Bayesian Modeling of Conditional Distributions

Size: px
Start display at page:

Download "Bayesian Modeling of Conditional Distributions"

Transcription

1 Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007

2 Outline Motivation Model description Methods of inference Earnings example Asset returns example Conclusion

3 Motivation The general case and two examples The general case and an example x t, y t n1 i.i.d. p (y t j x t ) =? Example: Earnings y t x 1t x 2t Earnings or wage of individual t Experience or age of individual t Education of individual t

4 Motivation The general case and two examples A second example: Asset returns y t = Return on asset in period t y t j (y 1,..., y t 1 ) s? The covariates are x 1t Return on asset in period t 1, x 1t = y t 1 x 2t Recent volatility, g x 2,t 1 + (1 g) ja t 1 j κ = s=0 g s jy t 2 s j κ (g = 0.95, κ = 1)

5 Model description Mixture modeling The common structure of normal mixture models y t x t n1 Variable of interest Vector of covariates es t Latent state, es t 2 f1,..., mg y t j (x t,es t = j) s N β 0 j x t, σ 2 j 0 y t j (x t,es t = j) s N β + α j xt, (h h j ) 1

6 Model description Mixture modeling A simple special case: The normal mixture model with no covariates x t = 1 11 es t i.i.d., P (es t = j) = p j y t j (x t = 1,es t = j) s N β j, σ 2 j y t j (x t = 1,es t = j) s N hβ + α j, (h h j ) 1i

7 Model description Mixture modeling

8 Model description Mixture modeling What is new in this work Begin with the same normal mixture model y t j (x t,es t = j) s N β 0 j x t, σ 2 j Determination of latent states es t : iid ew t = Γ x t + ζ t ; ζ t s N (0, Im ) m1 n1 es t = j i ew tj ew ti 8 i = 1,..., m () es t = arg max ( ew ti ) i =1,...,m

9 Model description Literature context Literature context Bayesian nonparametric regression (e.g. Wahba, Shiller, Smith & Kohn) Non-Bayesian nonparametric regression (e.g. Härdle & Tsybakov) Quantile regression (e.g. Koenker & Basset, Yu & Jones) Dirichlet process priors (e.g. Gri n & Steel, Dunson & Pilai) Mixture of Experts Models (e.g. Jacobs & Jordan, Jian and Tanner)

10 Model description Identi cation issues Identi cation issues: Multinomial probit 0 ew t = Γx t + ζ t, j = arg max ( ew ti ), y t s N β + α j xt, (h h j ) 1 i=1,...,m iid Because ζ t s N (0, Im ) translation but not scaling issues arise in ew t = Γ x t + ζ t m1 n1 Impose ι 0 mγ= 0 through Γ = P mq " 0 0 q Γ (m 1)q # ; P = mm ι m m 1/2 P 2 m(m 1), P 0 P = I m

11 Model description Identi cation issues Identi cation issues: Labeling 0 ew t = Γx t + ζ t, j = arg max ( ew ti ), y t s N β + α j xt, (h h j ) 1 i=1,...,m States have no substantive interpretation and are exchangeable implications for prior distribution m! state permutations =) m! re ections of the posterior distribution Not to worry: p (y t j x t ) invariant to permutations of the states Geweke (2006) CSDA forthcoming

12 Model description Prior distributions Conditionally conjugate prior distributions 0 ew t = Γx t + ζ t, j = arg max ( ew ti ), y t s N β + α j xt, (h h j ) 1 i=1,...,m Distribution type Parameters Hyperparameters Gaussian: β, Γ µ, τ 2 β, τ2 γ Gaussian conditional on h: α j (j = 1,..., m) τ 2 α Inverse gamma: h; h j (j = 1,..., m) s 2, ν, ν

13 Model description Some theory Some theory: Conditions 1 Distribution of x 1 x 2 Ω R n, Ω compact 2 p (x) > 0 is continuous w.r.t. Lebesgue measure. 2 Conditional distribution of y 2A 1 For some function h (x), p (yj x) is an exponential distribution, p (yj x) = exp fa [h (x)] y + b [h (x)] + c(yg 8x 2 Ω, y 2 A; a () and b () are analytic, a 0 () 6 0, b 0 () h is in a ball of nite values in a Sobolev space with sup-norm and second-order di erentiability: 1 sup x2ω jh (x)j = c 0 < 2 sup i=1,...,n (sup x2ω j h (x) / x i j) = c 1 < 3 sup i=1,...,n supj=1,...,n sup x2ω 2 h (x) / x i x j = c2 <

14 Model description Some theory Some theory: A de nition De nition. For any two pdf s f () and g () w.r.t. Lebesgue measure de ned on Z, the Kullback-Leibler directed distance from f to g is Z f (z) KL (f, g) = f (z) log dz. g (z) Remark. In a model Z p (y t j θ A, A) (t = 1,...., T ) let T!. The posterior density of θ A will collapse about θ A = θ A, where θa = arg min KL [p (y), p (y j θ A, A)] θ A (Geweke, 2005, Theorem 3.4.2).

15 Model description Some theory Some theory: A result Theorem. For all x 2Ω, sup p(y jx) inf KL [p (y j x), p (y j x,a m)] < p(y jx,a m ) c m 4/n where c depends on p (x), c 0, c 1 and c 2, but does not depend on m or n. Remarks The result is a consequence of Jiang and Tanner (1999) Theorem 2 for the class of gating functions de ned by the multinomial probit model with scalar variance matrix. Condition 1 of Jiang and Tanner (1999) for gating functions is important but not given here. They conjecture that it holds for multinomial logit gating functions. The proof for multinomial probit gating functions is not di cult.

16 Methods of inference Blocking for Gibbs sampling Blocking for Gibbs sampling 0 ew t = Γx t + ζ t, j = arg max ( ew ti ), y t s N β + α j xt, (h h j ) 1 i=1,...,m h, h 1,..., h m Separately conditionally independent gamma β, α 1,..., α m Jointly conditionally Gaussian vec (Γ ) ew t Conditionally Gaussian Gaussian times orthant-speci c likelihood factors Conditional posteriors and code have been tested (Geweke 2004).

17 Methods of inference Quantile functions of interest Quantile functions of interest Conditional CDFs: P (y t c j x t ) Quantiles: c (q) = fc : P (y t c j x t ) = qg Note P (es t = j j Γ, x t ) = P ew tj ew ti (i = 1,..., m) j Γ, x t = R p ew tj = w j Γ, x t P [ ew ti w (i = 1,..., m) j Γ, x t ] dw = R φ w γ 0 j z t Φ y γi 0z t dw. i 6=j Given M Markov chain Monte Carlo replications of a mixture model with m components, the posterior distribution is a mixture of normals with M m components.

18 Earnings example Data Earnings example Data 2698 men from PSID, interviewed in 1994, data pertain to Age 65 Not black Earnings exceed $1,000

19 Earnings example Prior distribution Prior distribution hyperparameters Gaussian priors: Inverse gamma priors: β: µ = 10, τ 2 β = 1 α: µ = 0, τ 2 α = 4 Γ µ = 0, τ 2 γ = 16 2h s χ 2 (2) 2h j s χ 2 (2) Information contribution from prior relative to data is minute.

20 Earnings example Model speci cation comparison Comparison of alternative model speci cations: Modi ed cross-validated log scores Randomly permute all 2698 observations (just to be safe; works for time series too) Select rst T 1 = 2153 for inference (full MCMC, gives θ (m) m = 1,..., M = 10 4 Modi ed cross-validated log scoring rule (Draper and Krnjajic (2005)): T log [p (y t j x t, Y T1, SMR)], t=t 1 +1 p (y t j x t, Y T1, SMR) u M 1 M p y t j θ (m), x t, SMR m=1

21 Earnings example Model speci cation comparison

22 Earnings example Earnings quantiles: Model with m = 8 mixture components

23 Earnings example Median of conditional posterior earnings distribution

24 Earnings example Median of conditional posterior earnings distribution

25 Earnings example Median of conditional posterior earnings distribution

26 Earnings example Earnings quantiles: Model with m = 8 mixture components

27 Earnings example Earnings quantiles: Model with m = 8 mixture components

28 Earnings example Earnings quantiles: Model with m = 8 mixture components

29 Asset Returns Example The data Asset Returns Example The data Standard and Poors 500 daily open (O t ) and close (C t ), (C t 1 = O t ) Dependent variable: Percent log return, y t = 100 log (C t /O t ) Covariates: x 1t = y t 1 x 2t = g x 2,t 1 + (1 g) ja t 1 j κ = s=0 g s jy t 2 s j κ The evidence favors g = 0.95 and κ = 1.

30 Asset Returns Example The model The model: Same as in Geweke and Keane (2006) 0 ew t = Γx t + ζ t, j = arg max ( ew ti ), y t s N β + α j xt, (h h j ) 1 i=1,...,m In Geweke and Keane (2006) linear functions of x t are replaced by polynomial functions of x t. Based on the evidence (Modi ed cross-validated log scores) Γx t become second order polynomials in x t β + α j 0 xt become zero-order polynomials in x t. Mixture of m = 3 components Work with linear functions of x t is currently proceeding.

31 Asset Returns Example Comparison with other models Model comparison: Predictive likelihoods (Bayesian) and Recursive maximum likelihood (non-bayesian) Sample: Prediction: Model Log Predictive likelihood Log Recursive ML Normal iid GARCH(1,1) EGARCH(1,1) t-garch(1,1) Stochastic volatility SMR Dynamic predictive properties of t-garch and stochastic volatility are similar. Dynamic predictive properties of SMR are quite di erent from t-garch and stochastic volatility.

32 Asset Returns Example Posterior means of population moments

33 Asset Returns Example Posterior means of population moments

34 Asset Returns Example Posterior means of population moments

35 Asset Returns Example Posterior means of population moments

36 Asset Returns Example Posterior quantiles

37 Asset Returns Example Posterior quantiles

38 Asset Returns Example Posterior quantiles

39 Asset Returns Example Posterior quantiles

40 Asset Returns Example Posterior quantiles

41 Conclusions Summary Summary The smoothly mixing regressions model is easy to apply is competitive with other models produces interesting results provides fully Bayesian answer to questions of interest

42 Conclusions Current research Current research Convergence of SMR Calibration properties of SMR Contrast with parsimoniously parameterized models in time series applications Extensions into di cult territory More covariates: x t (n 1) Multivariate models p y t `1 j x t n1

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

Smoothly Mixing Regressions

Smoothly Mixing Regressions Smoothly Mixing Regressions John Geweke and Michael Keane Departments of Economics and Statistics, University of Iowa john-geweke@uiowa.edu Department of Economics, Yale University michael.keane@yale.edu

More information

Outline. Introduction to Bayesian nonparametrics. Notation and discrete example. Books on Bayesian nonparametrics

Outline. Introduction to Bayesian nonparametrics. Notation and discrete example. Books on Bayesian nonparametrics Outline Introduction to Bayesian nonparametrics Andriy Norets Department of Economics, Princeton University September, 200 Dirichlet Process (DP) - prior on the space of probability measures. Some applications

More information

Session 5B: A worked example EGARCH model

Session 5B: A worked example EGARCH model Session 5B: A worked example EGARCH model John Geweke Bayesian Econometrics and its Applications August 7, worked example EGARCH model August 7, / 6 EGARCH Exponential generalized autoregressive conditional

More information

Wageningen Summer School in Econometrics. The Bayesian Approach in Theory and Practice

Wageningen Summer School in Econometrics. The Bayesian Approach in Theory and Practice Wageningen Summer School in Econometrics The Bayesian Approach in Theory and Practice September 2008 Slides for Lecture on Qualitative and Limited Dependent Variable Models Gary Koop, University of Strathclyde

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Journal of Econometrics

Journal of Econometrics Journal of Econometrics 168 (2012) 332 346 Contents lists available at SciVerse ScienceDirect Journal of Econometrics ournal homepage: www.elsevier.com/locate/econom Bayesian modeling of oint and conditional

More information

Session 2B: Some basic simulation methods

Session 2B: Some basic simulation methods Session 2B: Some basic simulation methods John Geweke Bayesian Econometrics and its Applications August 14, 2012 ohn Geweke Bayesian Econometrics and its Applications Session 2B: Some () basic simulation

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Online Appendix to: Marijuana on Main Street? Estimating Demand in Markets with Limited Access

Online Appendix to: Marijuana on Main Street? Estimating Demand in Markets with Limited Access Online Appendix to: Marijuana on Main Street? Estating Demand in Markets with Lited Access By Liana Jacobi and Michelle Sovinsky This appendix provides details on the estation methodology for various speci

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract Bayesian analysis of a vector autoregressive model with multiple structural breaks Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus Abstract This paper develops a Bayesian approach

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Foundations of Nonparametric Bayesian Methods

Foundations of Nonparametric Bayesian Methods 1 / 27 Foundations of Nonparametric Bayesian Methods Part II: Models on the Simplex Peter Orbanz http://mlg.eng.cam.ac.uk/porbanz/npb-tutorial.html 2 / 27 Tutorial Overview Part I: Basics Part II: Models

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

E cient Importance Sampling

E cient Importance Sampling E cient David N. DeJong University of Pittsburgh Spring 2008 Our goal is to calculate integrals of the form Z G (Y ) = ϕ (θ; Y ) dθ. Special case (e.g., posterior moment): Z G (Y ) = Θ Θ φ (θ; Y ) p (θjy

More information

Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density

Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density ISSN 1440-771X Australia Department of Econometrics and Business Statistics http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Bayesian estimation of bandwidths for a nonparametric regression model

More information

On the Power of Tests for Regime Switching

On the Power of Tests for Regime Switching On the Power of Tests for Regime Switching joint work with Drew Carter and Ben Hansen Douglas G. Steigerwald UC Santa Barbara May 2015 D. Steigerwald (UCSB) Regime Switching May 2015 1 / 42 Motivating

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Gaussian kernel GARCH models

Gaussian kernel GARCH models Gaussian kernel GARCH models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics 7 June 2013 Motivation A regression model is often

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Lecture Notes based on Koop (2003) Bayesian Econometrics

Lecture Notes based on Koop (2003) Bayesian Econometrics Lecture Notes based on Koop (2003) Bayesian Econometrics A.Colin Cameron University of California - Davis November 15, 2005 1. CH.1: Introduction The concepts below are the essential concepts used throughout

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION. 1. Introduction

INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION. 1. Introduction INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION VICTOR CHERNOZHUKOV CHRISTIAN HANSEN MICHAEL JANSSON Abstract. We consider asymptotic and finite-sample confidence bounds in instrumental

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

SIMILAR-ON-THE-BOUNDARY TESTS FOR MOMENT INEQUALITIES EXIST, BUT HAVE POOR POWER. Donald W. K. Andrews. August 2011

SIMILAR-ON-THE-BOUNDARY TESTS FOR MOMENT INEQUALITIES EXIST, BUT HAVE POOR POWER. Donald W. K. Andrews. August 2011 SIMILAR-ON-THE-BOUNDARY TESTS FOR MOMENT INEQUALITIES EXIST, BUT HAVE POOR POWER By Donald W. K. Andrews August 2011 COWLES FOUNDATION DISCUSSION PAPER NO. 1815 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

Introduction to Applied Bayesian Modeling. ICPSR Day 4

Introduction to Applied Bayesian Modeling. ICPSR Day 4 Introduction to Applied Bayesian Modeling ICPSR Day 4 Simple Priors Remember Bayes Law: Where P(A) is the prior probability of A Simple prior Recall the test for disease example where we specified the

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods John Geweke University of Iowa, USA 2005 Institute on Computational Economics University of Chicago - Argonne National Laboaratories July 22, 2005 The problem p (θ, ω I)

More information

Compound Random Measures

Compound Random Measures Compound Random Measures Jim Griffin (joint work with Fabrizio Leisen) University of Kent Introduction: Two clinical studies 3 CALGB8881 3 CALGB916 2 2 β 1 1 β 1 1 1 5 5 β 1 5 5 β Infinite mixture models

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

2014 Preliminary Examination

2014 Preliminary Examination 014 reliminary Examination 1) Standard error consistency and test statistic asymptotic normality in linear models Consider the model for the observable data y t ; x T t n Y = X + U; (1) where is a k 1

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Collaboration with Rudolf Winter-Ebmer, Department of Economics, Johannes Kepler University

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Bayesian Aggregation for Extraordinarily Large Dataset

Bayesian Aggregation for Extraordinarily Large Dataset Bayesian Aggregation for Extraordinarily Large Dataset Guang Cheng 1 Department of Statistics Purdue University www.science.purdue.edu/bigdata Department Seminar Statistics@LSE May 19, 2017 1 A Joint Work

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Bayesian Regression with Heteroscedastic Error Density and Parametric Mean Function

Bayesian Regression with Heteroscedastic Error Density and Parametric Mean Function Bayesian Regression with Heteroscedastic Error Density and Parametric Mean Function Justinas Pelenis pelenis@ihs.ac.at Institute for Advanced Studies, Vienna May 8, 2013 Abstract This paper considers a

More information

Bayesian inference for multivariate skew-normal and skew-t distributions

Bayesian inference for multivariate skew-normal and skew-t distributions Bayesian inference for multivariate skew-normal and skew-t distributions Brunero Liseo Sapienza Università di Roma Banff, May 2013 Outline Joint research with Antonio Parisi (Roma Tor Vergata) 1. Inferential

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Multivariate Asset Return Prediction with Mixture Models

Multivariate Asset Return Prediction with Mixture Models Multivariate Asset Return Prediction with Mixture Models Swiss Banking Institute, University of Zürich Introduction The leptokurtic nature of asset returns has spawned an enormous amount of research into

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables.

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Index Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Adaptive rejection metropolis sampling (ARMS), 98 Adaptive shrinkage, 132 Advanced Photo System (APS), 255 Aggregation

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Pierpaolo De Blasi University of Turin 10th August 2007, BNR Workshop, Isaac Newton Intitute, Cambridge, UK Joint work with Giovanni Peccati (Université Paris VI) and

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Combining Macroeconomic Models for Prediction

Combining Macroeconomic Models for Prediction Combining Macroeconomic Models for Prediction John Geweke University of Technology Sydney 15th Australasian Macro Workshop April 8, 2010 Outline 1 Optimal prediction pools 2 Models and data 3 Optimal pools

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Econ Some Bayesian Econometrics

Econ Some Bayesian Econometrics Econ 8208- Some Bayesian Econometrics Patrick Bajari Patrick Bajari () Econ 8208- Some Bayesian Econometrics 1 / 72 Motivation Next we shall begin to discuss Gibbs sampling and Markov Chain Monte Carlo

More information

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK Practical Bayesian Quantile Regression Keming Yu University of Plymouth, UK (kyu@plymouth.ac.uk) A brief summary of some recent work of us (Keming Yu, Rana Moyeed and Julian Stander). Summary We develops

More information

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31 Hierarchical models Dr. Jarad Niemi Iowa State University August 31, 2017 Jarad Niemi (Iowa State) Hierarchical models August 31, 2017 1 / 31 Normal hierarchical model Let Y ig N(θ g, σ 2 ) for i = 1,...,

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Introduction: structural econometrics. Jean-Marc Robin

Introduction: structural econometrics. Jean-Marc Robin Introduction: structural econometrics Jean-Marc Robin Abstract 1. Descriptive vs structural models 2. Correlation is not causality a. Simultaneity b. Heterogeneity c. Selectivity Descriptive models Consider

More information

Lecture 5: Spatial probit models. James P. LeSage University of Toledo Department of Economics Toledo, OH

Lecture 5: Spatial probit models. James P. LeSage University of Toledo Department of Economics Toledo, OH Lecture 5: Spatial probit models James P. LeSage University of Toledo Department of Economics Toledo, OH 43606 jlesage@spatial-econometrics.com March 2004 1 A Bayesian spatial probit model with individual

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

SIMILAR-ON-THE-BOUNDARY TESTS FOR MOMENT INEQUALITIES EXIST, BUT HAVE POOR POWER. Donald W. K. Andrews. August 2011 Revised March 2012

SIMILAR-ON-THE-BOUNDARY TESTS FOR MOMENT INEQUALITIES EXIST, BUT HAVE POOR POWER. Donald W. K. Andrews. August 2011 Revised March 2012 SIMILAR-ON-THE-BOUNDARY TESTS FOR MOMENT INEQUALITIES EXIST, BUT HAVE POOR POWER By Donald W. K. Andrews August 2011 Revised March 2012 COWLES FOUNDATION DISCUSSION PAPER NO. 1815R COWLES FOUNDATION FOR

More information

A test of the conditional independence assumption in sample selection models

A test of the conditional independence assumption in sample selection models A test of the conditional independence assumption in sample selection models Martin Huber, Blaise Melly First draft: December 2006, Last changes: September 2012 Abstract: Identi cation in most sample selection

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

GMM-based inference in the AR(1) panel data model for parameter values where local identi cation fails

GMM-based inference in the AR(1) panel data model for parameter values where local identi cation fails GMM-based inference in the AR() panel data model for parameter values where local identi cation fails Edith Madsen entre for Applied Microeconometrics (AM) Department of Economics, University of openhagen,

More information

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008 Ages of stellar populations from color-magnitude diagrams Paul Baines Department of Statistics Harvard University September 30, 2008 Context & Example Welcome! Today we will look at using hierarchical

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Nonparametric Bayes tensor factorizations for big data

Nonparametric Bayes tensor factorizations for big data Nonparametric Bayes tensor factorizations for big data David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & DARPA N66001-09-C-2082 Motivation Conditional

More information

Simple Estimators for Monotone Index Models

Simple Estimators for Monotone Index Models Simple Estimators for Monotone Index Models Hyungtaik Ahn Dongguk University, Hidehiko Ichimura University College London, James L. Powell University of California, Berkeley (powell@econ.berkeley.edu)

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Bayesian (conditionally) conjugate inference for discrete data models. Jon Forster (University of Southampton)

Bayesian (conditionally) conjugate inference for discrete data models. Jon Forster (University of Southampton) Bayesian (conditionally) conjugate inference for discrete data models Jon Forster (University of Southampton) with Mark Grigsby (Procter and Gamble?) Emily Webb (Institute of Cancer Research) Table 1:

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Large-scale Ordinal Collaborative Filtering

Large-scale Ordinal Collaborative Filtering Large-scale Ordinal Collaborative Filtering Ulrich Paquet, Blaise Thomson, and Ole Winther Microsoft Research Cambridge, University of Cambridge, Technical University of Denmark ulripa@microsoft.com,brmt2@cam.ac.uk,owi@imm.dtu.dk

More information