MA2501 Numerical Methods Spring 2015

Size: px
Start display at page:

Download "MA2501 Numerical Methods Spring 2015"

Transcription

1 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive Simpson s rule from the textbook implemented in Matlab with ɛ = 5 6 and max recursion level dept equal to 6. Compare the actual error with ɛ. a b / dx + x x xdx The procedure has been implemented in the Matlab function adsimpson.m available on the course home page. The exact value of both integrals is π a The procedure gives the approximation.59 to the digits given. The actual absolute error is about 6., well below ɛ. b The procedure gives the approximation.59 to the digits given. The actual absolute error is about., again well below ɛ. As a continuation of Exercise in Exercise set, compute a numerical approximation of the definite integral e x sinx dx, using the composite Gauss Legendre rule with n = and two subintervals, i.e. h =. You may want to use Matlab for the computations. The second Gauss Legendre rule with h = yields Qf,,, = 5 f + f f f + + f + 5 f +.. March 7, 5 Page of 5

2 Suppose we choose interpolation points in the interval [, ]: x = x = x = Remember that we obtain a quadrature formula by interpolating a function f at those points, and integrating exactly the resulting interpolation polynomial. The resulting formula has the format fxdx If = A k fx k a Explain why this quadrature formula integrates exactly polynomials of degree up to degree. Does it depend on the choice of x, x, x? b Using the preceding fact on the polynomials, x and x to find directly the weights A k. c Write down the Lagrange polynomials l, l and l for the interpolation points x k and compute the integrals A k = l kxdx. Do you find the same values of A k? If so, why? d Show that the quadrature formula integrates exactly polynomials of degree, but not. Hint: use the quadrature formula on the polynomials and. e Show that the quadrature formula is exact for the polynomial 5. Does this mean that the formula is exact for polynomials of degree 5? f Write the quadrature formula scaled to an arbitrary interval [a, b], in order to approximate b a fxdx. k= a This result does not depend on the choice of x, x, x as long as they are distinct. For any distinct points the interpolation polynomial must equal f, when f is a polynomial of degree at most. This follows from the uniqueness theorem of interpolating polynomials. Since the rule is generated by integrating the polynomial precisely, it also integrates f precisely in this case. b Using the fact that, x and x should be integrated exactly, gives the three equations: = = = dx = A + A + A dx = A + A dx = 6 A + A The second equation gives A = A, from the third we then get A = A = / and finally from the first A = /. March 7, 5 Page of 5

3 c From the definition we can immediately write down the Lagrange polynomials. l = = x x + l = l = 6 which are trivially integrated to give A = A = A = l dx = = 6x + 6 = x 6x + l dx = l dx = x x + dx = / 6x + 6 dx = / x 6x + dx = / so the resulting weights are the same. This must be the case. As discussed in a, since the functions, and are all polynomials of degree less than or equal to they match their interpolating polynomial through x, x, x. Consequently they will be integrated exactly when the weights are chosen as in c. However this was precisely the requirement we directly imposed in b, and since the resulting linear system had a unique solution, those weights must match those found in c. Note also that, and clearly form a basis for all polynomials of degree less than or equal to, i.e. any such polynomial can be written as a linear combination of these three functions. The linearity of integration and the quadrature rule then implies that the requirement in b is equivalent to the requirement that all polynomials of degree less than or equal to be integrated exactly. d We use the hint and check = = dx = 6 dx = 9 Since,, and clearly form a basis for all polynomials of degree less than or equal to. It again follows from linearity of integration and the quadrature rule that the formula is exact for all such polynomials. Because is a polynomial of degree, the formula is clearly not exact for all polynomials of degree. e We use the hint and check = 5 dx = + March 7, 5 Page of 5

4 In fact it is readily observed that the formula will be exact for all n+ with n some nonnegative integer, since it will be exact for all f /, where fx is an odd function. This does not mean the formula is exact for general polynomials of degree 5. Suppose it were exact for one such polynomial px. Then px + k for some constant k would also be a polynomial of degree 5. However, since the formula is not exact for it follows from linearity that the quadrature rule will not be exact for this new polynomial. f A linear transformation gives b with A k and x k as before. a fxdx If = b a A k f a + b ax k k= Show that the quadrature formula constructed using the n + nodes x, x,..., x n can not possibly have degree of precision n+, i.e. integrate exactly all polynomials of degree up to and including n+. This implies that the degree of precision, n+, obtained by Gaussian quadrature is optimal. Hint: Consider the polynomial M, with Mx = x x x n Call the interval this quadrature formula applies to for [a, b], where we exclude the trivial case a = b and assume without loss of generality that b > a. Now, following the hint it is readily observed that M x = x x x n, is at all the nodes x, x,..., x n. This implies that for a quadrature formula n If = A k fx k, k= IM =. However M is obviously positive at all points except the nodes and continuous, and so the actual integral of M must be positive, i.e. b a M x dx >. Thus M will not be integrated exactly by the quadrature formula. The proof now follows from the realization that M is a polynomial of degree n +. 5 Cf. Cheney and Kincaid, Exercise 6..9 Assume that you are interpolating the function fx = sinx on the interval [, π] with a linear spline on a uniformly spaced grid. Estimate how many grid points will be required in order to guarantee that the interpolation error is smaller than? March 7, 5 Page of 5

5 Denote by S the interpolating linear spline with grid size h = π/n. Then we have the estimate h max Sx fx x [,π] max f x. x [,π] Now, and therefore Thus f x = sinx, max f x =. x [,π] max Sx fx x [,π] h. As a consequence, the error is guaranteed to be smaller than, if h <, which, since h = π/n, is equivalent to the estimate n > 6 π. March 7, 5 Page 5 of 5

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 7 1 Cf. Cheney and Kincaid, Exercise 4.1.9 Consider the data points

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

Section 6.6 Gaussian Quadrature

Section 6.6 Gaussian Quadrature Section 6.6 Gaussian Quadrature Key Terms: Method of undetermined coefficients Nonlinear systems Gaussian quadrature Error Legendre polynomials Inner product Adapted from http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_p/node44.html

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

Romberg Integration and Gaussian Quadrature

Romberg Integration and Gaussian Quadrature Romberg Integration and Gaussian Quadrature P. Sam Johnson October 17, 014 P. Sam Johnson (NITK) Romberg Integration and Gaussian Quadrature October 17, 014 1 / 19 Overview We discuss two methods for integration.

More information

8.3 Numerical Quadrature, Continued

8.3 Numerical Quadrature, Continued 8.3 Numerical Quadrature, Continued Ulrich Hoensch Friday, October 31, 008 Newton-Cotes Quadrature General Idea: to approximate the integral I (f ) of a function f : [a, b] R, use equally spaced nodes

More information

Fixed point iteration and root finding

Fixed point iteration and root finding Fixed point iteration and root finding The sign function is defined as x > 0 sign(x) = 0 x = 0 x < 0. It can be evaluated via an iteration which is useful for some problems. One such iteration is given

More information

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

APPM/MATH Problem Set 6 Solutions

APPM/MATH Problem Set 6 Solutions APPM/MATH 460 Problem Set 6 Solutions This assignment is due by 4pm on Wednesday, November 6th You may either turn it in to me in class or in the box outside my office door (ECOT ) Minimal credit will

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Chapter 3 Interpolation and Polynomial Approximation

Chapter 3 Interpolation and Polynomial Approximation Chapter 3 Interpolation and Polynomial Approximation Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128A Numerical Analysis Polynomial Interpolation

More information

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Polynomial Interpolation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 24, 2013 1.1 Introduction We first look at some examples. Lookup table for f(x) = 2 π x 0 e x2

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

5 Numerical Integration & Dierentiation

5 Numerical Integration & Dierentiation 5 Numerical Integration & Dierentiation Department of Mathematics & Statistics ASU Outline of Chapter 5 1 The Trapezoidal and Simpson Rules 2 Error Formulas 3 Gaussian Numerical Integration 4 Numerical

More information

Additional exercises with Numerieke Analyse

Additional exercises with Numerieke Analyse Additional exercises with Numerieke Analyse March 10, 017 1. (a) Given different points x 0, x 1, x [a, b] and scalars y 0, y 1, y, z 1, show that there exists at most one polynomial p P 3 with p(x i )

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Numerical Methods. King Saud University

Numerical Methods. King Saud University Numerical Methods King Saud University Aims In this lecture, we will... find the approximate solutions of derivative (first- and second-order) and antiderivative (definite integral only). Numerical Differentiation

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Lösning: Tenta Numerical Analysis för D, L. FMN011,

Lösning: Tenta Numerical Analysis för D, L. FMN011, Lösning: Tenta Numerical Analysis för D, L. FMN011, 090527 This exam starts at 8:00 and ends at 12:00. To get a passing grade for the course you need 35 points in this exam and an accumulated total (this

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests. NUMERICAL ANALYSIS PRACTICE PROBLEMS JAMES KEESLING The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.. Solving Equations

More information

NUMERICAL ANALYSIS PROBLEMS

NUMERICAL ANALYSIS PROBLEMS NUMERICAL ANALYSIS PROBLEMS JAMES KEESLING The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.. Solving Equations Problem.

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Numerical Analysis: Interpolation Part 1

Numerical Analysis: Interpolation Part 1 Numerical Analysis: Interpolation Part 1 Computer Science, Ben-Gurion University (slides based mostly on Prof. Ben-Shahar s notes) 2018/2019, Fall Semester BGU CS Interpolation (ver. 1.00) AY 2018/2019,

More information

Chapter 2 notes from powerpoints

Chapter 2 notes from powerpoints Chapter 2 notes from powerpoints Synthetic division and basic definitions Sections 1 and 2 Definition of a Polynomial Function: Let n be a nonnegative integer and let a n, a n-1,, a 2, a 1, a 0 be real

More information

Q 0 x if x 0 x x 1. S 1 x if x 1 x x 2. i 0,1,...,n 1, and L x L n 1 x if x n 1 x x n

Q 0 x if x 0 x x 1. S 1 x if x 1 x x 2. i 0,1,...,n 1, and L x L n 1 x if x n 1 x x n . - Piecewise Linear-Quadratic Interpolation Piecewise-polynomial Approximation: Problem: Givenn pairs of data points x i, y i, i,,...,n, find a piecewise-polynomial Sx S x if x x x Sx S x if x x x 2 :

More information

MA 3021: Numerical Analysis I Numerical Differentiation and Integration

MA 3021: Numerical Analysis I Numerical Differentiation and Integration MA 3021: Numerical Analysis I Numerical Differentiation and Integration Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

April 15 Math 2335 sec 001 Spring 2014

April 15 Math 2335 sec 001 Spring 2014 April 15 Math 2335 sec 001 Spring 2014 Trapezoid and Simpson s Rules I(f ) = b a f (x) dx Trapezoid Rule: If [a, b] is divided into n equally spaced subintervals of length h = (b a)/n, then I(f ) T n (f

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Numerical Integration (Quadrature) Another application for our interpolation tools!

Numerical Integration (Quadrature) Another application for our interpolation tools! Numerical Integration (Quadrature) Another application for our interpolation tools! Integration: Area under a curve Curve = data or function Integrating data Finite number of data points spacing specified

More information

Lectures 9-10: Polynomial and piecewise polynomial interpolation

Lectures 9-10: Polynomial and piecewise polynomial interpolation Lectures 9-1: Polynomial and piecewise polynomial interpolation Let f be a function, which is only known at the nodes x 1, x,, x n, ie, all we know about the function f are its values y j = f(x j ), j

More information

Introduction Linear system Nonlinear equation Interpolation

Introduction Linear system Nonlinear equation Interpolation Interpolation Interpolation is the process of estimating an intermediate value from a set of discrete or tabulated values. Suppose we have the following tabulated values: y y 0 y 1 y 2?? y 3 y 4 y 5 x

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Polynomial Interpolation Part II

Polynomial Interpolation Part II Polynomial Interpolation Part II Prof. Dr. Florian Rupp German University of Technology in Oman (GUtech) Introduction to Numerical Methods for ENG & CS (Mathematics IV) Spring Term 2016 Exercise Session

More information

Engg. Math. II (Unit-IV) Numerical Analysis

Engg. Math. II (Unit-IV) Numerical Analysis Dr. Satish Shukla of 33 Engg. Math. II (Unit-IV) Numerical Analysis Syllabus. Interpolation and Curve Fitting: Introduction to Interpolation; Calculus of Finite Differences; Finite Difference and Divided

More information

In numerical analysis quadrature refers to the computation of definite integrals.

In numerical analysis quadrature refers to the computation of definite integrals. Numerical Quadrature In numerical analysis quadrature refers to the computation of definite integrals. f(x) a x i x i+1 x i+2 b x A traditional way to perform numerical integration is to take a piece of

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

Interpolation Theory

Interpolation Theory Numerical Analysis Massoud Malek Interpolation Theory The concept of interpolation is to select a function P (x) from a given class of functions in such a way that the graph of y P (x) passes through the

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration.

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration. Unit IV Numerical Integration and Differentiation Numerical integration and differentiation quadrature classical formulas for equally spaced nodes improper integrals Gaussian quadrature and orthogonal

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 3 1 Attempt to verify experimentally the calculation from class that

More information

Applied Numerical Analysis (AE2220-I) R. Klees and R.P. Dwight

Applied Numerical Analysis (AE2220-I) R. Klees and R.P. Dwight Applied Numerical Analysis (AE0-I) R. Klees and R.P. Dwight February 018 Contents 1 Preliminaries: Motivation, Computer arithmetic, Taylor series 1 1.1 Numerical Analysis Motivation..........................

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker.

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation

Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation See your notes. 1. Lagrange Interpolation (8.2) 1 2. Newton Interpolation (8.3) different form of the same polynomial as Lagrange

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Exam in Numerical Methods (MA2501)

Exam in Numerical Methods (MA2501) Norwegian University of Science and Technology Department of Mathematical Sciences Page 1 of 7 MA251 Numeriske Metoder Olivier Verdier (contact: 48 95 2 66) Exam in Numerical Methods (MA251) 211-5-25,

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Key Words: cardinal B-spline, coefficients, moments, rectangular rule, interpolating quadratic spline, hat function, cubic B-spline.

Key Words: cardinal B-spline, coefficients, moments, rectangular rule, interpolating quadratic spline, hat function, cubic B-spline. M a t h e m a t i c a B a l a n i c a New Series Vol. 24, 2, Fasc.3-4 Splines in Numerical Integration Zlato Udovičić We gave a short review of several results which are related to the role of splines

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

Assignment 6, Math 575A

Assignment 6, Math 575A Assignment 6, Math 575A Part I Matlab Section: MATLAB has special functions to deal with polynomials. Using these commands is usually recommended, since they make the code easier to write and understand

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

Errata List Numerical Mathematics and Computing, 7th Edition Ward Cheney & David Kincaid Cengage Learning (c) March 2013

Errata List Numerical Mathematics and Computing, 7th Edition Ward Cheney & David Kincaid Cengage Learning (c) March 2013 Chapter Errata List Numerical Mathematics and Computing, 7th Edition Ward Cheney & David Kincaid Cengage Learning (c) 202 9 March 203 Page 4, Summary, 2nd bullet item, line 4: Change A segment of to The

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Applied Numerical Analysis Homework #3

Applied Numerical Analysis Homework #3 Applied Numerical Analysis Homework #3 Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares Splines Question Consider a cubic spline interpolation of a set of data points, and derivatives

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx,

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx, Panel integration Week 12: Monday, Apr 16 Suppose we want to compute the integral b a f(x) dx In estimating a derivative, it makes sense to use a locally accurate approximation to the function around the

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/31 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

PHYS-4007/5007: Computational Physics Course Lecture Notes Appendix G

PHYS-4007/5007: Computational Physics Course Lecture Notes Appendix G PHYS-4007/5007: Computational Physics Course Lecture Notes Appendix G Dr. Donald G. Luttermoser East Tennessee State University Version 7.0 Abstract These class notes are designed for use of the instructor

More information

Outline. 1 Numerical Integration. 2 Numerical Differentiation. 3 Richardson Extrapolation

Outline. 1 Numerical Integration. 2 Numerical Differentiation. 3 Richardson Extrapolation Outline Numerical Integration Numerical Differentiation Numerical Integration Numerical Differentiation 3 Michael T. Heath Scientific Computing / 6 Main Ideas Quadrature based on polynomial interpolation:

More information

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V

Numerical integration - I. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V Numerical integration - I M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit V deterministic methods in 1D equispaced points (trapezoidal, Simpson...), others...

More information

Math-3315 & CSE-3365, exam 2 answer sheet

Math-3315 & CSE-3365, exam 2 answer sheet Math-3315 & CSE-3365, exam 2 answer sheet Oct. 23, 2012 Problem 1. (20 points) Given a vector z that contains all distinct elements z 1,z 2,,z n. The first task is to generate an n n Vandermonde-type matrix

More information

On orthogonal polynomials for certain non-definite linear functionals

On orthogonal polynomials for certain non-definite linear functionals On orthogonal polynomials for certain non-definite linear functionals Sven Ehrich a a GSF Research Center, Institute of Biomathematics and Biometry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany Abstract

More information

Math 4310 Solutions to homework 7 Due 10/27/16

Math 4310 Solutions to homework 7 Due 10/27/16 Math 4310 Solutions to homework 7 Due 10/27/16 1. Find the gcd of x 3 + x 2 + x + 1 and x 5 + 2x 3 + x 2 + x + 1 in Rx. Use the Euclidean algorithm: x 5 + 2x 3 + x 2 + x + 1 = (x 3 + x 2 + x + 1)(x 2 x

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

MATH 1014 Tutorial Notes 8

MATH 1014 Tutorial Notes 8 MATH4 Calculus II (8 Spring) Topics covered in tutorial 8:. Numerical integration. Approximation integration What you need to know: Midpoint rule & its error Trapezoid rule & its error Simpson s rule &

More information

Solutions Serie 1 - preliminary exercises

Solutions Serie 1 - preliminary exercises D-MAVT D-MATL Prof. A. Iozzi ETH Zürich Analysis III Autumn 08 Solutions Serie - preliminary exercises. Compute the following primitive integrals using partial integration. a) cos(x) cos(x) dx cos(x) cos(x)

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

3. Numerical Quadrature. Where analytical abilities end...

3. Numerical Quadrature. Where analytical abilities end... 3. Numerical Quadrature Where analytical abilities end... Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 32 3.1. Preliminary Remarks The Integration Problem Numerical quadrature denotes numerical

More information

Integer-Valued Polynomials

Integer-Valued Polynomials Integer-Valued Polynomials LA Math Circle High School II Dillon Zhi October 11, 2015 1 Introduction Some polynomials take integer values p(x) for all integers x. The obvious examples are the ones where

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT / Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer February 7, Numerical Programming I (for CSE) Repetition ) Floating Point Numbers and Rounding a) Let f : R R

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

BSM510 Numerical Analysis

BSM510 Numerical Analysis BSM510 Numerical Analysis Polynomial Interpolation Prof. Manar Mohaisen Department of EEC Engineering Review of Precedent Lecture Polynomial Regression Multiple Linear Regression Nonlinear Regression Lecture

More information

MT804 Analysis Homework II

MT804 Analysis Homework II MT804 Analysis Homework II Eudoxus October 6, 2008 p. 135 4.5.1, 4.5.2 p. 136 4.5.3 part a only) p. 140 4.6.1 Exercise 4.5.1 Use the Intermediate Value Theorem to prove that every polynomial of with real

More information

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1 Data Analysis-I Interpolation Soon-Hyung Yook December 4, 2015 Soon-Hyung Yook Data Analysis-I December 4, 2015 1 / 1 Table of Contents Soon-Hyung Yook Data Analysis-I December 4, 2015 2 / 1 Introduction

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

Interpolation & Polynomial Approximation. Hermite Interpolation I

Interpolation & Polynomial Approximation. Hermite Interpolation I Interpolation & Polynomial Approximation Hermite Interpolation I Numerical Analysis (th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Numerical Mathematics & Computing, 7 Ed. 4.1 Interpolation

Numerical Mathematics & Computing, 7 Ed. 4.1 Interpolation Numerical Mathematics & Computing, 7 Ed. 4.1 Interpolation Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole www.engage.com www.ma.utexas.edu/cna/nmc6 November 7, 2011 2011 1 /

More information

1 Review of Interpolation using Cubic Splines

1 Review of Interpolation using Cubic Splines cs412: introduction to numerical analysis 10/10/06 Lecture 12: Instructor: Professor Amos Ron Cubic Hermite Spline Interpolation Scribes: Yunpeng Li, Mark Cowlishaw 1 Review of Interpolation using Cubic

More information

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points CE 05 - Lecture 5 LECTURE 5 UMERICAL ITEGRATIO COTIUED Simpson s / Rule Simpson s / rule assumes equispaced data/interpolation/integration points Te integration rule is based on approximating fx using

More information

1 Lecture 8: Interpolating polynomials.

1 Lecture 8: Interpolating polynomials. 1 Lecture 8: Interpolating polynomials. 1.1 Horner s method Before turning to the main idea of this part of the course, we consider how to evaluate a polynomial. Recall that a polynomial is an expression

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY SPRING SEMESTER 207 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Scientific Computing: Numerical Integration

Scientific Computing: Numerical Integration Scientific Computing: Numerical Integration Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015 Nov 5th, 2015 A. Donev (Courant Institute) Lecture

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

Solutions 2. January 23, x x

Solutions 2. January 23, x x Solutions 2 January 23, 2016 1 Exercise 3.1.1 (a), p. 149 Let us compute Lagrange polynomials first for our case x 1 = 0, x 2 = 2, x 3 = 3: In [14]: from sympy import * init_printing(use_latex=true) x=symbols(

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information