Generalized Cross Validation

Size: px
Start display at page:

Download "Generalized Cross Validation"

Transcription

1 26 november 2009

2 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

3 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

4 References Chapter 4 of Spline models for Observational Data (1990) - Grace Wahba Optimal Estimation of Contour Properties by Cross-Validated Regularization (1989) - Behzad Shahraray, David Anderson Smoothing Noisy Data with Spline Function (1979) - Peter Craven, Grace Wahba

5 Conditional Expectations From probability theory, we have for X L 2 {Ω, F, P} E[X ] = argmin E [ (X θ) 2] (1) θ R The least squares estimate therefore gives discretized estimate of θ and a natural norm to choose when searching for data disturbed by white noise

6 Ill-posedness Consider the model y i = g(t i ) + ɛ i, i = 1, 2,..., n, t i [0, 1] where g W (m) 2 = {f f, f,..., f (m 1) }abs.cont., f (m) L 2 [0, 1] and {ɛ i WN(0, σ 2 )} where σ is unknown. The least squares estimate gives min ĝi W (m) 2 n (y i ĝ i ) 2 = 0 {y i } n i=1 (2) i=1 The minimum does not depend on data and is clearly ill-posed.

7 Regularization We may choose to regularize, or smooth, the data as ĝ n,λ = argmin ĝi W (m) 2 n (y i ĝ(t i )) 2 + λ i=1 which has a unique solution. 1 0 (ĝ (m) (t)) 2 dt λ 0 (3)

8 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

9 Properties of ĝ n,λ The reason for the term smoothing spline is the following For λ = 0, ĝ n,λ can be seen as an interpolating spline For λ =, ĝ n,λ is a single polynomial of degree m 1 (optimal in the least squares sense) For 0 < λ <, it can be shown that ĝ n,λ is composed by polynomials of degree at most 2m 1 on the intevals [t i, t i+1 ], i {1, 2,..., n 1} such that the function and its derivatives up to and including the 2m 2 derivative are continuous at the knots, and f (k) (t 1 ) = f (k) (t n ) = 0 for k = {m, m + 1,..., 2m 2}, i.e. natural conditions in the end points. From which we can see that there is a strong dependence between the quality of the result and a good choice of λ.

10 Examples Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

11 Examples Example Example of impact of dierent λ on ĝ n,λ and ĝ n,λ for y i = g(t i ) + ɛ i where g(t) = sin( πt ), t [0, 360] 180

12 Dening the Optimal λ Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

13 Dening the Optimal λ True Mean Square Error R(λ) and Optimal λ Using the notation above we dene the true mean square error, R(λ), as R(λ) := 1 n n (ĝ n,λ (t i ) g ti ) 2 (4) i=1 The optimal λ is then dened as λ = argmin R(λ) (5) λ R +

14 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

15 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

16 Intuition Given our sample of n measurements, we leave one measurement out and predict that data point by the use of the n 1 remaining measurements. The idea is now that the best modell for the measurements is the one that best predicts each measurement as a function of the others.

17 The Ordinary Cross-Validation (OCV) Denition Let ĝ k n,λ, k {1, 2,..., n} be dened as ĝ [k] n,λ = argmin ĝi W (m) 2 n (y i ĝ(t i )) 2 + λ i=1 i k 1 Then we dene the OCV mean square error as 0 (ĝ (m) (t)) 2 dt λ 0 (6) V 0 (λ) = 1 n n i=1 (ĝ [i] n,λ (t i) y i ) 2 (7)

18 The Ordinary Cross-Validation (OCV) Denition Let V 0 (λ) be dened as in the previous denition, the Ordinary Cross-Validation Estimate of λ is λ 0 = argmin V 0 (λ) (8) λ R +

19 Why we need more The OCV estimate have proven good accuracy for certain periodic functions, but in general it lacks a feature shown by the following: Consider the function {g(t) W (m) 2, g(t) = g(t + 1)} sampled equidistantly e.g. {t j = j n, j {1, 2,..., n}} adding some uniform noise. In this case all data are treated symmetrically. On the other hand, dropping the conditions of periodicity and equidistant sampling, the points interact dierently, giving rise to the need of weighting the samples dierently.

20 (GCV) Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

21 (GCV) Rewriting V 0 There exists an n n matrix A(λ), the inuence matrix, with the property ĝ n,λ (t 1 ) ĝ n,λ (t 2 ). ĝ n,λ (t n ) Such that V 0 (λ) can be rewritten as V 0 (λ) = 1 n = A(λ)y (9) n n i=1 (a kjy j y k ) 2 (10) (1 a kk ) 2 k=1 Where a kj, k, j 1, 2,..., n is element {k, j} of A(λ)

22 (GCV) The (GCV) Denition Let A(λ) be the inuence matrix dened above, then the GCV function is dened as V (λ) = 1 n (I A(λ))y 2 [ 1 n tr(i A(λ))] (11) 2 We say that the Generalized Cross-Validation Estimate of λ is λ = argmin V (λ) (12) λ R +

23 (GCV) Similarity to OCV By rewriting V (λ) we get V (λ) = 1 n n i=1 (ĝ [i] n,λ (t i) y i ) 2 w k (λ) (13) where w k (λ) are given by ( ) 2 1 a kk (λ) w k (λ) = (14) 1 n tr(i A(λ)) w k (λ) have been shown to adjust V 0 (λ) for periodicity and non-equidistant samples.

24 (GCV) Comparison Comparison of the true mean square error with the GCV function for the example λ on ĝ n,λ and ĝ n,λ for y i = g(t i ) + ɛ i where g(t) = sin( πt ), t [0, 360] 180

25 Convergence Result Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

26 Convergence Result Convergence Result Theorem Let g( ) W (m) 2 and let {t i } n i=1 satisfy ti 0 w(u)du = i n, where w(u) is a strictly positive continuous weight function. Then there exists sequences { λ n } n=1 and {λ n} n=1 of minimas of E[V (λ)] and E[R(λ)] such that the expectation ineciency I, I = E[V ( λ n )] E[R(λ n)] 1, as n (15)

27 Plan 1 Generals 2 What Regularization Parameter λ is Optimal? Examples Dening the Optimal λ 3 Generalized Cross-Validation (GCV) Convergence Result 4 Discussion

28 An implicit assumption that the true function g(t) is smooth GCV was applied eectively to problems such as: Finding the right order of splines in regression Regularized solution of the Fredholm integral equations of the rst kind It provides an estimate of the regularization parameter from general assumptions on the data.

COS 424: Interacting with Data

COS 424: Interacting with Data COS 424: Interacting with Data Lecturer: Rob Schapire Lecture #14 Scribe: Zia Khan April 3, 2007 Recall from previous lecture that in regression we are trying to predict a real value given our data. Specically,

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

2 Tikhonov Regularization and ERM

2 Tikhonov Regularization and ERM Introduction Here we discusses how a class of regularization methods originally designed to solve ill-posed inverse problems give rise to regularized learning algorithms. These algorithms are kernel methods

More information

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

Adaptive Piecewise Polynomial Estimation via Trend Filtering

Adaptive Piecewise Polynomial Estimation via Trend Filtering Adaptive Piecewise Polynomial Estimation via Trend Filtering Liubo Li, ShanShan Tu The Ohio State University li.2201@osu.edu, tu.162@osu.edu October 1, 2015 Liubo Li, ShanShan Tu (OSU) Trend Filtering

More information

Monte Carlo Methods for Statistical Inference: Variance Reduction Techniques

Monte Carlo Methods for Statistical Inference: Variance Reduction Techniques Monte Carlo Methods for Statistical Inference: Variance Reduction Techniques Hung Chen hchen@math.ntu.edu.tw Department of Mathematics National Taiwan University 3rd March 2004 Meet at NS 104 On Wednesday

More information

Lie Groups for 2D and 3D Transformations

Lie Groups for 2D and 3D Transformations Lie Groups for 2D and 3D Transformations Ethan Eade Updated May 20, 2017 * 1 Introduction This document derives useful formulae for working with the Lie groups that represent transformations in 2D and

More information

Degrees of Freedom in Regression Ensembles

Degrees of Freedom in Regression Ensembles Degrees of Freedom in Regression Ensembles Henry WJ Reeve Gavin Brown University of Manchester - School of Computer Science Kilburn Building, University of Manchester, Oxford Rd, Manchester M13 9PL Abstract.

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

Some Aspects of Band-limited Extrapolations

Some Aspects of Band-limited Extrapolations October 3, 2009 I. Introduction Definition of Fourier transform: F [f ](ω) := ˆf (ω) := + f (t)e iωt dt, ω R (1) I. Introduction Definition of Fourier transform: F [f ](ω) := ˆf (ω) := + f (t)e iωt dt,

More information

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Regularizing inverse problems. Damping and smoothing and choosing...

Regularizing inverse problems. Damping and smoothing and choosing... Regularizing inverse problems Damping and smoothing and choosing... 141 Regularization The idea behind SVD is to limit the degree of freedom in the model and fit the data to an acceptable level. Retain

More information

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Rosemary Renaut, Jodi Mead Arizona State and Boise State September 2007 Renaut and Mead (ASU/Boise) Scalar

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Inversion Base Height. Daggot Pressure Gradient Visibility (miles)

Inversion Base Height. Daggot Pressure Gradient Visibility (miles) Stanford University June 2, 1998 Bayesian Backtting: 1 Bayesian Backtting Trevor Hastie Stanford University Rob Tibshirani University of Toronto Email: trevor@stat.stanford.edu Ftp: stat.stanford.edu:

More information

Determination of a source term and boundary heat flux in an inverse heat equation

Determination of a source term and boundary heat flux in an inverse heat equation ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 8, No., 013, pp. 3-114 Determination of a source term and boundary heat flux in an inverse heat equation A.M. Shahrezaee 1

More information

Smoothness beyond dierentiability

Smoothness beyond dierentiability Smoothness beyond dierentiability Peter Mathé Tartu, October 15, 014 1 Brief Motivation Fundamental Theorem of Analysis Theorem 1. Suppose that f H 1 (0, 1). Then there exists a g L (0, 1) such that f(x)

More information

Math 577 Assignment 7

Math 577 Assignment 7 Math 577 Assignment 7 Thanks for Yu Cao 1. Solution. The linear system being solved is Ax = 0, where A is a (n 1 (n 1 matrix such that 2 1 1 2 1 A =......... 1 2 1 1 2 and x = (U 1, U 2,, U n 1. By the

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

Examination paper for TMA4130 Matematikk 4N: SOLUTION

Examination paper for TMA4130 Matematikk 4N: SOLUTION Department of Mathematical Sciences Examination paper for TMA4 Matematikk 4N: SOLUTION Academic contact during examination: Morten Nome Phone: 9 84 97 8 Examination date: December 7 Examination time (from

More information

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Rosemary Renaut, Jodi Mead Arizona State and Boise State Copper Mountain Conference on Iterative Methods

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2.

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v 260) Contents 2 Partial Derivatives 1 21 Limits and Continuity 1 22 Partial Derivatives 5 23 Directional Derivatives and the Gradient

More information

A Tracking Approach to Parameter Estimation in Linear Ordinary Differential Equations

A Tracking Approach to Parameter Estimation in Linear Ordinary Differential Equations A racking Approach to Parameter Estimation in Linear Ordinary Differential Equations Nicolas Brunel, Quentin Clairon o cite this version: Nicolas Brunel, Quentin Clairon. A racking Approach to Parameter

More information

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods Frank Werner 1 Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry,

More information

Techniques for a priori Choice of Regularizing. Parameters in Tikhonov Regularization

Techniques for a priori Choice of Regularizing. Parameters in Tikhonov Regularization International Mathematical Forum, 1, 2006, no. 5, 237-255 Techniques for a priori Choice of Regularizing Parameters in Tikhonov Regularization M. Iqbal Department of Mathematical Sciences King Fahd University

More information

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Lesson 6: Linear independence, matrix column space and null space New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Two linear systems:

More information

Support Detection in Super-resolution

Support Detection in Super-resolution Support Detection in Super-resolution Carlos Fernandez-Granda (Stanford University) 7/2/2013 SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 1 / 25 Acknowledgements This work was

More information

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction ANALYTIC SEMIGROUPS AND APPLICATIONS KELLER VANDEBOGERT. Introduction Consider a Banach space X and let f : D X and u : G X, where D and G are real intervals. A is a bounded or unbounded linear operator

More information

4. Higher Order Linear DEs

4. Higher Order Linear DEs 4. Higher Order Linear DEs Department of Mathematics & Statistics ASU Outline of Chapter 4 1 General Theory of nth Order Linear Equations 2 Homogeneous Equations with Constant Coecients 3 The Method of

More information

Irregular Solutions of an Ill-Posed Problem

Irregular Solutions of an Ill-Posed Problem Irregular Solutions of an Ill-Posed Problem Peter Linz University of California at Davis Richard L.C. Wang Clearsight Systems Inc. Abstract: Tikhonov regularization is a popular and effective method for

More information

Potential energy. Sunil Kumar Singh

Potential energy. Sunil Kumar Singh Connexions module: m14105 1 Potential energy Sunil Kumar Singh This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Potential energy is associated

More information

COMPUTATION OF FOURIER TRANSFORMS FOR NOISY B FOR NOISY BANDLIMITED SIGNALS

COMPUTATION OF FOURIER TRANSFORMS FOR NOISY B FOR NOISY BANDLIMITED SIGNALS COMPUTATION OF FOURIER TRANSFORMS FOR NOISY BANDLIMITED SIGNALS October 22, 2011 I. Introduction Definition of Fourier transform: F [f ](ω) := ˆf (ω) := + f (t)e iωt dt, ω R (1) I. Introduction Definition

More information

1. SS-ANOVA Spaces on General Domains. 2. Averaging Operators and ANOVA Decompositions. 3. Reproducing Kernel Spaces for ANOVA Decompositions

1. SS-ANOVA Spaces on General Domains. 2. Averaging Operators and ANOVA Decompositions. 3. Reproducing Kernel Spaces for ANOVA Decompositions Part III 1. SS-ANOVA Spaces on General Domains 2. Averaging Operators and ANOVA Decompositions 3. Reproducing Kernel Spaces for ANOVA Decompositions 4. Building Blocks for SS-ANOVA Spaces, General and

More information

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Zuoqiang Shi Mathematical Sciences Center, Tsinghua University Joint wor with Prof. Thomas Y. Hou and Sparsity, Jan 9,

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

Chapter 1 Numerical approximation of data : interpolation, least squares method

Chapter 1 Numerical approximation of data : interpolation, least squares method Chapter 1 Numerical approximation of data : interpolation, least squares method I. Motivation 1 Approximation of functions Evaluation of a function Which functions (f : R R) can be effectively evaluated

More information

Release from Active Learning / Model Selection Dilemma: Optimizing Sample Points and Models at the Same Time

Release from Active Learning / Model Selection Dilemma: Optimizing Sample Points and Models at the Same Time IJCNN2002 May 12-17, 2002 Release from Active Learning / Model Selection Dilemma: Optimizing Sample Points and Models at the Same Time Department of Computer Science, Tokyo Institute of Technology, Tokyo,

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

ADMM algorithm for demosaicking deblurring denoising

ADMM algorithm for demosaicking deblurring denoising ADMM algorithm for demosaicking deblurring denoising DANIELE GRAZIANI MORPHEME CNRS/UNS I3s 2000 route des Lucioles BP 121 93 06903 SOPHIA ANTIPOLIS CEDEX, FRANCE e.mail:graziani@i3s.unice.fr LAURE BLANC-FÉRAUD

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces 9.520: Statistical Learning Theory and Applications February 10th, 2010 Reproducing Kernel Hilbert Spaces Lecturer: Lorenzo Rosasco Scribe: Greg Durrett 1 Introduction In the previous two lectures, we

More information

Heisenberg's inequality for Fourier transform

Heisenberg's inequality for Fourier transform Heisenberg's inequality for Fourier transform Riccardo Pascuzzo Abstract In this paper, we prove the Heisenberg's inequality using the Fourier transform. Then we show that the equality holds for the Gaussian

More information

1 Introduction When the model structure does not match the system, is poorly identiable, or the available set of empirical data is not suciently infor

1 Introduction When the model structure does not match the system, is poorly identiable, or the available set of empirical data is not suciently infor On Tikhonov Regularization, Bias and Variance in Nonlinear System Identication Tor A. Johansen SINTEF Electronics and Cybernetics, Automatic Control Department, N-7034 Trondheim, Norway. Email: Tor.Arne.Johansen@ecy.sintef.no.

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

Modeling and testing long memory in random fields

Modeling and testing long memory in random fields Modeling and testing long memory in random fields Frédéric Lavancier lavancier@math.univ-lille1.fr Université Lille 1 LS-CREST Paris 24 janvier 6 1 Introduction Long memory random fields Motivations Previous

More information

arxiv: v2 [stat.me] 24 Sep 2018

arxiv: v2 [stat.me] 24 Sep 2018 ANOTHER LOOK AT STATISTICAL CALIBRATION: A NON-ASYMPTOTIC THEORY AND PREDICTION-ORIENTED OPTIMALITY arxiv:1802.00021v2 [stat.me] 24 Sep 2018 By Xiaowu Dai, and Peter Chien University of Wisconsin-Madison

More information

Leandra Vicci. Microelectronic Systems Laboratory. Department of Computer Science. University of North Carolina at Chapel Hill. 27 April 2001.

Leandra Vicci. Microelectronic Systems Laboratory. Department of Computer Science. University of North Carolina at Chapel Hill. 27 April 2001. Quaternions and Rotations in 3-Space: The Algebra and its Geometric Interpretation Leandra Vicci Microelectronic Systems Laboratory Department of Computer Science University of North Carolina at Chapel

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Managing Uncertainty

Managing Uncertainty Managing Uncertainty Bayesian Linear Regression and Kalman Filter December 4, 2017 Objectives The goal of this lab is multiple: 1. First it is a reminder of some central elementary notions of Bayesian

More information

Midterm Exam, Thursday, October 27

Midterm Exam, Thursday, October 27 MATH 18.152 - MIDTERM EXAM 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Midterm Exam, Thursday, October 27 Answer questions I - V below. Each question is worth 20 points, for a total of

More information

ARTIFICIAL INTELLIGENCE LABORATORY. and CENTER FOR BIOLOGICAL INFORMATION PROCESSING. A.I. Memo No August Federico Girosi.

ARTIFICIAL INTELLIGENCE LABORATORY. and CENTER FOR BIOLOGICAL INFORMATION PROCESSING. A.I. Memo No August Federico Girosi. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL INFORMATION PROCESSING WHITAKER COLLEGE A.I. Memo No. 1287 August 1991 C.B.I.P. Paper No. 66 Models of

More information

Penalty Methods for Bivariate Smoothing and Chicago Land Values

Penalty Methods for Bivariate Smoothing and Chicago Land Values Penalty Methods for Bivariate Smoothing and Chicago Land Values Roger Koenker University of Illinois, Urbana-Champaign Ivan Mizera University of Alberta, Edmonton Northwestern University: October 2001

More information

Engineering 7: Introduction to computer programming for scientists and engineers

Engineering 7: Introduction to computer programming for scientists and engineers Engineering 7: Introduction to computer programming for scientists and engineers Interpolation Recap Polynomial interpolation Spline interpolation Regression and Interpolation: learning functions from

More information

An Unbiased C p Criterion for Multivariate Ridge Regression

An Unbiased C p Criterion for Multivariate Ridge Regression An Unbiased C p Criterion for Multivariate Ridge Regression (Last Modified: March 7, 2008) Hirokazu Yanagihara 1 and Kenichi Satoh 2 1 Department of Mathematics, Graduate School of Science, Hiroshima University

More information

Sensitivity and Asymptotic Error Theory

Sensitivity and Asymptotic Error Theory Sensitivity and Asymptotic Error Theory H.T. Banks and Marie Davidian MA-ST 810 Fall, 2009 North Carolina State University Raleigh, NC 27695 Center for Quantitative Sciences in Biomedicine North Carolina

More information

Differential of the Exponential Map

Differential of the Exponential Map Differential of the Exponential Map Ethan Eade May 20, 207 Introduction This document computes ɛ0 log x + ɛ x ɛ where and log are the onential mapping and its inverse in a Lie group, and x and ɛ are elements

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut DEPARTMENT OF MATHEMATICS AND STATISTICS Prague 2008 MATHEMATICS AND STATISTICS

More information

Chapter 6. Panel Data. Joan Llull. Quantitative Statistical Methods II Barcelona GSE

Chapter 6. Panel Data. Joan Llull. Quantitative Statistical Methods II Barcelona GSE Chapter 6. Panel Data Joan Llull Quantitative Statistical Methods II Barcelona GSE Introduction Chapter 6. Panel Data 2 Panel data The term panel data refers to data sets with repeated observations over

More information

A Stable Finite Dierence Ansatz for Higher Order Dierentiation of Non-Exact. Data. Bob Anderssen and Frank de Hoog,

A Stable Finite Dierence Ansatz for Higher Order Dierentiation of Non-Exact. Data. Bob Anderssen and Frank de Hoog, A Stable Finite Dierence Ansatz for Higher Order Dierentiation of Non-Exact Data Bob Anderssen and Frank de Hoog, CSIRO Division of Mathematics and Statistics, GPO Box 1965, Canberra, ACT 2601, Australia

More information

Meshfree Approximation Methods with MATLAB

Meshfree Approximation Methods with MATLAB Interdisciplinary Mathematical Sc Meshfree Approximation Methods with MATLAB Gregory E. Fasshauer Illinois Institute of Technology, USA Y f? World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI

More information

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

More information

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Karhunen-Loève decomposition of Gaussian measures on Banach spaces Karhunen-Loève decomposition of Gaussian measures on Banach spaces Jean-Charles Croix GT APSSE - April 2017, the 13th joint work with Xavier Bay. 1 / 29 Sommaire 1 Preliminaries on Gaussian processes 2

More information

Question ( ) Solution. Approximate length of an atomic bond for solid aluminum.

Question ( ) Solution. Approximate length of an atomic bond for solid aluminum. Question (1450001) Approximate length of an atomic bond for solid aluminum. Spring A of stiness 10 N/m is hung vertically from a ringstand. From the lower end of this spring, a dierent spring (Spring B)

More information

1 Trajectory Generation

1 Trajectory Generation CS 685 notes, J. Košecká 1 Trajectory Generation The material for these notes has been adopted from: John J. Craig: Robotics: Mechanics and Control. This example assumes that we have a starting position

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

Inverse problems in statistics

Inverse problems in statistics Inverse problems in statistics Laurent Cavalier (Université Aix-Marseille 1, France) YES, Eurandom, 10 October 2011 p. 1/32 Part II 2) Adaptation and oracle inequalities YES, Eurandom, 10 October 2011

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

arxiv: v1 [math.ds] 18 Nov 2008

arxiv: v1 [math.ds] 18 Nov 2008 arxiv:0811.2889v1 [math.ds] 18 Nov 2008 Abstract Quaternions And Dynamics Basile Graf basile.graf@epfl.ch February, 2007 We give a simple and self contained introduction to quaternions and their practical

More information

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods Alternatives to Basis Expansions Basis expansions require either choice of a discrete set of basis or choice of smoothing penalty and smoothing parameter Both of which impose prior beliefs on data. Alternatives

More information

Statistical Learning & Applications. f w (x) =< f w, K x > H = w T x. α i α j < x i x T i, x j x T j. = < α i x i x T i, α j x j x T j > F

Statistical Learning & Applications. f w (x) =< f w, K x > H = w T x. α i α j < x i x T i, x j x T j. = < α i x i x T i, α j x j x T j > F CR2: Statistical Learning & Applications Examples of Kernels and Unsupervised Learning Lecturer: Julien Mairal Scribes: Rémi De Joannis de Verclos & Karthik Srikanta Kernel Inventory Linear Kernel The

More information

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares Scattered Data Approximation o Noisy Data via Iterated Moving Least Squares Gregory E. Fasshauer and Jack G. Zhang Abstract. In this paper we ocus on two methods or multivariate approximation problems

More information

ANALYSIS OF LONGITUDINAL DATA USING CUBIC SMOOTHING SPLINES. Tapio Nummi. Department of Mathematics, Statistics and. Philosophy

ANALYSIS OF LONGITUDINAL DATA USING CUBIC SMOOTHING SPLINES. Tapio Nummi. Department of Mathematics, Statistics and. Philosophy ANALYSIS OF LONGITUDINAL DATA USING CUBIC SMOOTHING SPLINES Tapio Nummi Department of Mathematics, Statistics and Philosophy 33014 University of Tampere Finland 1. Spline smoothing Suppose that our aim

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Discrete ill posed problems

Discrete ill posed problems Discrete ill posed problems Gérard MEURANT October, 2008 1 Introduction to ill posed problems 2 Tikhonov regularization 3 The L curve criterion 4 Generalized cross validation 5 Comparisons of methods Introduction

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

Regularization of the Inverse Laplace Transform with Applications in Nuclear Magnetic Resonance Relaxometry Candidacy Exam

Regularization of the Inverse Laplace Transform with Applications in Nuclear Magnetic Resonance Relaxometry Candidacy Exam Regularization of the Inverse Laplace Transform with Applications in Nuclear Magnetic Resonance Relaxometry Candidacy Exam Applied Mathematics, Applied Statistics, & Scientific Computation University of

More information

Regularization and statistical learning theory for data analysis

Regularization and statistical learning theory for data analysis Computational Statistics & Data Analysis 38 (2002) 421 432 www.elsevier.com/locate/csda Regularization and statistical learning theory for data analysis Theodoros Evgeniou a;, Tomaso Poggio b, Massimiliano

More information

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lectures 10-12 Lectures 10,11 Slide# 1 Today s Lecture 1. Introduction to norms: L 1,L 2,L. 2. Casting absolute value and max operators. 3. Norm minimization problems.

More information

A RIGOROUS PROOF OF THE ARC LENGTH AND LINE INTEGRAL FORMULA USING THE RIEMANN INTEGRAL

A RIGOROUS PROOF OF THE ARC LENGTH AND LINE INTEGRAL FORMULA USING THE RIEMANN INTEGRAL A RGOROUS ROOF OF THE ARC LENGTH AND LNE NTEGRAL FORMULA USNG THE REMANN NTEGRAL ZACHARY DESTEFANO Abstract. n this paper, provide the rigorous mathematical definiton of an arc in general Euclidean Space.

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Polarons. University of Ljubljana Faculty of Mathematics and Physics. Seminar - Ib, 1. year II. cycle degrees

Polarons. University of Ljubljana Faculty of Mathematics and Physics. Seminar - Ib, 1. year II. cycle degrees University of Ljubljana Faculty of Mathematics and Physics Seminar - Ib, 1. year II. cycle degrees Polarons Author: Jaka Vodeb Advisor: prof. dr. Viktor Kabanov Kranj, 017 Abstract After the discovery

More information

Regularization in Reproducing Kernel Banach Spaces

Regularization in Reproducing Kernel Banach Spaces .... Regularization in Reproducing Kernel Banach Spaces Guohui Song School of Mathematical and Statistical Sciences Arizona State University Comp Math Seminar, September 16, 2010 Joint work with Dr. Fred

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

2 FRED J. HICKERNELL the sample mean of the y (i) : (2) ^ 1 N The mean square error of this estimate may be written as a sum of two parts, a bias term

2 FRED J. HICKERNELL the sample mean of the y (i) : (2) ^ 1 N The mean square error of this estimate may be written as a sum of two parts, a bias term GOODNESS OF FIT STATISTICS, DISCREPANCIES AND ROBUST DESIGNS FRED J. HICKERNELL Abstract. The Cramer{Von Mises goodness-of-t statistic, also known as the L 2 -star discrepancy, is the optimality criterion

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Iterative regularization of nonlinear ill-posed problems in Banach space

Iterative regularization of nonlinear ill-posed problems in Banach space Iterative regularization of nonlinear ill-posed problems in Banach space Barbara Kaltenbacher, University of Klagenfurt joint work with Bernd Hofmann, Technical University of Chemnitz, Frank Schöpfer and

More information

Centro de Processamento de Dados, Universidade Federal do Rio Grande do Sul,

Centro de Processamento de Dados, Universidade Federal do Rio Grande do Sul, A COMPARISON OF ACCELERATION TECHNIQUES APPLIED TO THE METHOD RUDNEI DIAS DA CUNHA Computing Laboratory, University of Kent at Canterbury, U.K. Centro de Processamento de Dados, Universidade Federal do

More information

RECONSTRUCTION OF NUMERICAL DERIVATIVES FROM SCATTERED NOISY DATA. 1. Introduction

RECONSTRUCTION OF NUMERICAL DERIVATIVES FROM SCATTERED NOISY DATA. 1. Introduction RECONSTRUCTION OF NUMERICAL DERIVATIVES FROM SCATTERED NOISY DATA T. WEI, Y. C. HON, AND Y. B. WANG Abstract. Based on the thin plate spline approximation theory, we propose in this paper an efficient

More information

The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma The Johnson-Lindenstrauss Lemma Kevin (Min Seong) Park MAT477 Introduction The Johnson-Lindenstrauss Lemma was first introduced in the paper Extensions of Lipschitz mappings into a Hilbert Space by William

More information

A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve

A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve Ronny Bergmann a Technische Universität Chemnitz Kolloquium, Department Mathematik, FAU Erlangen-Nürnberg,

More information

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring,

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring, The Finite Dimensional Normed Linear Space Theorem Richard DiSalvo Dr. Elmer Mathematical Foundations of Economics Fall/Spring, 20-202 The claim that follows, which I have called the nite-dimensional normed

More information

The WENO Method for Non-Equidistant Meshes

The WENO Method for Non-Equidistant Meshes The WENO Method for Non-Equidistant Meshes Philip Rupp September 11, 01, Berlin Contents 1 Introduction 1.1 Settings and Conditions...................... The WENO Schemes 4.1 The Interpolation Problem.....................

More information

A first order divided difference

A first order divided difference A first order divided difference For a given function f (x) and two distinct points x 0 and x 1, define f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 This is called the first order divided difference of f (x).

More information

Ordinary Differential Equations I

Ordinary Differential Equations I Ordinary Differential Equations I CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations I 1 / 32 Theme of Last Few

More information

Nonparametric Regression. Badr Missaoui

Nonparametric Regression. Badr Missaoui Badr Missaoui Outline Kernel and local polynomial regression. Penalized regression. We are given n pairs of observations (X 1, Y 1 ),...,(X n, Y n ) where Y i = r(x i ) + ε i, i = 1,..., n and r(x) = E(Y

More information

Regularization via Spectral Filtering

Regularization via Spectral Filtering Regularization via Spectral Filtering Lorenzo Rosasco MIT, 9.520 Class 7 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Tracking time-varying-coe$cient functions

Tracking time-varying-coe$cient functions INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING Tracking time-varying-coe$cient functions Henrik Aa. Nielsen*, Torben S. Nielsen, Alfred K. Joensen, Henrik Madsen, Jan Holst Department

More information