Spatially Adaptive Smoothing Splines

Size: px
Start display at page:

Download "Spatially Adaptive Smoothing Splines"

Transcription

1 Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia September 11, 23 Banff 9/7/3

2 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, = 1,, n ε i iid N(, σ 2 ) t i [, 1] WLOG f Only known to be smooth min f n (y i f(t i )) 2 + λ i=1 1 f (p) (t) 2 dt Silverman s equivalent kernel: ˆf(t) 1 n n ( t ti w i=1 λ 1/(2p+1) ) y i Banff 9/7/3 1

3 Example: Heaviside function 18 true data ( ) and noisy data () f true (x) and f noisy (x) n = x Banff 9/7/3 2

4 16 true data ( ) and best fit Smooth Spl f true (x) and f SS (x) x Banff 9/7/3 3

5 Spatially adaptive Idea: Somehow adjust penalty for roughness of f min f n (y i f(t i )) 2 + i=1 1 λ(t)f (p) (t) 2 dt for a good choice of λ(t) > Banff 9/7/3 4

6 Problem: choose λ(t) from the data Two proposals Frequentist: Pintore, Speckman, Holmes (23) Use GCV Bayesian w/ Dongchu Sun Use discretized approximation to smoothing spline Type of stochastic volatility model In progress Related work Local bandwidth kernel smoothers Local GCV: Cummins, Filloon, Nychka (21) Adaptive P-splines: Ruppert and Carroll Banff 9/7/3 5

7 Toward frequentist exact solution min f n (y i f(t i )) 2 + i=1 Special case of L-spline with Lf = λd p f: 1 λ(t)f (p) (t) 2 dt min f n (y i f(t i )) 2 + i=1 1 (Lf(t)) 2 dt Reproducing kernel: (eg, Gu or Heckman and Ramsay) K λ (s, t) = G(s, u) = 1 1 G(s, u)g(t, u) du λ(u) (s u)p 1 + (p 1)! Banff 9/7/3 6

8 Solution satisfies ˆf(t) = n c j K λ (t, t j ) + j=1 f = Σ λ c + Td Σ λ = [K λ (t i, t j )] n n 1 λ (f (p) ) 2 = f Σ λ f p 1 j= Problem becomes min y Σ λ c Td 2 + f Σ λ f f One common solution: Factorize [ ] R T = [Q 1 Q 2 ] Q = [Q 1 Q 2 ] orthogonal d j φ j (t) Banff 9/7/3 7

9 Solution (see Wahba or Gu) ˆf = Aλ y I A λ = nq 2 (Q 2M λ Q 2 ) 1 Q 2 M λ = Σ λ + ni So ˆf = y nq2 (Q 2M λ Q 2 ) 1 Q 2y Banff 9/7/3 8

10 Special case: piecewise constant λ We fix = τ < τ 1 < < τ K < τ K+1 = 1 Assume each τ k = t i, some i Piecewise constant: λ(t) = λ k = e γ k, t [τ k 1, )τ k ) Explicit (but messy) formula for Σ λ for p = 2 ˆf λ is a polynomial spline with multiple knots at τ k Banff 9/7/3 9

11 Choosing appropriate λ by GCV We use Generalized Cross Validation with extra cost term: Cost κ 1 A λ does not diagonalize V (λ 1,, λ K ) = n (I A λ)y 2 (tr(i κa λ )) 2 Brute force: Matlab, Nelder-Mead optimization Seems to work for K 2 Banff 9/7/3 1

12 Examples Heaviside: K = 5 16 true data ( ) and best fit Spat Adapt Spl with 5 jumps f true (x) and f SAS(5) (x) x Banff 9/7/3 11

13 Bayesian interpretation: Wahba, 1978 Reasonable prior X(t) is mean zero Gaussian process with covariance K λ (s, t) Diffuse prior on X(),, D p 1 X() Then posterior is spatially adaptive spline: normal with mean A λ y and covariance σ 2 A λ (Wahba, 1978) Nychka showed that average frequentist coverage tends to have right level Banff 9/7/3 12

14 Bayes credibility interval 2 Spat Adapt Spl with 5 jumps ( ) and 95% Confidence Intervals 15 f SAS(5) (x) and 95% confidence intervals x Banff 9/7/3 13

15 Doppler function f(t) = (t(1 t)) 1/2 sin 2π(1 + a)/(t + a), a = 5, n = 128, S-N = 7 8 true data ( ) and noisy data () 6 4 f true (x) and f noisy (x) x Banff 9/7/3 14

16 Doppler: ordinary smoothing 5 true data ( ) and best fit Smooth Spl f true (x) and f SS (x) x Banff 9/7/3 15

17 Doppler:K = 5 5 true data ( ) and best fit Spat Adapt Spl with 5 jumps f true (x) and f SAS(5) (x) x Banff 9/7/3 16

18 Doppler:K = 1 5 true data ( ) and best fit Spat Adapt Spl with 1 jumps f true (x) and f SAS(1) (x) x Banff 9/7/3 17

19 Doppler:K = 2 6 true data ( ) and best fit Spat Adapt Spl with 2 jumps 4 2 f true (x) and f SAS(2) (x) x Banff 9/7/3 18

20 Doppler:K = 5, Bayesian interval 6 Spat Adapt Spl with 5 jumps ( ) and 95% Confidence Intervals 4 f SAS(5) (x) and 95% confidence intervals x Banff 9/7/3 19

21 Experiments with κ: Heaviside, K = 1, κ = 1 18 true data ( ) and Spat Adapt Spl with 1 jumps ( ), κ = f true (x) and f SAS(1) (x), κ = x Banff 9/7/3 2

22 Heaviside, K = 1, κ = true data ( ) and Spat Adapt Spl with 1 jumps ( ), κ = f true (x) and f SAS(1) (x), κ = x Banff 9/7/3 21

23 Heaviside, K = 1, κ = true data ( ) and Spat Adapt Spl with 1 jumps ( ), κ = f true (x) and f SAS(1) (x), κ = x Banff 9/7/3 22

24 Conclusions for this part κ = 14 works pretty well in at least one example K is another regularizing parameter K = 5 or 1 seemed to work well We can get empirical Bayes credibility intervals for f Much more research needed Banff 9/7/3 23

25 Bayesian model Our simplified approach Discretize Use MCMC to get posterior quantities Banff 9/7/3 24

26 Bayesian model for spline smoothing (Wahba, 1978) Prior for f: D p X(t) = b dw (t) Diffuse prior: X(), DX(),, D p 1 X() Posterior for f with this prior: normal Mean = smoothing spline with λ = σ 2 /b Variance = σ 2 A λ Kohn and coauthors have championed this model; Hastie and Tibshirani (22) Banff 9/7/3 25

27 Discretize the prior: assume t i s equally spaced (Whitaker) x i = x i x i 1 2 x i = x i x i 1 etc Assume p x i iid N(, b), i = p + 1,, n x 1, x 1,, p 1 x p diffuse Equivalent forms: Bx N(, bi n p ) p(x) b (n p)/2 exp ( 1 ) 2b x B Bx Banff 9/7/3 26

28 (Partially informative prior) B B is Beran s annihilator matrix For moderate n, fit is indistinguishable from regular smoothing spline Banff 9/7/3 27

29 Rich class of priors on function space Equivalent? min f,γ n (y i f(t i )) 2 + i=1 1 e γ(t) f (p) (t) 2 dt + η 1 γ (q) (t) 2 dt Banff 9/7/3 28

30 Bayes solution Inverse gamma prior on σ 2 Inverse gamma prior on η MCMC: Markov chain Monte Carlo simulation to estimate posterior quantities Gibbs sampling is relatively simple: x y, γ, η, σ 2 has multivariate normal smoothing spline posterior σ 2 y, x, γ, η is inverse gamma η y, x, γ, σ 2 is inverse gamma γ i γ i, y, x, σ 2, η does not have nice form and we now sample one component at a time Mixing can be slow, especially for p > 2 Banff 9/7/3 29

31 Example: Doppler, n = 5, nonadaptive x Banff 9/7/3 3

32 Example: Doppler, n = 5, adaptive delta_k Banff 9/7/3 31

33 Computational issues: p = 3 would be better MCMC convergence issues What is the continuous version of this process? Ideas extend to other penalities such as L 1 In principle extends to higher dimensions Data dependent penalties open many new possibilities Banff 9/7/3 32

Inversion Base Height. Daggot Pressure Gradient Visibility (miles)

Inversion Base Height. Daggot Pressure Gradient Visibility (miles) Stanford University June 2, 1998 Bayesian Backtting: 1 Bayesian Backtting Trevor Hastie Stanford University Rob Tibshirani University of Toronto Email: trevor@stat.stanford.edu Ftp: stat.stanford.edu:

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Priors for Bayesian adaptive spline smoothing

Priors for Bayesian adaptive spline smoothing Ann Inst Stat Math ) 64:577 63 DOI.7/s463--3-6 Priors for Bayesian adaptive spline smoothing Yu Ryan Yue Paul L. Speckman Dongchu Sun Received: September 9 / Revised: July / Published online: 8 January

More information

Introduction to Smoothing spline ANOVA models (metamodelling)

Introduction to Smoothing spline ANOVA models (metamodelling) Introduction to Smoothing spline ANOVA models (metamodelling) M. Ratto DYNARE Summer School, Paris, June 215. Joint Research Centre www.jrc.ec.europa.eu Serving society Stimulating innovation Supporting

More information

Odds ratio estimation in Bernoulli smoothing spline analysis-ofvariance

Odds ratio estimation in Bernoulli smoothing spline analysis-ofvariance The Statistician (1997) 46, No. 1, pp. 49 56 Odds ratio estimation in Bernoulli smoothing spline analysis-ofvariance models By YUEDONG WANG{ University of Michigan, Ann Arbor, USA [Received June 1995.

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Penalized Splines, Mixed Models, and Recent Large-Sample Results Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert Operations Research & Information Engineering, Cornell University Feb 4, 2011 Collaborators Matt Wand, University of Wollongong

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES JOHN STEPHENSON 1, CHRIS HOLMES, KERRY GALLAGHER 1 and ALEXANDRE PINTORE 1 Dept. Earth Science and Engineering, Imperial College,

More information

Doubly Penalized Likelihood Estimator in Heteroscedastic Regression 1

Doubly Penalized Likelihood Estimator in Heteroscedastic Regression 1 DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1084rr February 17, 2004 Doubly Penalized Likelihood Estimator in Heteroscedastic Regression

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods

Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods Université Catholique de Louvain Institut de Statistique, Biostatistique et Sciences Actuarielles Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods 19th

More information

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K.

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K. An Introduction to GAMs based on penalied regression splines Simon Wood Mathematical Sciences, University of Bath, U.K. Generalied Additive Models (GAM) A GAM has a form something like: g{e(y i )} = η

More information

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression Communications of the Korean Statistical Society 2009, Vol. 16, No. 4, 713 722 Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression Young-Ju Kim 1,a a Department of Information

More information

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Jeffrey N. Rouder Francis Tuerlinckx Paul L. Speckman Jun Lu & Pablo Gomez May 4 008 1 The Weibull regression model

More information

Bayesian Modeling of Conditional Distributions

Bayesian Modeling of Conditional Distributions Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007 Outline Motivation Model description Methods of inference Earnings

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Fahrmeir: Recent Advances in Semiparametric Bayesian Function Estimation

Fahrmeir: Recent Advances in Semiparametric Bayesian Function Estimation Fahrmeir: Recent Advances in Semiparametric Bayesian Function Estimation Sonderforschungsbereich 386, Paper 137 (1998) Online unter: http://epub.ub.uni-muenchen.de/ Projektpartner Recent Advances in Semiparametric

More information

Kernel density estimation in R

Kernel density estimation in R Kernel density estimation in R Kernel density estimation can be done in R using the density() function in R. The default is a Guassian kernel, but others are possible also. It uses it s own algorithm to

More information

Uncertainty Quantification for Inverse Problems. November 7, 2011

Uncertainty Quantification for Inverse Problems. November 7, 2011 Uncertainty Quantification for Inverse Problems November 7, 2011 Outline UQ and inverse problems Review: least-squares Review: Gaussian Bayesian linear model Parametric reductions for IP Bias, variance

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Alternatives. The D Operator

Alternatives. The D Operator Using Smoothness Alternatives Text: Chapter 5 Some disadvantages of basis expansions Discrete choice of number of basis functions additional variability. Non-hierarchical bases (eg B-splines) make life

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Hypothesis Testing in Smoothing Spline Models

Hypothesis Testing in Smoothing Spline Models Hypothesis Testing in Smoothing Spline Models Anna Liu and Yuedong Wang October 10, 2002 Abstract This article provides a unified and comparative review of some existing test methods for the hypothesis

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Fundamental Issues in Bayesian Functional Data Analysis. Dennis D. Cox Rice University

Fundamental Issues in Bayesian Functional Data Analysis. Dennis D. Cox Rice University Fundamental Issues in Bayesian Functional Data Analysis Dennis D. Cox Rice University 1 Introduction Question: What are functional data? Answer: Data that are functions of a continuous variable.... say

More information

Beyond Mean Regression

Beyond Mean Regression Beyond Mean Regression Thomas Kneib Lehrstuhl für Statistik Georg-August-Universität Göttingen 8.3.2013 Innsbruck Introduction Introduction One of the top ten reasons to become statistician (according

More information

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods Alternatives to Basis Expansions Basis expansions require either choice of a discrete set of basis or choice of smoothing penalty and smoothing parameter Both of which impose prior beliefs on data. Alternatives

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Curtis B. Storlie a a Los Alamos National Laboratory E-mail:storlie@lanl.gov Outline Reduction of Emulator

More information

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A)

I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A) I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S I S B A UNIVERSITÉ CATHOLIQUE DE LOUVAIN D I S C U S S I O N P A P E R 2011/01 1101 BAYESIAN

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach"

Kneib, Fahrmeir: Supplement to Structured additive regression for categorical space-time data: A mixed model approach Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach" Sonderforschungsbereich 386, Paper 43 (25) Online unter: http://epub.ub.uni-muenchen.de/

More information

Automatic Smoothing and Variable Selection. via Regularization 1

Automatic Smoothing and Variable Selection. via Regularization 1 DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1093 July 6, 2004 Automatic Smoothing and Variable Selection via Regularization 1 Ming Yuan

More information

Constrained Gaussian processes: methodology, theory and applications

Constrained Gaussian processes: methodology, theory and applications Constrained Gaussian processes: methodology, theory and applications Hassan Maatouk hassan.maatouk@univ-rennes2.fr Workshop on Gaussian Processes, November 6-7, 2017, St-Etienne (France) Hassan Maatouk

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Statistical inference on Lévy processes

Statistical inference on Lévy processes Alberto Coca Cabrero University of Cambridge - CCA Supervisors: Dr. Richard Nickl and Professor L.C.G.Rogers Funded by Fundación Mutua Madrileña and EPSRC MASDOC/CCA student workshop 2013 26th March Outline

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

A new iterated filtering algorithm

A new iterated filtering algorithm A new iterated filtering algorithm Edward Ionides University of Michigan, Ann Arbor ionides@umich.edu Statistics and Nonlinear Dynamics in Biology and Medicine Thursday July 31, 2014 Overview 1 Introduction

More information

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K.

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K. Basis Penalty Smoothers Simon Wood Mathematical Sciences, University of Bath, U.K. Estimating functions It is sometimes useful to estimate smooth functions from data, without being too precise about the

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

On fixed effects estimation in spline-based semiparametric regression for spatial data

On fixed effects estimation in spline-based semiparametric regression for spatial data Libraries Conference on Applied Statistics in Agriculture 015-7th Annual Conference Proceedings On fixed effects estimation in spline-based semiparametric regression for spatial data Guilherme Ludwig University

More information

ERRATA. for Semiparametric Regression. Last Updated: 30th September, 2014

ERRATA. for Semiparametric Regression. Last Updated: 30th September, 2014 1 ERRATA for Semiparametric Regression by D. Ruppert, M. P. Wand and R. J. Carroll Last Updated: 30th September, 2014 p.6. In the vertical axis Figure 1.7 the lower 1, 2 and 3 should have minus signs.

More information

Stat 451 Lecture Notes Numerical Integration

Stat 451 Lecture Notes Numerical Integration Stat 451 Lecture Notes 03 12 Numerical Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 5 in Givens & Hoeting, and Chapters 4 & 18 of Lange 2 Updated: February 11, 2016 1 / 29

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Bayesian Analysis of Multivariate Smoothing Splines

Bayesian Analysis of Multivariate Smoothing Splines Bayesian Analysis of Multivariate Smoothing Splines Dongchu Sun, Department of Statistics, University of Missouri, Columbia, MO 65211, USA Shawn Ni, Department of Economics, University of Missouri, Columbia,

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Generalized Cross Validation

Generalized Cross Validation 26 november 2009 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion Plan 1 Generals 2 What

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Monte Carlo Methods Appl, Vol 6, No 3 (2000), pp 205 210 c VSP 2000 Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Daniel B Rowe H & SS, 228-77 California Institute of

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Peter Orbanz Columbia University PARAMETERS AND PATTERNS Parameters P(X θ) = Probability[data pattern] 3 2 1 0 1 2 3 5 0 5 Inference idea data = underlying pattern + independent

More information

Scalable MCMC for the horseshoe prior

Scalable MCMC for the horseshoe prior Scalable MCMC for the horseshoe prior Anirban Bhattacharya Department of Statistics, Texas A&M University Joint work with James Johndrow and Paolo Orenstein September 7, 2018 Cornell Day of Statistics

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

An Introduction to Functional Data Analysis

An Introduction to Functional Data Analysis An Introduction to Functional Data Analysis Chongzhi Di Fred Hutchinson Cancer Research Center cdi@fredhutch.org Biotat 578A: Special Topics in (Genetic) Epidemiology November 10, 2015 Textbook Ramsay

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Bayesian Analysis of RR Lyrae Distances and Kinematics

Bayesian Analysis of RR Lyrae Distances and Kinematics Bayesian Analysis of RR Lyrae Distances and Kinematics William H. Jefferys, Thomas R. Jefferys and Thomas G. Barnes University of Texas at Austin, USA Thanks to: Jim Berger, Peter Müller, Charles Friedman

More information

1. SS-ANOVA Spaces on General Domains. 2. Averaging Operators and ANOVA Decompositions. 3. Reproducing Kernel Spaces for ANOVA Decompositions

1. SS-ANOVA Spaces on General Domains. 2. Averaging Operators and ANOVA Decompositions. 3. Reproducing Kernel Spaces for ANOVA Decompositions Part III 1. SS-ANOVA Spaces on General Domains 2. Averaging Operators and ANOVA Decompositions 3. Reproducing Kernel Spaces for ANOVA Decompositions 4. Building Blocks for SS-ANOVA Spaces, General and

More information

On Conditional Variance Estimation in Nonparametric Regression

On Conditional Variance Estimation in Nonparametric Regression On Conditional Variance Estimation in Nonparametric Regression Siddhartha Chib Edward Greenberg January 2011, November 2011 Abstract In this paper we consider a nonparametric regression model in which

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Bayesian Estimation and Inference for the Generalized Partial Linear Model

Bayesian Estimation and Inference for the Generalized Partial Linear Model Bayesian Estimation Inference for the Generalized Partial Linear Model Haitham M. Yousof 1, Ahmed M. Gad 2 1 Department of Statistics, Mathematics Insurance, Benha University, Egypt. 2 Department of Statistics,

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Estimation of cumulative distribution function with spline functions

Estimation of cumulative distribution function with spline functions INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 017 Estimation of cumulative distribution function with functions Akhlitdin Nizamitdinov, Aladdin Shamilov Abstract The estimation of the cumulative

More information