Time-Frequency Analysis

Size: px
Start display at page:

Download "Time-Frequency Analysis"

Transcription

1 Time-Frequency Analysis Basics of Fourier Series Philippe B. aval KSU Fall 015 Philippe B. aval (KSU) Fourier Series Fall / 0

2 Introduction We first review how to derive the Fourier series of a function. We then state some important results about Fourier series. A Fourier Series of a function f is a special expansion of the form f (x) = A 0 + ( A n cos nπx + B n sin nπx ) Finding the Fourier series for a given function f (x) (if it exists) amounts to finding the coeffi cients A n for n = 0, 1,,... and B n for n = 1,, 3,... Philippe B. aval (KSU) Fourier Series Fall 015 / 0

3 Euler Formulas for the Coeffi cients Definition The Fourier series of a function f (x) on the interval [, ] where > 0 is given by f (x) = A 0 + ( A n cos nπx + B n sin nπx ) (1) The coeffi cients which appear in the Fourier series were known to Euler before Fourier, hence they bear his name. They are given by the following formulas. Philippe B. aval (KSU) Fourier Series Fall / 0

4 Euler Formulas for the Coeffi cients To find the coeffi cients, the following formulas play an important role: 1 nπx cos dx = 0 for n = 1,, nπx sin dx = 0 for n = 1,,... nπx mπx sin cos sin nπx cos nπx mπx sin dx = mπx cos dx = dx = 0 for every m, n { = 0 if m n = if m = n { = 0 if m n = if m = n 0 Philippe B. aval (KSU) Fourier Series Fall / 0

5 Euler Formulas for the Coeffi cients Theorem The coeffi cients in equation 1 are given by A n = 1 B n = 1 A 0 = 1 f (x) dx () f (x) cos nπx dx for n = 1,,... (3) f (x) sin nπx dx for n = 1,,... (4) Philippe B. aval (KSU) Fourier Series Fall / 0

6 Euler Formulas for the Coeffi cients Definition For a positive integer N, we denote the N th partial sum of the Fourier series of f by S N (x). So, we have S N (x) = A 0 + N ( A n cos nπx We now illustrate what we did with some examples. + B n sin nπx ) Philippe B. aval (KSU) Fourier Series Fall / 0

7 Examples Find the Fourier series of f (x) = sin x on [ π, π] x y 1 Figure: Graph of sin x and S (x) y Figure: Graph of sin x and S Philippe B. aval (KSU) Fourier Series Fall / 0 x (x)

8 Examples Find the Fourier series of f (x) = sin x on [ π, π]. We should have found A 0 = π A n = 4 π (4n 1) B n = 0 sin x = π + 4 π (4n cos nx 1) y Figure: Graph of sin x and S (x) y x x Figure: Graph of sin x and S Philippe B. aval (KSU) Fourier Series Fall / 0 (x)

9 Examples We now look at a π-periodic function with discontinuities and derive its Fourier series using the formulas of this section (assuming it is legitimate). This function is called the sawtooth function. It is defined by g (x) = { 1 (π x) if 0 < x π g (x + π) otherwise Find the Fourier series for this function. Plot this function as well as S 1 (x), S 7 (x), S 0 (x) where S N (x) is the N th partial sum of its Fourier series. Philippe B. aval (KSU) Fourier Series Fall / 0

10 Examples y 4 We should have found: A 0 = 0 A n = Graph of the sawtooth function (black) and S 1 (x) (red) x B n = 1 n g (x) = sin nx n Graph of the sawtooth function (black) and S 7 (x) (red) Philippe B. aval (KSU) Fourier Series Fall / 0 y 4 4 x

11 Examples y 4 y x x 4 Graph of the sawtooth function (black) and S 0 (x) (red) 4 Graph of the sawtooth function (black) and S 100 (x) (red) Philippe B. aval (KSU) Fourier Series Fall / 0

12 Some Remarks Several important facts are worth noticing here. 1 The Fourier series seems to agree with the function, except at the points of discontinuity. At the points of discontinuity, the series converges to 0, which is the average value of the function from the left and from the right. 3 Near the points of discontinuity, the Fourier series overshoots its limiting values. This is a well known phenomenon, known as Gibbs phenomenon. You can see an online simulation of the Gibbs phenomenon Philippe B. aval (KSU) Fourier Series Fall / 0

13 Piecewise Continuous and Piecewise Smooth Functions Definition We will denote f (c ) = lim f (x) and f (c+) = lim f (x) x c x c + Remembering that a function f is continuous at c if and only if f (x) = f (c), we see that a function f is continuous at c if and only if lim x c Definition (Piecewise Continuous) f (c ) = f (c+) = f (c) A function f is said to be piecewise continuous on the interval [a, b] if the following are satisfied: 1 f (a+) and f (b ) exist. f is defined and continuous on (a, b) except possibly at a finite number of points in (a, b) where the left and right limit at these points exist. Such points are called jump discontinuities. Philippe B. aval (KSU) Fourier Series Fall / 0

14 Piecewise Continuous and Piecewise Smooth Functions Definition (Piecewise Smooth) A function f, defined on [a, b] is said to be piecewise smooth if f and f are piecewise continuous on [a, b]. Definition The average of f at c is defined to be f (c ) + f (c+) Clearly, if f is continuous at c, then its average at c is f (c). Philippe B. aval (KSU) Fourier Series Fall / 0

15 Convergence Theorem for Fourier Series Theorem If f is a piecewise smooth function on [, ], then, x [, ] f (x ) + f (x+) = A 0 + ( A n cos nπx + B n sin nπx ) (5) where the coeffi cients are given by equations, 3, and 4. In particular, if f is piecewise smooth and continuous at x, then f (x) = A 0 + ( A n cos nπx + B n sin nπx ) (6) Thus, at points where f is continuous, the Fourier series converges to the function. At points of discontinuity, the series converges to the average of the function at these points. This was the case in the example with the sawtooth function. Philippe B. aval (KSU) Fourier Series Fall / 0

16 Fourier Series of Even and Odd Functions We finish this section by noticing that in the special cases that f is either even or odd, the series simplifies greatly. 1 If f is even, then nπx f (x) sin is odd so that B n = 0 and the series is simply a cosine series. If f is odd, then nπx f (x) cos is odd and A n = 0 and the series is simply a sine series. We summarize this in a theorem. Philippe B. aval (KSU) Fourier Series Fall / 0

17 Fourier Series of Even and Odd Functions Theorem Suppose that on [, ] f has the Fourier series representation Then: f (x) = A 0 + [ A n cos nπx + B n sin nπx ] 1 If f is even then B n = 0 for all n and in this case f (x) = A 0 + A n cos nπx If f is odd then A n = 0 for all n and in this case f (x) = B n sin nπx Philippe B. aval (KSU) Fourier Series Fall / 0

18 Fourier Series in Complex Form Recall Euler s identity e ±ix = cos x ± i sin x (7) The Fourier series of a function f on [, ] can be written f (x) = n= C n e i nπx (8) where C n = 1 nπx f (x) e i dx (9) Philippe B. aval (KSU) Fourier Series Fall / 0

19 Some Applications One of the main uses of Fourier series is in solving some of the differential equations from mathematical physics such as the wave equation or the heat equation. Fourier developed his theory by working on the heat equation. Fourier series also have applications in music synthesis and image processing (signal processing). When we represent a signal f (t) by its [ Fourier series f (t) = A 0 + A n cos nπt + B n sin nπt ], we are finding the contribution of each frequency nπ to the signal. The value of the corresponding coeffi cients give us that contribution. The n th term of the partial sum of the Fourier series, A n cos nπt + B n sin nπt, is called the n th harmonic of f. Its amplitude is given by A n + B n. Philippe B. aval (KSU) Fourier Series Fall / 0

20 Some Applications Conversely, we can create a signal by using the Fourier series [ A 0 + A n cos nπt + B n sin nπt ] for a given value of and playing with the value of the coeffi cients. Audio signals describe air pressure variations captured by our ears and perceived as sounds. We will focus here on periodic audio signals also known as tones. Such signals can be represented by Fourier series. A pure tone can be written as x (t) = a cos (ωt + φ) where a > 0 is the amplitude, ω > 0 is the frequency in radians/seconds and φ is the phase angle. An alternative way to represent the frequency is in Hertz. The frequency f in Hertz is given by f = ω π. The pitch of a pure tone is logarithmically related to the frequency. Philippe B. aval (KSU) Fourier Series Fall / 0

21 Some Applications An octave is a frequency range between f and f for a given frequency f in Hertz. Tones separated by an octave are perceived by our ears to be very similar. In western music, an octave is divided into 1 notes equally spaced on the logarithmic scale. The ordering of notes in the octave beginning at the frequency 0 Hz are shown below Note A A# B C C# D D# E F Frequency (Hz) A more complicated tone can be represented by a Fourier series of the form x (t) = a 1 cos (ωt + φ 1 ) + a cos (ωt + φ ) +... Philippe B. aval (KSU) Fourier Series Fall / 0

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

FOURIER ANALYSIS. (a) Fourier Series

FOURIER ANALYSIS. (a) Fourier Series (a) Fourier Series FOURIER ANAYSIS (b) Fourier Transforms Useful books: 1. Advanced Mathematics for Engineers and Scientists, Schaum s Outline Series, M. R. Spiegel - The course text. We follow their notation

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Definition of the Laplace Transform Today 1 / 16 Outline General idea behind the Laplace transform and other

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Mathematical Methods: Fourier Series. Fourier Series: The Basics

Mathematical Methods: Fourier Series. Fourier Series: The Basics 1 Mathematical Methods: Fourier Series Fourier Series: The Basics Fourier series are a method of representing periodic functions. It is a very useful and powerful tool in many situations. It is sufficiently

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10 MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series ecture - 10 Fourier Series: Orthogonal Sets We begin our treatment with some observations: For m,n = 1,2,3,... cos

More information

Fourier Series and Integrals

Fourier Series and Integrals Fourier Series and Integrals Fourier Series et f(x) beapiece-wiselinearfunctionon[, ] (Thismeansthatf(x) maypossessa finite number of finite discontinuities on the interval). Then f(x) canbeexpandedina

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

FOURIER SERIES. Chapter Introduction

FOURIER SERIES. Chapter Introduction Chapter 1 FOURIER SERIES 1.1 Introduction Fourier series introduced by a French physicist Joseph Fourier (1768-1830), is a mathematical tool that converts some specific periodic signals into everlasting

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Consequences of Orthogonality

Consequences of Orthogonality Consequences of Orthogonality Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of Orthogonality Today 1 / 23 Introduction The three kind of examples we did above involved Dirichlet, Neumann

More information

`an cos nπx. n 1. L `b

`an cos nπx. n 1. L `b 4 Fourier Series A periodic function on a range p,q may be decomposed into a sum of sinusoidal (sine or cosine) functions. This can be written as follows gpxq 1 2 a ` ř8 `b (4.1) The aim of this chapter

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

Sound 2: frequency analysis

Sound 2: frequency analysis COMP 546 Lecture 19 Sound 2: frequency analysis Tues. March 27, 2018 1 Speed of Sound Sound travels at about 340 m/s, or 34 cm/ ms. (This depends on temperature and other factors) 2 Wave equation Pressure

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Fourier Series and the Discrete Fourier Expansion

Fourier Series and the Discrete Fourier Expansion 2 2.5.5 Fourier Series and the Discrete Fourier Expansion Matthew Lincoln Adrienne Carter sillyajc@yahoo.com December 5, 2 Abstract This article is intended to introduce the Fourier series and the Discrete

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Chapter 17: Fourier Series

Chapter 17: Fourier Series Section A Introduction to Fourier Series By the end of this section you will be able to recognise periodic functions sketch periodic functions determine the period of the given function Why are Fourier

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

X b n sin nπx L. n=1 Fourier Sine Series Expansion. a n cos nπx L 2 + X. n=1 Fourier Cosine Series Expansion ³ L. n=1 Fourier Series Expansion

X b n sin nπx L. n=1 Fourier Sine Series Expansion. a n cos nπx L 2 + X. n=1 Fourier Cosine Series Expansion ³ L. n=1 Fourier Series Expansion 3 Fourier Series 3.1 Introduction Although it was not apparent in the early historical development of the method of separation of variables what we are about to do is the analog for function spaces of

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

Emily Jennings. Georgia Institute of Technology. Nebraska Conference for Undergraduate Women in Mathematics, 2012

Emily Jennings. Georgia Institute of Technology. Nebraska Conference for Undergraduate Women in Mathematics, 2012 δ 2 Transform and Fourier Series of Functions with Multiple Jumps Georgia Institute of Technology Nebraska Conference for Undergraduate Women in Mathematics, 2012 Work performed at Kansas State University

More information

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis University of Connecticut Lecture Notes for ME557 Fall 24 Engineering Analysis I Part III: Fourier Analysis Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical

More information

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone Patrice Koehl Department of Biological Sciences National University of Singapore http://www.cs.ucdavis.edu/~koehl/teaching/bl5229 koehl@cs.ucdavis.edu Fourier analysis: the dial tone phone We use Fourier

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Analysis II: Fourier Series

Analysis II: Fourier Series .... Analysis II: Fourier Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American May 3, 011 K.Maruno (UT-Pan American) Analysis II May 3, 011 1 / 16 Fourier series were

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

5 Trigonometric Functions

5 Trigonometric Functions 5 Trigonometric Functions 5.1 The Unit Circle Definition 5.1 The unit circle is the circle of radius 1 centered at the origin in the xyplane: x + y = 1 Example: The point P Terminal Points (, 6 ) is on

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

Assignment 3 Solutions

Assignment 3 Solutions Assignment Solutions Networks and systems August 8, 7. Consider an LTI system with transfer function H(jw) = input is sin(t + π 4 ), what is the output? +jw. If the Solution : C For an LTI system with

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Math 345: Applied Mathematics

Math 345: Applied Mathematics Math 345: Applied Mathematics Introduction to Fourier Series, I Tones, Harmonics, and Fourier s Theorem Marcus Pendergrass Hampden-Sydney College Fall 2012 1 Sounds as waveforms I ve got a bad feeling

More information

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 6 Inverse Circular Functions and Trigonometric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 6.2 Trigonometric Equations Linear Methods Zero-Factor Property Quadratic Methods Trigonometric

More information

Last Update: April 7, 201 0

Last Update: April 7, 201 0 M ath E S W inter Last Update: April 7, Introduction to Partial Differential Equations Disclaimer: his lecture note tries to provide an alternative approach to the material in Sections.. 5 in the textbook.

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

14 Fourier analysis. Read: Boas Ch. 7.

14 Fourier analysis. Read: Boas Ch. 7. 14 Fourier analysis Read: Boas Ch. 7. 14.1 Function spaces A function can be thought of as an element of a kind of vector space. After all, a function f(x) is merely a set of numbers, one for each point

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Math 5440 Problem Set 7 Solutions

Math 5440 Problem Set 7 Solutions Math 544 Math 544 Problem Set 7 Solutions Aaron Fogelson Fall, 13 1: (Logan, 3. # 1) Verify that the set of functions {1, cos(x), cos(x),...} form an orthogonal set on the interval [, π]. Next verify that

More information

Chapter 17 : Fourier Series Page 1 of 12

Chapter 17 : Fourier Series Page 1 of 12 Chapter 7 : Fourier Series Page of SECTION C Further Fourier Series By the end of this section you will be able to obtain the Fourier series for more complicated functions visualize graphs of Fourier series

More information

(Refer Slide Time: 01:30)

(Refer Slide Time: 01:30) Networks and Systems Prof V.G K.Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 11 Fourier Series (5) Continuing our discussion of Fourier series today, we will

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Mathematics for Engineers II. lectures. Power series, Fourier series

Mathematics for Engineers II. lectures. Power series, Fourier series Power series, Fourier series Power series, Taylor series It is a well-known fact, that 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x if 1 < x < 1. On the left hand side of the equation there is sum containing

More information

Section 8.2: Integration by Parts When you finish your homework, you should be able to

Section 8.2: Integration by Parts When you finish your homework, you should be able to Section 8.2: Integration by Parts When you finish your homework, you should be able to π Use the integration by parts technique to find indefinite integral and evaluate definite integrals π Use the tabular

More information

4.3 The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT)

4.3 The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT) CHAPTER. TIME-FREQUECY AALYSIS: FOURIER TRASFORMS AD WAVELETS.3 The Discrete Fourier Transform (DFT and the Fast Fourier Transform (FFT.3.1 Introduction In this section, we discuss some of the mathematics

More information

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2.

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2. 04 Section 10. y (π) = c = 0, and thus λ = 0 is an eigenvalue, with y 0 (x) = 1 as the eigenfunction. For λ > 0 we again have y(x) = c 1 sin λ x + c cos λ x, so y (0) = λ c 1 = 0 and y () = -c λ sin λ

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations Linear Equations Philippe B. Laval KSU Philippe B. Laval (KSU) 1st Order Linear Equations 1 / 11 Introduction We are still looking at 1st order equations. In today s

More information

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series Fourier series Electrical Circuits Lecture - Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform - Fourier

More information

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1 PHYSICS 220 Lecture 21 Sound Textbook Sections 13.1 13.7 Lecture 21 Purdue University, Physics 220 1 Overview Last Lecture Interference and Diffraction Constructive, destructive Diffraction: bending of

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

EE3210 Lab 3: Periodic Signal Representation by Fourier Series

EE3210 Lab 3: Periodic Signal Representation by Fourier Series City University of Hong Kong Department of Electronic Engineering EE321 Lab 3: Periodic Signal Representation by Fourier Series Prelab: Read the Background section. Complete Section 2.2(b), which asks

More information

Section 6: Summary Section 7

Section 6: Summary Section 7 Section 6: Summary Section 7 a n = 2 ( 2πnx cos b n = 2 ( 2πnx sin d = f(x dx f(x = d + n= [ a n cos f(x dx f(x dx ( ( ] 2πnx 2πnx + b n sin You can sometimes combine multiple integrals using symmetry

More information

Physics 8 Monday, December 4, 2017

Physics 8 Monday, December 4, 2017 Physics 8 Monday, December 4, 2017 HW12 due Friday. Grace will do a review session Dec 12 or 13. When? I will do a review session: afternoon Dec 17? Evening Dec 18? Wednesday, I will hand out the practice

More information

The Fourier series for a 2π-periodic function

The Fourier series for a 2π-periodic function The Fourier series for a 2π-periodic function Let f : ( π, π] R be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on R, i.e. f (x + 2π) = f (x), x R. The

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

f(x) cos dx L L f(x) sin L + b n sin a n cos

f(x) cos dx L L f(x) sin L + b n sin a n cos Chapter Fourier Series and Transforms. Fourier Series et f(x be an integrable functin on [, ]. Then the fourier co-ecients are dened as a n b n f(x cos f(x sin The claim is that the function f then can

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

Introductions to ExpIntegralEi

Introductions to ExpIntegralEi Introductions to ExpIntegralEi Introduction to the exponential integrals General The exponential-type integrals have a long history. After the early developments of differential calculus, mathematicians

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Sturm-Liouville Theory

Sturm-Liouville Theory More on Ryan C. Trinity University Partial Differential Equations April 19, 2012 Recall: A Sturm-Liouville (S-L) problem consists of A Sturm-Liouville equation on an interval: (p(x)y ) + (q(x) + λr(x))y

More information

Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Chapter 12 Solving Nonhomogeneous PDEs (Eigenfunction Expansions) 12.1 Goal We know how to solve diffusion problems for which both the PDE and the s are homogeneous using the separation of variables method.

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

The Role of Continued Fractions in Rediscovering a Xenharmonic Tuning

The Role of Continued Fractions in Rediscovering a Xenharmonic Tuning The Role of Continued Fractions in Rediscovering a Xenharmonic Tuning Jordan Schettler University of California, Santa Barbara 10/11/2012 Outline 1 Motivation 2 Physics 3 Circle of Fifths 4 Continued Fractions

More information

Fourier series A periodic function f(x) with period T = 2π can be represented by a Fourier series: sinnx dx = sinnxsinmx dx =

Fourier series A periodic function f(x) with period T = 2π can be represented by a Fourier series: sinnx dx = sinnxsinmx dx = Periodic functions and boundary conditions Afunctionisperiodic,withperiodT,ifitrepeatsitselfexactlyafteranintervaloflengthT. i.e. y(x = y(x+ T for any x. Evidently, the derivatives of y(x are also periodic

More information

The Gibbs Phenomenon

The Gibbs Phenomenon The Gibbs Phenomenon Eli Dean & Britton Girard Math 572, Fall 2013 December 4, 2013 1. Introduction 1 S N f(x) := f(n)e inx := 1 2π n N n N denotes the partial Fourier sum for f at the point x f(x)e inx

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives

natural frequency of the spring/mass system is ω = k/m, and dividing the equation through by m gives 77 6. More on Fourier series 6.. Harmonic response. One of the main uses of Fourier series is to express periodic system responses to general periodic signals. For example, if we drive an undamped spring

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

Convergence for periodic Fourier series

Convergence for periodic Fourier series Chapter 8 Convergence for periodic Fourier series We are now in a position to address the Fourier series hypothesis that functions can realized as the infinite sum of trigonometric functions discussed

More information

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

a k cos(kx) + b k sin(kx), (1.1)

a k cos(kx) + b k sin(kx), (1.1) FOURIER SERIES. INTRODUCTION In this chapter, we examine the trigonometric expansion of a function f(x) defined on an interval such as x π. A trigonometric expansion is a sum of the form a 0 + k a k cos(kx)

More information

I. Signals & Sinusoids

I. Signals & Sinusoids I. Signals & Sinusoids [p. 3] Signal definition Sinusoidal signal Plotting a sinusoid [p. 12] Signal operations Time shifting Time scaling Time reversal Combining time shifting & scaling [p. 17] Trigonometric

More information

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University The Fourier Transform R. C. Trinity University Partial Differential Equations April 17, 214 The Fourier series representation For periodic functions Recall: If f is a 2p-periodic (piecewise smooth) function,

More information

The Fourier series are applicable to periodic signals. They were discovered by the

The Fourier series are applicable to periodic signals. They were discovered by the 3.1 Fourier Series The Fourier series are applicable to periodic signals. They were discovered by the famous French mathematician Joseph Fourier in 1807. By using the Fourier series, a periodic signal

More information

Sequences: Limit Theorems

Sequences: Limit Theorems Sequences: Limit Theorems Limit Theorems Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limit Theorems Today 1 / 20 Introduction These limit theorems fall in two categories. 1 The first category deals

More information

Project IV Fourier Series

Project IV Fourier Series Project IV Fourier Series Robert Jerrard Goal of the project To develop understanding of how many terms of a Fourier series are required in order to well-approximate the original function, and of the differences

More information

Fourier Series Tutorial

Fourier Series Tutorial Fourier Series Tutorial INTRODUCTION This document is designed to overview the theory behind the Fourier series and its alications. It introduces the Fourier series and then demonstrates its use with a

More information

Fourier Analysis Fourier Series C H A P T E R 1 1

Fourier Analysis Fourier Series C H A P T E R 1 1 C H A P T E R Fourier Analysis 474 This chapter on Fourier analysis covers three broad areas: Fourier series in Secs...4, more general orthonormal series called Sturm iouville epansions in Secs..5 and.6

More information

Physical Acoustics. Hearing is the result of a complex interaction of physics, physiology, perception and cognition.

Physical Acoustics. Hearing is the result of a complex interaction of physics, physiology, perception and cognition. Physical Acoustics Hearing, auditory perception, or audition is the ability to perceive sound by detecting vibrations, changes in the pressure of the surrounding medium through time, through an organ such

More information