Exam in TMA4215 December 7th 2012

Size: px
Start display at page:

Download "Exam in TMA4215 December 7th 2012"

Transcription

1 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf , cell phone Exam in TMA425 December 7th 22 Allowed aids code C: Textbook Endre Süli and David Mayers, An introduction to Numerical Analysis. TMA425 lecture notes pages). Rottman. Photocopies from the textbook are also allowed instead of the book itself, but they should be kept separate from the note of the course to allow control. Itemized description of the learning outcome L approximation of functions; L2 numerical quadrature; L3 odes; L4 Linear and nonlinear equations; L5 error analysis in general; L analysis of algorithms and methods; L7 implementation; L8 design of numerical experiments tested in the project work); L9 interpretation of the numerical results tested in the project work); L usage of precise mathematical language to describe solution to the problems and findings in the project. Problem Consider f C 4) [ a, a]) and let p 3 x) be the interpolation polynomial of degree 3 satisfying Show that if M 4 = p 3 a) = f a), p 3 a) = fa), p 3 a) = f a), p 3a) = f a). max f 4) x), then a x a fx) p 3 x) a4 24 M 4.

2 TMA425 Numerical Mathematics Page 2 of 9 Solution This is Hermite interpolation with n =, from the theorem about the error of Hermite interpolation page 9 in Süli and Mayers) we see that the exact expression for the error is fx) p 3 x) = f 4 ξ) [x a)x + a)] 2. 4! We get fx) p 3 x) M 4 24 max x [ a,a] [x2 a 2 ] 2 finding the maximum on [ a, a] of the polynomial [x 2 a 2 ] 2 we obtain the result. Tested learning outcome: L, L5, L. Problem 2 Given the distinct absissae x i, i =,,..., n +, and the values y i, i =,,..., n +, let q be the interpolation polynomial of degree n for the set of points {x i, y i ) : i =,,..., n} and let r be the interpolation polynomial of degree n for the points {x i, y i ) : i =, 2,..., n + }. Define px) = x x )rx) x x n+ )qx) x n+ x. Show that p is the interpolation polynomial of degree n + for the points {x i, y i ) : i =,,..., n + }. Solution We verify that: px ) = qx ) = y, px n+ ) = rx n+ ) = y n+ and for x i with i =,..., n px i ) = x i x )rx i ) x i x n+ )qx i ) x n+ x = x i x )y i x i x n+ )y i x n+ x = y i. So obviously p interpolates y,..., y n+ on x,..., x n+, and since the interpolation polynomial through n + 2 distinct points is unique, from the theorem of existence and uniqueness of the interpolation polynomial, p must be a polynomial of degree n +. Tested learning outcome: L, L5, L Problem 3 Write down the errors in the approximation of x 4 dx and x 5 dx by the trapezium rule and the Simpson s rule page 22 and 23 in the textbook). Use the exact values of the two integrals. Hence find the value of the constant C for which the trapezium rule gives the correct result for the calculation of x 5 Cx 4 )dx, and show that the trapezium rule gives a more accurate result than the Simpson s rule when 5 4 < C <

3 TMA425 Numerical Mathematics Page 3 of 9 Solution The values of the two integrals are respectively /5 and /. If we approximate both the two integrals with the trapezium rule we get in both cases the value /2 as approximation. So for the trapezium rule we get the two errors 5 2, 2, and one proceeds similarly for the Simpson rule. We also have x 5 Cx 4 )dx = 5 C 3 and approximating with the trapezium rule the same integral we get So we get x 5 Cx 4 )dx 2 C 2. 5 C 3 = 2 C 2, when C = 9. Using Simpson to approximate the same integral we obtain x 5 Cx 4 )dx ) 9 C. 8 Let us call I the exact value of the integral, T the approximation due to the trapezium rule and S the one due to the Simpson rule, then we have, I T = + 9C 3 and the trapezium formula gives the exact value of the integral when C = 9. We also have 5 + 2C I S =, 24 and both I T and I S are linear functions of C. We have to find the values of C such that I T I S. The two functions are plotted in figure : I T as a function of C decreases for values of C 9, and increases for C > 9. I S has a similar behaviour, and is zero in C = 5 2. It suffices to find the points of intersection of the two graphs. It turns out that the graph of I T intersects I S = S I for C < 5 2, and S I coincides with the line through the two points 5/24, ) and 5/2, ) for C < 5 2. This line intersects I T in two points corresponding to the values C = and C = 74. So I T I S for 4 C Tested learning outcome: L2, L5, L, L. Problem 4 Apply the implicit Runge-Kutta method

4 TMA425 Numerical Mathematics Page 4 of 9 plot abs K C 9 C 3, abs K5 C 2$C 24, C = C Figure : The two functions I T in red) and I S in blue) as functions of C.

5 TMA425 Numerical Mathematics Page 5 of 9 3 3) ) 3 + 3) ) to the initial value problem y = ft, y), yt ) = y, with time step t. Derive the equations giving rise to the method and discuss the implementation tasks to be performed at each time-step. Solution The Runge-Kutta method has two stages Y and Y 2 and they are obtained as the solution of the equations : Y = y + t 4 f t ) t, Y )f t ) ) t, Y 2 Y 2 = y + t )f t ) t, Y + 4 f t ) ) t, Y 2. To solve these equations we can use a fixed point iteration or a Newton method. With a fixed point iteration the procedure becomes: Initialization Y = y, Y 2 = y, k = Iteration while ε T OL and k ) Y old = Y k Y2 old = Y2 k Y k+ = y + t 4 f t + 3 Y k+ 2 = y + t k = k + ε = Y k Y old 2 + Y k 2 Y old 2 2 end while )f t t, Y k ) )f t t, Y k ) f t t, Y2 k ) ) t, Y2 k ) ). The RK-method and the corresponding equations can be also formulated by means of the unknowns K i = f t + c i t, y + t s j= ai,jkj ).

6 TMA425 Numerical Mathematics Page of 9 Y = Y k Y 2 = Y k 2 y = y + t 2 f t t, Y ) + f t t, Y 2 ) ). Tested learning outcome: L3, L4, L7, L. Problem 5 a) Consider the θ-method Solution for θ [, ], for the initial value problem y n+ = y n + h[ θ)f n + θf n+ ], y = ft, y), yt ) = y, where f n := ft n, y n ), t n = t + nh, y n yt n ) and h the time step. Write the θ-method as a Runge-Kutta method by finding the Butcher tableau of this method. θ θ or θ θ θ θ Tested learning outcome: L3. b) Determine and draw the region of A-stability for the method obtained for θ = and for θ = 2. Solution For θ = we have the backward Euler method whose region of absolute stability is S A = {z C z }. For θ = 2 we have the trapezoidal rule whose region of absolute stability is the negative half complex plane. Tested learning outcome: L3, L. c) Show that the method is A-stable if and only if θ 2.

7 TMA425 Numerical Mathematics Page 7 of 9 Solution We consider the scalar test equation y = λy, y) = y, where the real part of λ is non positive. The stability function of the θ-method is The method is A-stable if Rz) = + θ)z. θz Rez) Rz). We assume then that Rez) and explore for which values of θ we have that Rz) for all such z. + θ)z θz + θ)z θz, + Re θ)z) 2 + θ) 2 Imz) 2 2θRez) + θ) 2 z 2. Taking squares on both sides and simplifying we get 2θ θ 2. Tested learning outcome: L3, L, L. Problem Let a R and consider the matrix a a A = a a a a a) For which values of a is A positive definite? For which values of a is Gauss-Seidel method convergent? Solution The eigenvalues of A are λ = 2a +, λ 2 = λ 3 = a. Therefore all eigenvalues are positive if 2 < a <. Consider A = M N where M is the lower triangular part of A including the diagonal then M N has eigenvalues: and 2 a 3a a 2 ± a ) ) aa 4) and the spectral radius is ρm N) = 2 a 3a a 2 + a ) aa 4)) and it remains less than for 2 < a < these are the values for which the Gauss-Seidel method converges). Tested learning outcome: L4, L, L.

8 TMA425 Numerical Mathematics Page 8 of 9 b) For which values of a is the Jacobi iterative method convergent? For which values of a is the Gauss-Seidel iterative method converging faster than the Jacobi iteration? Solution Consider A = M N where M is the identity matrix, then M N has eigenvalues: 2a, a and a, so the spectral radius of this matrix is 2 a and Jacobi method converges if and only if a < 2. For a < 2 and a, the inequality 2 a 3a a 2 + a ) aa 4)) < 2 a, is always satisfied we have equality for a = ). Therefore for 2 < a < Gauss-Seidel converges while Jacobi doesn t and for a < 2 and a Gauss-Seidel converges faster than Jacobi. Tested learning outcome: L4, L, L. Problem 7 Reformulate the following equations into fix-point equations leading to convergent fix-point iterations on some interval [a, b]: x 2 x + =, e x sinx) =. Find a and b. Justify your answers. Solution The second equation has a zero in the interval, Π 2 ], and can be transformed to the fixed point equation x = x e x sinx), by dividing by sinx) and multiplying by x on both sides. The function gx) = x e x sinx) maps, Π 2 ] into itself and, by the mean value theorem since g is continuous and differentiable on, Π 2 ]), gx) gy) max g ξ) x y. ξ, Π 2 ] Computing the derivative of g we observe that it is bounded by on the interval, Π 2 ] so g is a contraction on this interval. This suffices to conclude that the fixed point iteration e xk ) x k) = x k ) sinx k ) ) converges for any starting value x, Π 2 ], by the contraction mapping theorem. The equation x 2 x + = has two complex conjugate roots. We consider x 2 = x

9 TMA425 Numerical Mathematics Page 9 of 9 take square roots on both sides and add x on both sides and, after dividing by 2 we obtain x = 2 x + 2 x. Such fixed-point equation for x < guarantees that x is pure imaginary and x is complex. So we can then continue analyzing the iteration in the complex plane. The iteration converges to the root 2 + i 3). Tested learning outcome: L4, L5, L, L.

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 216 17 INTRODUCTION TO NUMERICAL ANALYSIS MTHE612B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Linear Multistep methods Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the

More information

Numerical methods. Examples with solution

Numerical methods. Examples with solution Numerical methods Examples with solution CONTENTS Contents. Nonlinear Equations 3 The bisection method............................ 4 Newton s method.............................. 8. Linear Systems LU-factorization..............................

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #2 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Department of Mathematical Sciences Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Academic contact during examination: Markus Grasmair Phone: 97 58 04 35 Code C): Basic calculator.

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Examination paper for TMA4130 Matematikk 4N

Examination paper for TMA4130 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA4130 Matematikk 4N Academic contact during examination: Morten Nome Phone: 90 84 97 83 Examination date: 13 December 2017 Examination time (from

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

Part IB Numerical Analysis

Part IB Numerical Analysis Part IB Numerical Analysis Definitions Based on lectures by G. Moore Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

M.SC. PHYSICS - II YEAR

M.SC. PHYSICS - II YEAR MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU M.SC. PHYSICS - II YEAR DKP26 - NUMERICAL METHODS (From the academic year 2016-17) Most Student

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 20, 2014 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

Iterative Methods. Splitting Methods

Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 17, 2017 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

Previous Year Questions & Detailed Solutions

Previous Year Questions & Detailed Solutions Previous Year Questions & Detailed Solutions. The rate of convergence in the Gauss-Seidal method is as fast as in Gauss Jacobi smethod ) thrice ) half-times ) twice 4) three by two times. In application

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0 Numerical Analysis 1 1. Nonlinear Equations This lecture note excerpted parts from Michael Heath and Max Gunzburger. Given function f, we seek value x for which where f : D R n R n is nonlinear. f(x) =

More information

Introductory Numerical Analysis

Introductory Numerical Analysis Introductory Numerical Analysis Lecture Notes December 16, 017 Contents 1 Introduction to 1 11 Floating Point Numbers 1 1 Computational Errors 13 Algorithm 3 14 Calculus Review 3 Root Finding 5 1 Bisection

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES No. of Printed Pages : 5 BCS-054 BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 058b9 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES Time : 3 hours Maximum Marks

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

Multistage Methods I: Runge-Kutta Methods

Multistage Methods I: Runge-Kutta Methods Multistage Methods I: Runge-Kutta Methods Varun Shankar January, 0 Introduction Previously, we saw that explicit multistep methods (AB methods) have shrinking stability regions as their orders are increased.

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo 2008-11-07 Graded Project #1 Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo This homework is due to be handed in on Wednesday 12 November 2008 before 13:00 in the post box of the numerical

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

AM205: Assignment 3 (due 5 PM, October 20)

AM205: Assignment 3 (due 5 PM, October 20) AM25: Assignment 3 (due 5 PM, October 2) For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory) or problem 6 (on an application). If you submit answers

More information

CS 257: Numerical Methods

CS 257: Numerical Methods CS 57: Numerical Methods Final Exam Study Guide Version 1.00 Created by Charles Feng http://www.fenguin.net CS 57: Numerical Methods Final Exam Study Guide 1 Contents 1 Introductory Matter 3 1.1 Calculus

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1 53 17. Lecture 17 Nonlinear Equations Essentially, the only way that one can solve nonlinear equations is by iteration. The quadratic formula enables one to compute the roots of p(x) = 0 when p P. Formulas

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Lösning: Tenta Numerical Analysis för D, L. FMN011,

Lösning: Tenta Numerical Analysis för D, L. FMN011, Lösning: Tenta Numerical Analysis för D, L. FMN011, 090527 This exam starts at 8:00 and ends at 12:00. To get a passing grade for the course you need 35 points in this exam and an accumulated total (this

More information

Examination paper for TMA4130 Matematikk 4N: SOLUTION

Examination paper for TMA4130 Matematikk 4N: SOLUTION Department of Mathematical Sciences Examination paper for TMA4 Matematikk 4N: SOLUTION Academic contact during examination: Morten Nome Phone: 9 84 97 8 Examination date: December 7 Examination time (from

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT / Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer February 7, Numerical Programming I (for CSE) Repetition ) Floating Point Numbers and Rounding a) Let f : R R

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Iterative Methods for Ax=b

Iterative Methods for Ax=b 1 FUNDAMENTALS 1 Iterative Methods for Ax=b 1 Fundamentals consider the solution of the set of simultaneous equations Ax = b where A is a square matrix, n n and b is a right hand vector. We write the iterative

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #2 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Solution of Nonlinear Equations

Solution of Nonlinear Equations Solution of Nonlinear Equations In many engineering applications, there are cases when one needs to solve nonlinear algebraic or trigonometric equations or set of equations. These are also common in Civil

More information

You may not use your books, notes; calculators are highly recommended.

You may not use your books, notes; calculators are highly recommended. Math 301 Winter 2013-14 Midterm 1 02/06/2014 Time Limit: 60 Minutes Name (Print): Instructor This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any pages are missing.

More information

Numerical Methods. Scientists. Engineers

Numerical Methods. Scientists. Engineers Third Edition Numerical Methods for Scientists and Engineers K. Sankara Rao Numerical Methods for Scientists and Engineers Numerical Methods for Scientists and Engineers Third Edition K. SANKARA RAO Formerly,

More information

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations Numerical Methods for Ordinary Differential Equations Answers of the exercises C Vuik, S van Veldhuizen and S van Loenhout 08 Delft University of Technology Faculty Electrical Engineering, Mathematics

More information

Notes on Numerical Analysis

Notes on Numerical Analysis Notes on Numerical Analysis Alejandro Cantarero This set of notes covers topics that most commonly show up on the Numerical Analysis qualifying exam in the Mathematics department at UCLA. Each section

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the

More information

Additional exercises with Numerieke Analyse

Additional exercises with Numerieke Analyse Additional exercises with Numerieke Analyse March 10, 017 1. (a) Given different points x 0, x 1, x [a, b] and scalars y 0, y 1, y, z 1, show that there exists at most one polynomial p P 3 with p(x i )

More information

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx Lecture 3 We give a couple examples of using L Hospital s Rule: Example 3.. [ (a) Compute x 0 sin(x) x. To put this into a form for L Hospital s Rule we first put it over a common denominator [ x 0 sin(x)

More information

Suggested solutions, TMA4125 Calculus 4N

Suggested solutions, TMA4125 Calculus 4N Suggested solutions, TMA5 Calculus N Charles Curry May 9th 07. The graph of g(x) is displayed below. We have b n = = = 0 [ nπ = nπ ( x) nπx dx nπx dx cos nπx ] x nπx dx [ nπx x cos nπ ] ( cos nπ + cos

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 216 17 INTRODUCTION TO NUMERICAL ANALYSIS MTHE712B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Final) Paper Code:MT-08 Numerical Analysis Section A (Very Short Answers Questions)

Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Final) Paper Code:MT-08 Numerical Analysis Section A (Very Short Answers Questions) Program : M../M.Sc. (Mathematics) M../M.Sc. (Final) Paper Code:MT-08 Numerical nalysis Section (Very Short nswers Questions) 1. Write two examples of transcendental equations. (i) x 3 + sin x = 0 (ii)

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Unit I (Testing of Hypothesis)

Unit I (Testing of Hypothesis) SUBJECT NAME : Statistics and Numerical Methods SUBJECT CODE : MA645 MATERIAL NAME : Part A questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) Unit I (Testing of Hypothesis). State level

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

EXAMPLES OF CLASSICAL ITERATIVE METHODS

EXAMPLES OF CLASSICAL ITERATIVE METHODS EXAMPLES OF CLASSICAL ITERATIVE METHODS In these lecture notes we revisit a few classical fixpoint iterations for the solution of the linear systems of equations. We focus on the algebraic and algorithmic

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 2013

Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 2013 Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 013 August 8, 013 Solutions: 1 Root Finding (a) Let the root be x = α We subtract α from both sides of x n+1 = x

More information

ASSIGNMENT BOOKLET. Numerical Analysis (MTE-10) (Valid from 1 st July, 2011 to 31 st March, 2012)

ASSIGNMENT BOOKLET. Numerical Analysis (MTE-10) (Valid from 1 st July, 2011 to 31 st March, 2012) ASSIGNMENT BOOKLET MTE-0 Numerical Analysis (MTE-0) (Valid from st July, 0 to st March, 0) It is compulsory to submit the assignment before filling in the exam form. School of Sciences Indira Gandhi National

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University Fixed Points and Contractive Transformations Ron Goldman Department of Computer Science Rice University Applications Computer Graphics Fractals Bezier and B-Spline Curves and Surfaces Root Finding Newton

More information

Numerical Methods for Differential Equations Mathematical and Computational Tools

Numerical Methods for Differential Equations Mathematical and Computational Tools Numerical Methods for Differential Equations Mathematical and Computational Tools Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 Part 1. Vector norms, matrix norms and logarithmic

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1.

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1. The Bisection method or BOLZANO s method or Interval halving method: Find the positive root of x 3 x = 1 correct to four decimal places by bisection method Let f x = x 3 x 1 Here f 0 = 1 = ve, f 1 = ve,

More information

MecE 390 Final examination, Winter 2014

MecE 390 Final examination, Winter 2014 MecE 390 Final examination, Winter 2014 Directions: (i) a double-sided 8.5 11 formula sheet is permitted, (ii) no calculators are permitted, (iii) the exam is 80 minutes in duration; please turn your paper

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations MATEMATIKA, 2011, Volume 27, Number 2, 199 208 c Department of Mathematical Sciences, UTM Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations 1 E. Aruchunan

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

Numerical solutions of nonlinear systems of equations

Numerical solutions of nonlinear systems of equations Numerical solutions of nonlinear systems of equations Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan E-mail: min@math.ntnu.edu.tw August 28, 2011 Outline 1 Fixed points

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

Numerical Analysis Exam with Solutions

Numerical Analysis Exam with Solutions Numerical Analysis Exam with Solutions Richard T. Bumby Fall 000 June 13, 001 You are expected to have books, notes and calculators available, but computers of telephones are not to be used during the

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information