Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Size: px
Start display at page:

Download "Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case."

Transcription

1 s of the Fourier Theorem (Sect The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem: Continuous case. Theorem (Fourier Series If the function f : [, R R is continuous, then f can be expressed as an infinite series f (x = a + [ ( x a n cos with the constants a n and b n given by a n = 1 b n = 1 ( x f (x cos ( x f (x sin ( x + b n sin dx, n, dx, n 1. Furthermore, the Fourier series in Eq. (?? provides a -periodic extension of f from the domain [, R to R. (1

2 The Fourier Theorem: Continuous case. Sketch of the Proof: Define the partial sum functions f N (x = a N [ ( x + a n cos with a n and b n given by a n = 1 ( x f (x cos b n = 1 ( x f (x sin ( x + b n sin dx, n, dx, n 1. Express f N as a convolution of Sine, Cosine, functions and the original function f. Use the convolution properties to show that lim f N(x = f (x, N x [,. s of the Fourier Theorem (Sect The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem.

3 : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: In this case = 1. The Fourier series expansion is f (x = a + [ an cos(x + b n sin(x, where the a n, b n are given in the Theorem. We start with a, a = f (x dx = (1 + x dx + (1 x dx. a = (x + x ( + x x 1 (1 = 1 + ( 1 1 We obtain: a = 1. : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: Recall: a = 1. Similarly, the rest of the a n are given by, a n = Recall the integrals a n = (1 + x cos(x dx + f (x cos(x dx cos(x dx = 1 (1 x cos(x dx. sin(x, and x cos(x dx = x sin(x + 1 n π cos(x.

4 : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: It is not difficult to see that a n = 1 sin(x + [ x sin(x + 1 n π cos(x + 1 sin(x 1 [ x sin(x + 1 n π cos(x 1 a n = [ 1 n π 1 [ 1 n π cos( n π cos( 1 n π. We then conclude that a n = n π [ 1 cos(. : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: Recall: a = 1, and a n = n π [ 1 cos(. Finally, we must find the coefficients b n. A similar calculation shows that b n =. Then, the Fourier series of f is given by f (x = 1 + n π [ 1 cos( cos(x.

5 : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: Recall: f (x = 1 + n π [ 1 cos( cos(x. We can obtain a simpler expression for the Fourier coefficients a n. Recall the relations cos( = ( n, then f (x = 1 + f (x = 1 + n π [ 1 ( n cos(x. n π [ 1 + ( n+1 cos(x. : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: Recall: f (x = 1 + n π [ 1 + ( n+1 cos(x. If n = k, so n is even, so n + 1 = k + 1 is odd, then a k = (k π (1 1 a k =. If n = k 1, so n is odd, so n + 1 = k is even, then a k = (k 1 π (1 + 1 a 4 k = (k 1 π.

6 : Using the Fourier Theorem. f (x = 1 + x x [,, 1 x x [, 1. Solution: Recall: f (x = 1 + n π [ 1 + ( n+1 cos(x, and a k =, a k = 4 (k 1 π. We conclude: f (x = 1 + k=1 4 (k 1 cos((k 1πx. π s of the Fourier Theorem (Sect The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem.

7 The Fourier Theorem: Piecewise continuous case. Recall: Definition A function f : [a, b R is called piecewise continuous iff holds, (a [a, b can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals. (b f has finite limits at the endpoints of all sub-intervals. The Fourier Theorem: Piecewise continuous case. Theorem (Fourier Series If f : [, R R is piecewise continuous, then the function f F (x = a + [ ( x ( x a n cos + b n sin where a n and b n given by a n = 1 ( x f (x cos b n = 1 ( x f (x sin satisfies that: dx, n, dx, n 1. (a f F (x = f (x for all x where f is continuous; (b f F (x = 1 lim [ x x + discontinuous. f (x + lim x x f (x for all x where f is

8 s of the Fourier Theorem (Sect The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. : Using the Fourier Theorem. Find the Fourier series of f (x = and periodic with period T =. 1 x [,, 1 x [, 1. Solution: We start computing the Fourier coefficients b n ; b n = 1 ( x f (x sin dx, = 1, b n = b n = ( ( sin ( x dx + [ cos(x + 1 (1 sin ( x dx, [ cos(x b n = ( [ 1 [ + cos( + cos( ,

9 : Using the Fourier Theorem. Find the Fourier series of f (x = and periodic with period T =. 1 x [,, 1 x [, 1. Solution: b n = ( [ 1 [ + cos( + cos( + 1. b n = 1 [ [ 1 cos( cos( + 1 = 1 cos(, We obtain: b n = [ 1 ( n. If n = k, then b k = kπ If n = k 1, then b k = hence b k = 4 (k 1π. [ 1 ( k, hence b k =. [ 1 ( k, (k 1π : Using the Fourier Theorem. Find the Fourier series of f (x = and periodic with period T =. Solution: Recall: b k =, and b k = a n = a n = 1 a n = ( ( x f (x cos ( cos ( x dx + [ sin(x 1 x [,, 1 x [, 1. 4 (k 1π. dx, = 1, + 1 (1 cos ( x dx, [ sin(x a n = ( [ 1 [ sin( + sin( 1, a n =.

10 : Using the Fourier Theorem. Find the Fourier series of f (x = and periodic with period T =. Solution: Recall: b k =, b k = Therefore, we conclude that 1 x [,, 1 x [, 1. 4 (k 1π, and a n =. f F (x = 4 π k=1 1 (k 1 sin( (k 1π x.

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22

Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22 Dr Mansoor Alshehri King Saud University MATH4-Differential Equations Center of Excellence in Learning and Teaching / Fourier Cosine and Sine Series Integrals The Complex Form of Fourier Integral MATH4-Differential

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

Time-Frequency Analysis

Time-Frequency Analysis Time-Frequency Analysis Basics of Fourier Series Philippe B. aval KSU Fall 015 Philippe B. aval (KSU) Fourier Series Fall 015 1 / 0 Introduction We first review how to derive the Fourier series of a function.

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

14 Fourier analysis. Read: Boas Ch. 7.

14 Fourier analysis. Read: Boas Ch. 7. 14 Fourier analysis Read: Boas Ch. 7. 14.1 Function spaces A function can be thought of as an element of a kind of vector space. After all, a function f(x) is merely a set of numbers, one for each point

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

Fourier Series. Department of Mathematical and Statistical Sciences University of Alberta

Fourier Series. Department of Mathematical and Statistical Sciences University of Alberta 1 Lecture Notes on Partial Differential Equations Chapter IV Fourier Series Ilyasse Aksikas Department of Mathematical and Statistical Sciences University of Alberta aksikas@ualberta.ca DEFINITIONS 2 Before

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

Functions based on sin ( π. and cos

Functions based on sin ( π. and cos Functions based on sin and cos. Introduction In Complex Analysis if a function is differentiable it has derivatives of all orders. In Real Analysis the situation is very different. Using sin (π/ and cos

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Math 3150 HW 3 Solutions

Math 3150 HW 3 Solutions Math 315 HW 3 Solutions June 5, 18 3.8, 3.9, 3.1, 3.13, 3.16, 3.1 1. 3.8 Make graphs of the periodic extensions on the region x [ 3, 3] of the following functions f defined on x [, ]. Be sure to indicate

More information

Lecture 5: Function Approximation: Taylor Series

Lecture 5: Function Approximation: Taylor Series 1 / 10 Lecture 5: Function Approximation: Taylor Series MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Better

More information

Math Exam II Review

Math Exam II Review Math 114 - Exam II Review Peter A. Perry University of Kentucky March 6, 2017 Bill of Fare 1. It s All About Series 2. Convergence Tests I 3. Convergence Tests II 4. The Gold Standards (Geometric Series)

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

The Fourier series for a 2π-periodic function

The Fourier series for a 2π-periodic function The Fourier series for a 2π-periodic function Let f : ( π, π] R be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on R, i.e. f (x + 2π) = f (x), x R. The

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Emily Jennings. Georgia Institute of Technology. Nebraska Conference for Undergraduate Women in Mathematics, 2012

Emily Jennings. Georgia Institute of Technology. Nebraska Conference for Undergraduate Women in Mathematics, 2012 δ 2 Transform and Fourier Series of Functions with Multiple Jumps Georgia Institute of Technology Nebraska Conference for Undergraduate Women in Mathematics, 2012 Work performed at Kansas State University

More information

Fourier Series and the Discrete Fourier Expansion

Fourier Series and the Discrete Fourier Expansion 2 2.5.5 Fourier Series and the Discrete Fourier Expansion Matthew Lincoln Adrienne Carter sillyajc@yahoo.com December 5, 2 Abstract This article is intended to introduce the Fourier series and the Discrete

More information

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13 Taylor Series Math114 Department of Mathematics, University of Kentucky March 1, 2017 Math114 Lecture 18 1/ 13 Given a function, can we find a power series representation? Math114 Lecture 18 2/ 13 Given

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Weighted SS(E) = w 2 1( y 1 y1) y n. w n. Wy W y 2 = Wy WAx 2. WAx = Wy. (WA) T WAx = (WA) T b

Weighted SS(E) = w 2 1( y 1 y1) y n. w n. Wy W y 2 = Wy WAx 2. WAx = Wy. (WA) T WAx = (WA) T b 6.8 - Applications of Inner Product Spaces Weighted Least-Squares Sometimes you want to get a least-squares solution to a problem where some of the data points are less reliable than others. In this case,

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

X b n sin nπx L. n=1 Fourier Sine Series Expansion. a n cos nπx L 2 + X. n=1 Fourier Cosine Series Expansion ³ L. n=1 Fourier Series Expansion

X b n sin nπx L. n=1 Fourier Sine Series Expansion. a n cos nπx L 2 + X. n=1 Fourier Cosine Series Expansion ³ L. n=1 Fourier Series Expansion 3 Fourier Series 3.1 Introduction Although it was not apparent in the early historical development of the method of separation of variables what we are about to do is the analog for function spaces of

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

7: FOURIER SERIES STEVEN HEILMAN

7: FOURIER SERIES STEVEN HEILMAN 7: FOURIER SERIES STEVE HEILMA Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

General Inner Product and The Fourier Series

General Inner Product and The Fourier Series A Linear Algebra Approach Department of Mathematics University of Puget Sound 4-20-14 / Spring Semester Outline 1 2 Inner Product The inner product is an algebraic operation that takes two vectors and

More information

`an cos nπx. n 1. L `b

`an cos nπx. n 1. L `b 4 Fourier Series A periodic function on a range p,q may be decomposed into a sum of sinusoidal (sine or cosine) functions. This can be written as follows gpxq 1 2 a ` ř8 `b (4.1) The aim of this chapter

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

MATH 162. Midterm Exam 1 - Solutions February 22, 2007 MATH 62 Midterm Exam - Solutions February 22, 27. (8 points) Evaluate the following integrals: (a) x sin(x 4 + 7) dx Solution: Let u = x 4 + 7, then du = 4x dx and x sin(x 4 + 7) dx = 4 sin(u) du = 4 [

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

Chapter 3a Topics in differentiation. Problems in differentiation. Problems in differentiation. LC Abueg: mathematical economics

Chapter 3a Topics in differentiation. Problems in differentiation. Problems in differentiation. LC Abueg: mathematical economics Chapter 3a Topics in differentiation Lectures in Mathematical Economics L Cagandahan Abueg De La Salle University School of Economics Problems in differentiation Problems in differentiation Problem 1.

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work.

Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work. Dr. Sophie Marques MAM100S Tutorial 8 August 017 1. Divide 1. 6x + x 15 by 3x + 5. 6x + x 15 = (x 3)(3x + 5) + 0. 1a 4 17a 3 + 9a + 7a 6 by 3a 1a 4 17a 3 + 9a + 7a 6 = (4a 3 3a + a + 3)(3a ) + 0 3. 1a

More information

Solutions. MATH 1060 Exam 3 Fall (10 points) For 2 sin(3x π) + 1 give the. amplitude. period. phase shift. vertical shift.

Solutions. MATH 1060 Exam 3 Fall (10 points) For 2 sin(3x π) + 1 give the. amplitude. period. phase shift. vertical shift. MATH 060 Exam Fall 008 Solutions. (0 points) For sin(x π) + give the amplitude period phase shift vertical shift amplitude= period= π phase shift= π vertical shift=. (5 points) Consider a sine curve with

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Concavity and Lines. By Ng Tze Beng

Concavity and Lines. By Ng Tze Beng Concavity and Lines. By Ng Tze Beng Not all calculus text books give the same definition for concavity. Most would require differentiability. One is often asked about the equivalence of various differing

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section: MATH 5 Final Examination May 3, 07 FORM A Name: Student Number: Section: This exam has 6 questions for a total of 50 points. In order to obtain full credit for partial credit problems, all work must be

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. Math 5 Trigonometry Chapter Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. 23 1. Consider an arclength of t = travelled counter-clockwise around

More information

The moral of the story regarding discontinuities: They affect the rate of convergence of Fourier series

The moral of the story regarding discontinuities: They affect the rate of convergence of Fourier series Lecture 7 Inner product spaces cont d The moral of the story regarding discontinuities: They affect the rate of convergence of Fourier series As suggested by the previous example, discontinuities of a

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

Chapter 17. Fourier series

Chapter 17. Fourier series Chapter 17. Fourier series We have already met the simple periodic functions, of the form cos(ωt θ). In this chapter we shall look at periodic functions of more complicated nature. 1. The basic results

More information

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10 MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series ecture - 10 Fourier Series: Orthogonal Sets We begin our treatment with some observations: For m,n = 1,2,3,... cos

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

Mathematics for Engineers II. lectures. Power series, Fourier series

Mathematics for Engineers II. lectures. Power series, Fourier series Power series, Fourier series Power series, Taylor series It is a well-known fact, that 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x if 1 < x < 1. On the left hand side of the equation there is sum containing

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Basis Decomposition Write a function as a weighted sum of basis functions f ( x) wibi(

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Notes for the Physics-Based Calculus workshop

Notes for the Physics-Based Calculus workshop Notes for the hysics-based Calculus workshop Adam Coffman June 9, 24 Trigonometric Functions We recall the following identities for trigonometric functions. Theorem.. For all x R, cos( x = cos(x and sin(

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

Lecture 16: Bessel s Inequality, Parseval s Theorem, Energy convergence

Lecture 16: Bessel s Inequality, Parseval s Theorem, Energy convergence Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. ot to be copied, used, or revised without explicit written permission from the copyright owner. ecture 6: Bessel s Inequality,

More information

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2.

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2. 04 Section 10. y (π) = c = 0, and thus λ = 0 is an eigenvalue, with y 0 (x) = 1 as the eigenfunction. For λ > 0 we again have y(x) = c 1 sin λ x + c cos λ x, so y (0) = λ c 1 = 0 and y () = -c λ sin λ

More information

8.8 Applications of Taylor Polynomials

8.8 Applications of Taylor Polynomials 8.8 Applications of Taylor Polynomials Mark Woodard Furman U Spring 2008 Mark Woodard (Furman U) 8.8 Applications of Taylor Polynomials Spring 2008 1 / 14 Outline 1 Point estimation 2 Estimation on an

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006 556: MATHEMATICAL STATISTICS I COMPUTING THE HYPEBOLIC SECANT DISTIBUTION CHAACTEISTIC FUNCTION David A. Stephens Department of Mathematics and Statistics McGill University October 8, 6 Abstract We give

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Cotangent and the Herglotz trick

Cotangent and the Herglotz trick Cotangent and the Herglotz trick Yang Han Christian Wude May 0, 0 The following script introduces the partial fraction expression of the cotangent function and provides an elegant proof, using the Herglotz

More information