/CIVL2530 Exam Formulae and Tables

UQ, Semester 1, 2017, Companion to STAT2201/CIVL2530 Exam Formulae and Tables UQ, Semester 1, 2017, Companion to STAT2201/CIVL2530 Exam Formulae and Tables To be provided to students with STAT2201 or CIVIL-2530 (Probability and Statistics) Exam Main exam date: Tuesday, 20 June 1

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

Supervised Dimension Reduction:

Supervised Dimension Reduction: Supervised Dimension Reduction: A Tale of Two Manifolds S. Mukherjee, K. Mao, F. Liang, Q. Wu, M. Maggioni, D-X. Zhou Department of Statistical Science Institute for Genome Sciences & Policy Department

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Hierarchical Modeling and Analysis for Spatial Data

Hierarchical Modeling and Analysis for Spatial Data Hierarchical Modeling and Analysis for Spatial Data Bradley P. Carlin, Sudipto Banerjee, and Alan E. Gelfand brad@biostat.umn.edu, sudiptob@biostat.umn.edu, and alan@stat.duke.edu University of Minnesota

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Spatial Bayesian Nonparametrics for Natural Image Segmentation

Spatial Bayesian Nonparametrics for Natural Image Segmentation Spatial Bayesian Nonparametrics for Natural Image Segmentation Erik Sudderth Brown University Joint work with Michael Jordan University of California Soumya Ghosh Brown University Parsing Visual Scenes

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information