Examination paper for TMA4130 Matematikk 4N: SOLUTION

Size: px
Start display at page:

Download "Examination paper for TMA4130 Matematikk 4N: SOLUTION"

Transcription

1 Department of Mathematical Sciences Examination paper for TMA4 Matematikk 4N: SOLUTION Academic contact during examination: Morten Nome Phone: Examination date: December 7 Examination time (from to): 9: : Permitted examination support material: Kode C: Bestemt, enkel kalkulator Rottmann: Matematisk formelsamling Other information: All answers have to be justified, and they should include enough details in order to see how they have been obtained. All sub-problems carry the same weight for grading. Good Luck! Language: English Number of pages: 9 Number of pages enclosed: Checked by: Informasjon om trykking av eksamensoppgave Originalen er: -sidig -sidig sort/hvit farger skal ha flervalgskjema Date Signature

2

3 TMA4 Matematikk 4N, December 7 Page of 9 Problem Let f(x) be defined as f(x) = π 4 x, where < x < π. a) Find the Fourier cosine series of f(x). b) Use the result to compute the value of the series n= (n + ). Solution: a) The series is of the form with and a n = π π a = π a + a n cos nx, n= π Thus the Fourier cosine series is given by ( π 4 x ) dx =, ( π 4 x ) { if n is even cos nx dx = if n is odd. π n= π n cos(n + )x. (n + ) b) Taking x =, considering the even expansion f(x) of f(x), we have π 4 = ( lim x + f(x) + lim x f(x) ) = π n= (n + ). Therefore, Problem n= (n + ) = π 8. Solve the integral equation f(x t)e t dt = e x using Fourier transforms. (Hint: You may need the formula for the Fourier transform of derivatives.)

4 Page of 9 TMA4 Matematikk 4N, December 7 Solution: The equation is given by a convolution: f(x) e x = e x. Applying the Fourier transform on both sides, and the formulas given in the tables, we have πf(f)f(e x ) = F(e x ) Thus, F(f) = π e ω / π ω + = ( ω e ω / ) + ( e ω / ). Using the tables and the property of derivatives, we have that, applying the inverse Fourier transform on both sides, f(x) = / (e x ) + / e x = (x )e x / + ( ) / e x = x + e x /. Problem Consider the ordinary differential equation y y + y = r, y() =, y () = A () where r = r(t) is a given function and A is a constant. a) Solve this equation using the Laplace transform in the case r(t) =. b) Determine the solution in the case when r(t) = e t. c) Rewrite the equation () for an arbitrary r = r(t) as a first-order system of the form Z (t) = F (t, Z) where F (t, Z) is a vector-valued function and Z(t) is the unknown vectorvalued function to be determined. d) Write down the classical Runge Kutta method for this system of equations. e) Compute the approximate solution y(.) using h =. in the case r(t) = and A =. Keep 6 digits in the computations.

5 TMA4 Matematikk 4N, December 7 Page of 9 Solution: a) Introduce the Laplace transform Y (s) = L(y)(s) = y(t)e st dt. Then we find which yields (s Y (s) sy() y ()) (sy (s) y()) + Y (s) =, Thus ( ) s + A Y (s) = s + A = (s )(s ) (s )(s ) = s + (A )( s ). s y(t) = e t + (A )(e t e t ) = (A )e t (A )e t. b) As before we get, with R(s) = /(s ), that Y (s) = s + (A )( s = s + A( s s ) + R(s) ( s ) (s ) s ) s which yields y = ( A)e t + Ae t te t. c) Introduce where z = y(t), z = y (t). Thus, Z(t) = ( ) z (t) z (t) ( ) Z z (t) = F (t, Z) =. z + z + r(t) d) The Runge Kutta method for first-order systems of ordinary differential equations reads Z n+ = Z n + 6( K + K + K + K 4 ), Z = Z()

6 Page 4 of 9 TMA4 Matematikk 4N, December 7 where K = hf (t n, Z n ), K = hf (t n + h, Z n + K ), K = hf (t n + h, Z n + K ), K 4 = hf (t n + h, Z n + K ). Here t n = nh and < h is the discretization parameter. e) [We write all vectors as row vectors.] We choose h =., n = and Z = (, ), and compute with F (Z) = (z, z + z ) that K = hf (Z ) = (, h), K = hf (Z + K /) = hf ( h, h) = (h, h + h ), K = hf (Z + K /) = hf ( h /, h h /) = (h + h /, h + h + 7h /), K 4 = hf (Z + K ) = hf ( (h + h /), (h + h + 7h /)) = (h + h + 7h 4 /, h + 6h + 7h + 5h 4 /) which yields y(.) z, = 6 ( + h + (h + h /) + (h + h + 7h 4 /) ) = 6( 6h + 6h + 7h 4 / ) =.98897, where Z n = (z n,, z n, ). [The exact solution is y(.) = e. + e. = ] Problem 4 Consider the equation e x x =. a) Show that this equation has a unique solution in the interval (, ). b) Compute iterations of Newton s method to approximate the solution, starting with x =. c) Write the equation as an equation of the form g(x) = x so that the fixedpoint iteration method converges, and compute iterations, starting with x =. Keep 5 digits in your computations.

7 TMA4 Matematikk 4N, December 7 Page 5 of 9 Solution: a) Let f(x) = e x x. We have f() = and f() = e <. Thus, by the intermediate value theorem, there is at least one zero. Now, f (x) = e x, which is < on the interval (, ). The function f(x) is therefore decreasing, and the zero is unique. b) Newton s method is of the form Thus, x n+ = x n f(x n) f (x n ) = x n e x n e xn. xn x = x e x x = e e x e.797, x =.797 e e.858,.797 x =.858 e e c) We write the equation as x = e x/. Then the fixed-point iteration methods converges since g (x) = ex/ < on (, ). Then the fixed-point iteration gives x n+ = g(x n ), so Problem 5 x = g(x ) = e / =.956 x = g(x ) =.59 x = g(x ) =.7. Consider the function f(x) = ln(x). a) Compute the Chebyshev points, with n =, in the interval [, ]. b) Using Lagrange interpolation, find the polynomial of smallest degree that interpolates the function at the Chebyshev points found in a). Keep 5 digits in the computations.

8 Page 6 of 9 TMA4 Matematikk 4N, December 7 Solution: a) The three Chebychev points on the interval [, ] are given by ( ) k + y k = cos π, k. 6 This gives y =.866, y =, y =.866. Thus, the corresponding points, in increasing order, in the interval [, ] are x =.4, x =, x =.866. b) The function has corresponding values at those points: f =., f =, f =.68. Thus, the Lagrange polynomial is given by p (x) = k= l k (x) l k (x k ) f k = (.(x )(x.866) +.68(x.4)(x ))..5 Problem 6 Consider the system of equations 4x x + x = x + 4x = 8 x + 4x x = 4 a) Rearrange this system of equations so that you can apply Jacobi s method and such that it converges. b) Perform iterations of the Jacobi s method, starting with x = (,, ), using 5 digits in the computations. Solution: a) If we rewrite the system as x 4 x + x = 5 4 x + x 4 x = 4 x + x = 7 then the matrix associated to the system is strictly diagonally dominant. Thus the method converges. We can also apply Jacobi s method, since the diagonal

9 TMA4 Matematikk 4N, December 7 Page 7 of 9 elements are. One could also compute a norm of the matrix A associated to the system (with diagonal elements = ). b) The matrix A associated to the system of equations is The first iteration of Jacobi method is 5 x () = b + (I A)x () = = The second is given by x () = b + (I A)x () = = Problem 7 Let u(x, t) be the temperature at time t in a laterally insulated bar of length lying on the x-axis. It satisfies the heat equation with initial condition and boundary conditions u t = u, x, t, x u(x, ) = sin ( ) πx u(, t) = u(, t) =, t. a) Find the solutions that are of the form u(x, t) = F (x)g(t) and that satisfy the boundary conditions. b) Find the solution that satisfies the initial condition. Evaluate u(,.5). c) Use Crank Nicolson method with k =.5 and h = to approximate the value of u(,.5). Keep 5 digits in the computations.

10 Page 8 of 9 TMA4 Matematikk 4N, December 7 Solution: a) We plug u(x, t) = F (x)g(t) into the heat equation and obtain two ODEs F kf = Ġ kg =. We split into three cases k =, k > and k <. The only non-trivial solution is for k = p <. The first equation then have solution F (x) = A cos px + B sin px. From the boundary conditions, we get F () = and F () =, so A = and sin p =, hence p = nπ, n =,,... We can set B =. We now solve the second equation. It has a solution of the form G n (t) = B n e (nπ/)t. The solutions of the form F (x)g(t) are thus given by u n (x, t) = B n sin nπx e (nπ/)t. b) To find a solution that satisfies the initial condition, we need to sum over those functions. We have u(x, t) = B n sin nπx e (nπ/)t. We thus have u(x, ) = n= n= B n sin nπx = sin ( ) πx. This is a Fourier sine series. The coefficient B n is therefore given by B n = for n, B =. Thus, Therefore, u(x, t) = sin ( ) πx e (π/)t. ( ) π u(,.5) = sin e (π/).5.. c) Crank-Nicolson method of difference equations is given by ( + r)u i,j+ r(u i+,j+ + u i,j+ ) = ( r)u ij + (u i+,j + u i,j ).

11 TMA4 Matematikk 4N, December 7 Page 9 of 9 where r = k/h = /. Thus, u i,j+ (u i+,j+ + u i,j+ ) = u ij + (u i+,j + u i,j ) We want to approximate u. We get, using the fact that u = u =.7, a system of equations Solving this system we get u u =.598 u u =.598 u =.9, u =.9. Thus, u(,.5).9.

Examination paper for TMA4130 Matematikk 4N

Examination paper for TMA4130 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA4130 Matematikk 4N Academic contact during examination: Morten Nome Phone: 90 84 97 83 Examination date: 13 December 2017 Examination time (from

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Espen R. Jakobsen Phone: 73 59 35 12 Examination date: December 16, 2017 Examination

More information

Examination paper for TMA4285 Time Series Models

Examination paper for TMA4285 Time Series Models Department of Mathematical Sciences Examination paper for TMA4285 Series Models Academic contact during examination: Professor Jarle Tufto Phone: 99 70 55 19 Examination date: December 8, 2016 Examination

More information

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Department of Mathematical Sciences Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Academic contact during examination: Markus Grasmair Phone: 97 58 04 35 Code C): Basic calculator.

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Harald Hanche-Olsen Phone: 73 59 35 25 Examination date: December 14, 2016 Examination

More information

1 x if 0 < x < 2, 1 x if 2 < x < 0.

1 x if 0 < x < 2, 1 x if 2 < x < 0. Problem The function f(x) = x, defined on the interval [0, 2], is to be extended to an odd function g with period 4. Sketch the graph of the function g on the interval [ 4, 4] and find the Fourier series

More information

Examination paper for TMA4145 Linear Methods

Examination paper for TMA4145 Linear Methods Department of Mathematical Sciences Examination paper for TMA4145 Linear Methods Academic contact during examination: Franz Luef Phone: 40614405 Examination date: 5.1.016 Examination time (from to): 09:00-13:00

More information

Exam TMA4120 MATHEMATICS 4K. Monday , Time:

Exam TMA4120 MATHEMATICS 4K. Monday , Time: Exam TMA4 MATHEMATICS 4K Monday 9.., Time: 9 3 English Hjelpemidler (Kode C): Bestemt kalkulator (HP 3S eller Citizen SR-7X), Rottmann: Matematisk formelsamling Problem. a. Determine the value ( + i) 6

More information

Examination paper for TMA4255 Applied statistics

Examination paper for TMA4255 Applied statistics Department of Mathematical Sciences Examination paper for TMA4255 Applied statistics Academic contact during examination: Nikolai Ushakov Phone: 45128897 Examination date: 02 June 2018 Examination time

More information

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

Suggested solutions, TMA4125 Calculus 4N

Suggested solutions, TMA4125 Calculus 4N Suggested solutions, TMA5 Calculus N Charles Curry May 9th 07. The graph of g(x) is displayed below. We have b n = = = 0 [ nπ = nπ ( x) nπx dx nπx dx cos nπx ] x nπx dx [ nπx x cos nπ ] ( cos nπ + cos

More information

Examination paper for TMA4110 Matematikk 3

Examination paper for TMA4110 Matematikk 3 Department of Mathematical Sciences Examination paper for TMA11 Matematikk 3 Academic contact during examination: Eugenia Malinnikova Phone: 735557 Examination date: 6th May, 15 Examination time (from

More information

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( )

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( ) Problem Let f be the π-periodic functions defined by f() = cos ( ) hen [ π, π]. Make a draing of the function f for the interval [ 3π, 3π], and compute the Fourier series of f. Use the result to compute

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Examination paper for TMA4110/TMA4115 Matematikk 3

Examination paper for TMA4110/TMA4115 Matematikk 3 Department of Mathematical Sciences Examination paper for TMA40/TMA45 Matematikk 3 Academic contact during examination: Gereon Quick Phone: 48 50 4 2 Examination date: 8 August 206 Examination time (from

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Examination paper for TFY4245 Faststoff-fysikk, videregående kurs

Examination paper for TFY4245 Faststoff-fysikk, videregående kurs Side 1 av 7 Department of Physics Examination paper for TFY445 Faststoff-fysikk, videregående kurs Academic contact during examination: Ragnvald Mathiesen Phone: 976913 Examination date: 08.06.017 Examination

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

A Guided Tour of the Wave Equation

A Guided Tour of the Wave Equation A Guided Tour of the Wave Equation Background: In order to solve this problem we need to review some facts about ordinary differential equations: Some Common ODEs and their solutions: f (x) = 0 f(x) =

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

12.7 Heat Equation: Modeling Very Long Bars.

12.7 Heat Equation: Modeling Very Long Bars. 568 CHAP. Partial Differential Equations (PDEs).7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms Our discussion of the heat equation () u t c u x in the last section

More information

MA Chapter 10 practice

MA Chapter 10 practice MA 33 Chapter 1 practice NAME INSTRUCTOR 1. Instructor s names: Chen. Course number: MA33. 3. TEST/QUIZ NUMBER is: 1 if this sheet is yellow if this sheet is blue 3 if this sheet is white 4. Sign the scantron

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Examination paper for FY3403 Particle physics

Examination paper for FY3403 Particle physics Department of physics Examination paper for FY3403 Particle physics Academic contact during examination: Jan Myrheim Phone: 900 75 7 Examination date: December 6, 07 Examination time: 9 3 Permitted support

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

FINAL EXAM, MATH 353 SUMMER I 2015

FINAL EXAM, MATH 353 SUMMER I 2015 FINAL EXAM, MATH 353 SUMMER I 25 9:am-2:pm, Thursday, June 25 I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

Examination paper for TPG4150 Reservoir Recovery Techniques

Examination paper for TPG4150 Reservoir Recovery Techniques 1 Department of Petroleum Engineering and Applied Geophysics Examination paper for TPG4150 Reservoir Recovery Techniques Academic contact during examination: Jon Kleppe Phone: 91897300/73594925 Examination

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

i x i y i

i x i y i Department of Mathematics MTL107: Numerical Methods and Computations Exercise Set 8: Approximation-Linear Least Squares Polynomial approximation, Chebyshev Polynomial approximation. 1. Compute the linear

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a TE Linear Algebra and Numerical Methods Tutorial Set : Two Hours. (a) Show that the product AA T is a symmetric matrix. (b) Show that any square matrix A can be written as the sum of a symmetric matrix

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Errata List Numerical Mathematics and Computing, 7th Edition Ward Cheney & David Kincaid Cengage Learning (c) March 2013

Errata List Numerical Mathematics and Computing, 7th Edition Ward Cheney & David Kincaid Cengage Learning (c) March 2013 Chapter Errata List Numerical Mathematics and Computing, 7th Edition Ward Cheney & David Kincaid Cengage Learning (c) 202 9 March 203 Page 4, Summary, 2nd bullet item, line 4: Change A segment of to The

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Elena Celledoni Phone: 48238584, 73593541 Examination date: 11th of December

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

Q1 Q2 Q3 Q4 Tot Letr Xtra

Q1 Q2 Q3 Q4 Tot Letr Xtra Mathematics 54.1 Final Exam, 12 May 2011 180 minutes, 90 points NAME: ID: GSI: INSTRUCTIONS: You must justify your answers, except when told otherwise. All the work for a question should be on the respective

More information

MA22S2 Lecture Notes on Fourier Series and Partial Differential Equations.

MA22S2 Lecture Notes on Fourier Series and Partial Differential Equations. MAS Lecture Notes on Fourier Series and Partial Differential Equations Joe Ó hógáin E-mail: johog@maths.tcd.ie Main Text: Kreyszig; Advanced Engineering Mathematics Other Texts: Nagle and Saff, Zill and

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Wave Equation Modelling Solutions

Wave Equation Modelling Solutions Wave Equation Modelling Solutions SEECS-NUST December 19, 2017 Wave Phenomenon Waves propagate in a pond when we gently touch water in it. Wave Phenomenon Our ear drums are very sensitive to small vibrations

More information

ASSIGNMENT BOOKLET. M.Sc. (Mathematics with Applications in Computer Science) Differential Equations and Numerical Solutions (MMT-007)

ASSIGNMENT BOOKLET. M.Sc. (Mathematics with Applications in Computer Science) Differential Equations and Numerical Solutions (MMT-007) ASSIGNMENT BOOKLET MMT-007 M.Sc. (Mathematics with Applications in Computer Science) Differential Equations and Numerical Solutions (MMT-007) School of Sciences Indira Gandhi National Open University Maidan

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... find the approximate solutions of derivative (first- and second-order) and antiderivative (definite integral only). Numerical Differentiation

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT Received: 31 July, 2008 Accepted: 06 February, 2009 Communicated by: SIMON J SMITH Department of Mathematics and Statistics La Trobe University,

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

Exam in Numerical Methods (MA2501)

Exam in Numerical Methods (MA2501) Norwegian University of Science and Technology Department of Mathematical Sciences Page 1 of 7 MA251 Numeriske Metoder Olivier Verdier (contact: 48 95 2 66) Exam in Numerical Methods (MA251) 211-5-25,

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3.

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3. MATH 6B pring 2017 Vector Calculus II tudy Guide Final Exam Chapters 8, 9, and ections 11.1, 11.2, 11.7, 12.2, 12.3. Before starting with the summary of the main concepts covered in the quarter, here there

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

FINAL EXAM SOLUTIONS, MATH 123

FINAL EXAM SOLUTIONS, MATH 123 FINAL EXAM SOLUTIONS, MATH 23. Find the eigenvalues of the matrix ( 9 4 3 ) So λ = or 6. = λ 9 4 3 λ = ( λ)( 3 λ) + 36 = λ 2 7λ + 6 = (λ 6)(λ ) 2. Compute the matrix inverse: ( ) 3 3 = 3 4 ( 4/3 ) 3. Let

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 10, 2011 FORM A Name: Student Number: Section: This exam has 10 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

Special Instructions:

Special Instructions: Be sure that this examination has 20 pages including this cover The University of British Columbia Sessional Examinations - December 2016 Mathematics 257/316 Partial Differential Equations Closed book

More information

is equal to = 3 2 x, if x < 0 f (0) = lim h = 0. Therefore f exists and is continuous at 0.

is equal to = 3 2 x, if x < 0 f (0) = lim h = 0. Therefore f exists and is continuous at 0. Madhava Mathematics Competition January 6, 2013 Solutions and scheme of marking Part I N.B. Each question in Part I carries 2 marks. p(k + 1) 1. If p(x) is a non-constant polynomial, then lim k p(k) (a)

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

Time-Frequency Analysis

Time-Frequency Analysis Time-Frequency Analysis Basics of Fourier Series Philippe B. aval KSU Fall 015 Philippe B. aval (KSU) Fourier Series Fall 015 1 / 0 Introduction We first review how to derive the Fourier series of a function.

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

SAMPLE FINAL EXAM SOLUTIONS

SAMPLE FINAL EXAM SOLUTIONS LAST (family) NAME: FIRST (given) NAME: ID # : MATHEMATICS 3FF3 McMaster University Final Examination Day Class Duration of Examination: 3 hours Dr. J.-P. Gabardo THIS EXAMINATION PAPER INCLUDES 22 PAGES

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

# Points Score Total 100

# Points Score Total 100 Name: PennID: Math 241 Make-Up Final Exam January 19, 2016 Instructions: Turn off and put away your cell phone. Please write your Name and PennID on the top of this page. Please sign and date the pledge

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Final Year M.Sc., Degree Examinations

Final Year M.Sc., Degree Examinations QP CODE 569 Page No Final Year MSc, Degree Examinations September / October 5 (Directorate of Distance Education) MATHEMATICS Paper PM 5: DPB 5: COMPLEX ANALYSIS Time: 3hrs] [Max Marks: 7/8 Instructions

More information

Solutions to Exercises 8.1

Solutions to Exercises 8.1 Section 8. Partial Differential Equations in Physics and Engineering 67 Solutions to Exercises 8.. u xx +u xy u is a second order, linear, and homogeneous partial differential equation. u x (,y) is linear

More information

Last/Family Name First/Given Name Seat #

Last/Family Name First/Given Name Seat # Math 2, Fall 27 Schaeffer/Kemeny Final Exam (December th, 27) Last/Family Name First/Given Name Seat # Failure to follow the instructions below will constitute a breach of the Stanford Honor Code: You

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

APPLIED MATHEMATICS Part 4: Fourier Analysis

APPLIED MATHEMATICS Part 4: Fourier Analysis APPLIED MATHEMATICS Part 4: Fourier Analysis Contents 1 Fourier Series, Integrals and Transforms 2 1.1 Periodic Functions. Trigonometric Series........... 3 1.2 Fourier Series..........................

More information